Modular Transactions:
 Bounding Mixed Races in Space and Time

Brijesh Dongol* ${ }^{*}$ Radha Jagadeesan ${ }^{\dagger}$ James Riely ${ }^{\dagger}$
*University of Surrey, ${ }^{\dagger}$ DePaul University
PPoPP 2019

What can a programmer conclude about this code?

$$
\begin{gathered}
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2 \\
\| y:=2 \text {; atomic }\{r:=F\} ; z:=2 \text {; if } r \text { then } w:=y-y+x
\end{gathered}
$$

What can a programmer conclude about this code?

$$
\begin{aligned}
& x:=1 ; y:=1 ; \text { atomic }\{F:=1\} ; z:=1 ; \text { if } w \text { then } x:=2 \\
& \| y:=2 \text {; atomic }\{r:=F\} ; z:=2 ; \text { if } r \text { then } w:=y-y+x \\
& \mathrm{~W} x 1 \rightarrow \mathrm{~W} y 1 \rightarrow \underbrace{\mathrm{~W} F 1} \rightarrow \mathrm{~W} z 1 \rightarrow \mathrm{R} w ? \rightarrow \mathrm{~W} x 2 \\
& \mathrm{~W} y 2 \rightarrow \mathrm{R} F 1 \rightarrow \mathrm{~W} z 2 \rightarrow \mathrm{R} y ? \rightarrow \mathrm{R} y ? \rightarrow \mathrm{R} x ? \rightarrow \mathrm{~W} w ?
\end{aligned}
$$

- Variables initially 0; Reads as shown
$\bullet \longrightarrow \quad$ Program Order
$\checkmark \xrightarrow{\mathrm{wr}} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)

What can a programmer conclude about this code?

$$
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

$$
\begin{aligned}
& \mathrm{W} x 1 \rightarrow \mathrm{~W} y 1 \\
& \rightarrow \underbrace{\mathrm{~W} y 2}_{\mathrm{W}_{\mathrm{xwr}}} \rightarrow \mathrm{~W} z 1 \rightarrow \mathrm{Rw} \rightarrow \\
& \mathrm{RF} 1 \rightarrow \mathrm{~W} z 2 \rightarrow \mathrm{~W} 2 \\
& \mathrm{R} y ? \rightarrow \mathrm{R} y ? \rightarrow \mathrm{Rx} ? \rightarrow \mathrm{~W} w ?
\end{aligned}
$$

- Variables initially 0; Reads as shown
$\bullet \longrightarrow \quad$ Program Order
- $\xrightarrow{\mathrm{wr}} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)
- Full of races when $\langle\mathrm{R} y$? $\rangle,\langle\mathrm{R} y ?\rangle,\langle\mathrm{R} x$? \rangle occur

What can a programmer conclude about this code?

$$
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

$$
\begin{aligned}
& \mathrm{W} x 1 \rightarrow \mathrm{~W} y 1 \\
& \rightarrow \underbrace{\mathrm{~W} F 1} \rightarrow \mathrm{~W} z 1 \rightarrow \mathrm{Rw} ? \\
& \rightarrow \mathrm{~W} x 2^{\mathrm{W} y \mathrm{wr}} \rightarrow \\
& \mathrm{RF} \rightarrow \mathrm{~W} z 2 \rightarrow \mathrm{R} y ? \rightarrow \mathrm{R} y ? \rightarrow \mathrm{R} x ? \rightarrow \mathrm{~W} w ?
\end{aligned}
$$

- Variables initially 0; Reads as shown
$\checkmark \longrightarrow$ Program Order
$\downarrow \xrightarrow{\mathrm{wr}} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)
- Full of races when $\langle\mathrm{R} y$? $\rangle,\langle\mathrm{R} y ?\rangle,\langle\mathrm{R} x$? \rangle occur
- Past race on y (should see same value on both reads)

What can a programmer conclude about this code?

$x:=1 ; y:=1$; atomic $\{F:=1\} ; z:=1$; if w then $x:=2$
$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Variables initially 0; Reads as shown
$\bullet \longrightarrow \quad$ Program Order
$\stackrel{\text { wr }}{\longrightarrow} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)
- Full of races when $\langle\mathrm{R} y$? $\rangle,\langle\mathrm{R} y ?\rangle,\langle\mathrm{R} x$? \rangle occur
- Past race on y (should see same value on both reads)
- Current race on z (should not affect x or y)

What can a programmer conclude about this code?

$x:=1 ; y:=1$; atomic $\{F:=1\} ; z:=1$; if w then $x:=2$
$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

$$
\begin{aligned}
& \mathrm{W} x 1 \rightarrow \mathrm{~W} y 1 \\
& \rightarrow \mathrm{~W} F 1_{\mathrm{W} 1}^{\mathrm{W}} \mathrm{~W} z 1 \rightarrow \mathrm{Rw} ? \rightarrow \mathrm{~W} x 2 \\
& \\
& \mathrm{~W}_{\mathrm{W} 2} \rightarrow \\
& \mathrm{RF} 1 \rightarrow \mathrm{~W} z 2 \rightarrow \mathrm{R} y ? \rightarrow \mathrm{R} y ? \rightarrow \mathrm{R} x ? \rightarrow \mathrm{~W} w ?
\end{aligned}
$$

- Variables initially 0 ; Reads as shown
$\checkmark \longrightarrow$ Program Order
- $\xrightarrow{\mathrm{wr}} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)
- Full of races when $\langle\mathrm{R} y$? $\rangle,\langle\mathrm{R} y ?\rangle,\langle\mathrm{R} x$? \rangle occur
- Past race on y (should see same value on both reads)
- Current race on z (should not affect x or y)
- Future race on w (should not affect x or y)

What can a programmer conclude about this code?

$x:=1 ; y:=1$; atomic $\{F:=1\} ; z:=1$; if w then $x:=2$
$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Variables initially 0; Reads as shown
$\checkmark \longrightarrow$ Program Order
$-\xrightarrow{\mathrm{wr}} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)
- Full of races when $\langle\mathrm{R} y$? $\rangle,\langle\mathrm{R} y ?\rangle,\langle\mathrm{R} x$? \rangle occur
- Past race on y (should see same value on both reads)
- Current race on z (should not affect x or y)
- Future race on w (should not affect x or y)
- Future race on \boldsymbol{x} (read should not see the future)

Sequential Consistency (SC)

$$
\begin{gathered}
x:=1 ; y:=1 ; \text { atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2 \\
\| y:=2 ; \text { atomic }\{r:=F\} ; z:=2 ; \text { if } r \text { then } w:=y-y+x \\
\mathrm{~W} x 1 \rightarrow \mathrm{~W} y 1 \rightarrow \mathrm{WF}_{1} \rightarrow \mathrm{~W} z 1 \rightarrow \mathrm{R} w ? \rightarrow \mathrm{~W} x 2 \\
\\
\\
\\
\\
\mathrm{~W} y 2 \rightarrow \mathrm{RF} 1 \rightarrow \mathrm{~W} z 2 \rightarrow \mathrm{R} y ? \rightarrow \mathrm{R} y ? \rightarrow \mathrm{R} x ? \rightarrow \mathrm{~W} w ?
\end{gathered}
$$

- Execution by interleaving, respecting orders

Sequential Consistency (SC)

$$
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Execution by interleaving, respecting orders
$\checkmark \longrightarrow$ Program Order
$\checkmark \xrightarrow{\mathrm{wr}} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)

Sequential Consistency (SC)

$$
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Execution by interleaving, respecting orders
$\checkmark \longrightarrow$ Program Order
$\stackrel{\mathrm{wr}}{\mathrm{wwr}} \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)
- - -w Write-to-Write Order

Sequential Consistency (SC)

$$
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Execution by interleaving, respecting orders
$\triangleright \longrightarrow \quad$ Program Order
$\xrightarrow[\mathrm{ww}]{\mathrm{ww}} / \mathrm{xwr}$ Write-to-Read Dependency (Plain/Transactional)
- $\xrightarrow[-]{\mathrm{ww}} \rightarrow$ Write-to-Write Order

Sequential Consistency (SC)

$$
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Execution by interleaving, respecting orders
$\triangleright \longrightarrow \quad$ Program Order
$\xrightarrow[\mathrm{ww}]{\mathrm{ww}} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)
- $\xrightarrow[-\underline{w} \mathrm{w}]{ }$ Write-to-Write Order

Sequential Consistency (SC)

$$
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Execution by interleaving, respecting orders
$\checkmark \longrightarrow$ Program Order
$\stackrel{\mathrm{wr}}{\longrightarrow} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)
- $\xrightarrow{\mathrm{w} \mathrm{w}}$ Write-to-Write Order

Sequential Consistency (SC)

$$
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Execution by interleaving, respecting orders
$\checkmark \longrightarrow$ Program Order
$\stackrel{\mathrm{wr}}{\longrightarrow} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)
- - $\stackrel{\text { ww }}{ }$ Write-to-Write Order
- . $\stackrel{\text { rw }}{>}$ Read-to-Write Antidependency

Sequential Consistency (SC)

$x:=1 ; y:=1$; atomic $\{F:=1\} ; z:=1$; if w then $x:=2$
$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Execution by interleaving, respecting orders
$\checkmark \longrightarrow \quad$ Program Order
$\checkmark \xrightarrow{\mathrm{wr}} / \xrightarrow{\mathrm{xwr}}$ Write-to-Read Dependency (Plain/Transactional)
- - -W Write-to-Write Order
- . $\stackrel{r w}{ } \gg$ Read-to-Write Antidependency
- SC Declaratively:
- Require union of orders acyclic

Performance Relies On Reordering \& Optimization

- Reordering performed in hardware

$$
\begin{array}{lr}
x:=1 ; y:=1 \rightarrow y:=1 ; x:=1 & \text { Independent Writes } \\
r:=x ; q:=y \rightarrow q:=y ; r:=x & \text { Independent Reads } \\
x:=1 ; q:=y \rightarrow q:=y ; x:=1 & \text { Store Buffering } \\
r:=x ; q:=y \rightarrow q:=y ; r:=x & \text { Load Buffering }
\end{array}
$$

Performance Relies On Reordering \& Optimization

- Reordering performed in hardware

$$
\begin{array}{lr}
x:=1 ; y:=1 \rightarrow y:=1 ; x:=1 & \text { Independent Writes } \\
r:=x ; q:=y \rightarrow q:=y ; r:=x & \text { Independent Reads } \\
x:=1 ; q:=y \rightarrow q:=y ; x:=1 & \text { Store Buffering } \\
r:=x ; q:=y \rightarrow q:=y ; r:=x & \text { Load Buffering }
\end{array}
$$

- Peephole optimization + reordering enables common subexpression elimination, loop invariant code motion, etc

$$
\begin{aligned}
& r:=x ; q:=x \rightarrow r:=x ; q:=x \\
& x:=1 ; q:=x \rightarrow x:=1 ; q:=1 \\
& x:=1 ; x:=2 \rightarrow x:=2
\end{aligned}
$$

Redundant Load
Store Forwarding
Dead Store

Store Buffering under SC

$$
\begin{aligned}
x:=1 ; q:=y \\
\| y:=1 ; r:=x
\end{aligned} \quad \Longrightarrow \quad \begin{array}{r}
q:=y ; x:=1 \\
\| r:=x ; y:=1
\end{array}
$$

- Delay write past nonconflicting read?
- Performed by x86-TSO, ARMv8, etc

Store Buffering under SC

$$
\begin{aligned}
x:=1 ; q:=y \\
\| y:=1 ; r:=x
\end{aligned} \quad \Longrightarrow \quad \begin{array}{r}
q:=y ; x:=1 \\
\| r:=x ; y:=1
\end{array}
$$

- Delay write past nonconflicting read?
- Performed by x86-TSO, ARMv8, etc
- Correctness: Rewrites should not introduce new behavior

Store Buffering under SC

$$
\begin{aligned}
& x:=1 ; q:=y \quad ? \quad q:=y ; x:=1 \\
& \text { || } y:=1 ; r:=x \\
& \| r:=x ; y:=1 \\
& \begin{array}{c}
\mathrm{W} x 1 \rightarrow \mathrm{Ry} 0 \\
\mathrm{~W} y \mathrm{~F} \rightarrow \mathrm{R} \\
\mathrm{R} x 0
\end{array}
\end{aligned}
$$

- Delay write past nonconflicting read?
- Performed by x86-TSO, ARMv8, etc
- Correctness: Rewrites should not introduce new behavior

Store Buffering under SC

$$
\begin{aligned}
& x:=1 ; q:=y \quad ? \quad q:=y ; x:=1 \\
& \|y:=1 ; r:=x \quad \Longrightarrow \quad\| r:=x ; y:=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W} y 1 \longrightarrow \mathrm{R} x 0 \\
& \begin{array}{c}
\mathrm{RyO} \longrightarrow \mathrm{~W} x 1 \\
\mathrm{rw} \\
\mathrm{rW} \cdot \because \cdot \mathrm{~T} \\
\mathrm{R} x 0 \rightarrow \mathrm{~W} y 1
\end{array}
\end{aligned}
$$

- Delay write past nonconflicting read?
- Performed by x86-TSO, ARMv8, etc
- Correctness: Rewrites should not introduce new behavior

SC-DRF: A Contract Between Programmer \& Implementor

$$
\begin{aligned}
& x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2 \\
& \text { || } y:=2 \text {; atomic }\{r:=F\} ; z:=2 \text {; if } r \text { then } w:=y-y+x
\end{aligned}
$$

- Happens-Before

SC-DRF: A Contract Between Programmer \& Implementor

$$
\begin{aligned}
& x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2 \\
& \| y:=2 \text {; atomic }\{r:=F\} ; z:=2 \text {; if } r \text { then } w:=y-y+x
\end{aligned}
$$

- Happens-Before

- Data race: "Incorrect publication"
- $\mathrm{W} x \stackrel{\text { hb }}{\leftrightarrow} \mathrm{W} x \quad \mathrm{~W} x \stackrel{\mathrm{hb}}{4} \mathrm{R} x$

SC-DRF: A Contract Between Programmer \& Implementor

$$
\begin{gathered}
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2 \\
\| y:=2 \text {; atomic }\{r:=F\} ; z:=2 ; \text { if } r \text { then } w:=y-y+x \\
\mathrm{~W} x 1 \rightarrow \mathrm{~W} y 1 \rightarrow \mathrm{~W}_{1} \rightarrow \mathrm{~W} z 1 \rightarrow \mathrm{R} w 1 \rightarrow \mathrm{~W} x 2 \\
\\
\\
\\
\mathrm{~W} y 2 \rightarrow \mathrm{RF} 1 \rightarrow \mathrm{~W} z 2 \rightarrow \mathrm{R} y 1 \rightarrow \mathrm{R} y 1 \rightarrow \mathrm{R} x 1 \rightarrow \mathrm{~W} w 1
\end{gathered}
$$

- Happens-Before

- Data race: "Incorrect publication"
- $\mathrm{W} x \stackrel{\text { hb }}{\leftrightarrow} \mathrm{W} x \quad \mathrm{~W} x \stackrel{\text { hb }}{4} \mathrm{R} x$

SC-DRF: A Contract Between Programmer \& Implementor

$$
\begin{gathered}
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2 \\
\| y:=2 \text {; atomic }\{r:=F\} ; z:=2 ; \text { if } r \text { then } w:=y-y+x \\
\mathrm{~W} x 1 \rightarrow \mathrm{~W} y 1 \rightarrow \mathrm{~W} F 1^{\mathrm{W}} \rightarrow \mathrm{~W} z 1 \rightarrow \mathrm{R} w 1 \rightarrow \mathrm{~W} x 2 \\
\\
\\
\\
\mathrm{~W} y 2 \rightarrow \mathrm{RF} 1 \rightarrow \mathrm{~W} z 2 \rightarrow \mathrm{R} y 1 \rightarrow \mathrm{R} y 1 \rightarrow \mathrm{R} x 1 \rightarrow \mathrm{~W} w 1
\end{gathered}
$$

- Happens-Before
$\stackrel{\text { hb }}{\longrightarrow}$ includes \longrightarrow and $\xrightarrow{\mathrm{xwr}}$ but not $\xrightarrow{\mathrm{wr}},-\xrightarrow{\mathrm{ww}} \rightarrow$ or $\xrightarrow{\stackrel{\mathrm{rw}}{\longrightarrow}>}$
- Data race: "Incorrect publication"
- $\mathrm{W} x \stackrel{\text { hb }}{\longleftrightarrow} \mathrm{W} x \quad \mathrm{~W} x \stackrel{\text { hb }}{\underset{\leftrightarrow}{4}} \mathrm{R} x$
- DRF program: every SC execution is Data Race Free

SC-DRF: A Contract Between Programmer \& Implementor

$$
\begin{gathered}
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2 \\
\| y:=2 \text {; atomic }\{r:=F\} ; z:=2 ; \text { if } r \text { then } w:=y-y+x \\
\mathrm{~W} x 1 \rightarrow \mathrm{~W} y 1 \rightarrow \mathrm{~W} F 1^{\mathrm{W}} \rightarrow \mathrm{~W} z 1 \rightarrow \mathrm{R} w 1 \rightarrow \mathrm{~W} x 2 \\
\\
\\
\\
\mathrm{~W} y 2 \rightarrow \mathrm{RF} 1 \rightarrow \mathrm{~W} z 2 \rightarrow \mathrm{R} y 1 \rightarrow \mathrm{R} y 1 \rightarrow \mathrm{R} x 1 \rightarrow \mathrm{~W} w 1
\end{gathered}
$$

- Happens-Before
$\stackrel{\text { hb }}{\longrightarrow}$ includes \longrightarrow and $\xrightarrow{\mathrm{xwr}}$ but not $\xrightarrow{\mathrm{wr}},-\xrightarrow{\mathrm{ww}} \rightarrow$ or $\xrightarrow{\stackrel{\mathrm{rw}}{\longrightarrow}>}$
- Data race: "Incorrect publication"
- $\mathrm{W} x \stackrel{\text { hb }}{\longleftrightarrow} \mathrm{W} x \quad \mathrm{~W} x \stackrel{\text { hb }}{\underset{\leftrightarrow}{\leftrightarrow}} \mathrm{R} x$
- DRF program: every SC execution is Data Race Free
- SC-DRF: DRF program \Rightarrow SC behavior

SC-DRF: A Contract Between Programmer \& Implementor

$$
\begin{gathered}
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2 \\
\| y:=2 \text {; atomic }\{r:=F\} ; z:=2 ; \text { if } r \text { then } w:=y-y+x \\
\mathrm{~W} x 1 \rightarrow \mathrm{~W} y 1 \rightarrow \mathrm{~W} F 1^{\mathrm{W}} \rightarrow \mathrm{~W} z 1 \rightarrow \mathrm{R} w 1 \rightarrow \mathrm{~W} x 2 \\
\\
\\
\\
\mathrm{~W} y 2 \rightarrow \mathrm{RF} 1 \rightarrow \mathrm{~W} z 2 \rightarrow \mathrm{R} y 1 \rightarrow \mathrm{R} y 1 \rightarrow \mathrm{R} x 1 \rightarrow \mathrm{~W} w 1
\end{gathered}
$$

- Happens-Before
$\xrightarrow{\text { hb }}$ includes \longrightarrow and $\xrightarrow{\mathrm{xwr}}$ but not $\xrightarrow{\mathrm{wr}},-\xrightarrow{\mathrm{ww}} \rightarrow$ or $\xrightarrow{\stackrel{r \mathrm{w}}{\longrightarrow}>}$
- Data race: "Incorrect publication"
- $\mathrm{W} x \stackrel{\text { hb }}{\leftrightarrow} \mathrm{W} x \quad \mathrm{~W} x \stackrel{\mathrm{hb}}{\underset{4}{\leftrightarrow}} \mathrm{R} x$
- DRF program: every SC execution is Data Race Free
- SC-DRF: DRF program \Rightarrow SC behavior
;) No SC data race ever \Rightarrow everything correctly published always

SC-DRF: A Contract Between Programmer \& Implementor

$$
\begin{gathered}
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2 \\
\| y:=2 \text {; atomic }\{r:=F\} ; z:=2 ; \text { if } r \text { then } w:=y-y+x \\
\mathrm{~W} x 1 \rightarrow \mathrm{~W} y 1 \rightarrow \mathrm{~W} F 1^{\mathrm{W}} \rightarrow \mathrm{~W} z 1 \rightarrow \mathrm{R} w 1 \rightarrow \mathrm{~W} x 2 \\
\\
\\
\\
\mathrm{~W} y 2 \rightarrow \mathrm{RF} 1 \rightarrow \mathrm{~W} z 2 \rightarrow \mathrm{R} y 1 \rightarrow \mathrm{R} y 1 \rightarrow \mathrm{R} x 1 \rightarrow \mathrm{~W} w 1
\end{gathered}
$$

- Happens-Before
$\xrightarrow{\mathrm{hb}}$ includes \longrightarrow and $\xrightarrow{\mathrm{xwr}}$ but not $\xrightarrow{\mathrm{wr}}, \xrightarrow{\mathrm{ww}} \rightarrow$ or $\stackrel{\stackrel{r \mathrm{w}}{\longrightarrow}>}{ }$
- Data race: "Incorrect publication"
- $\mathrm{W} x \stackrel{\text { hb }}{\leftrightarrow} \mathrm{W} x \quad \mathrm{~W} x \stackrel{\text { hb }}{\underset{x}{\leftrightarrow}} \mathrm{R} x$
- DRF program: every SC execution is Data Race Free
- SC-DRF: DRF program \Rightarrow SC behavior
;) No SC data race ever \Rightarrow everything correctly published always
: Any SC data race ever \Rightarrow relaxed values/undefined behavior

Local SC-DRF (Dolan, et al, 2018)

$$
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Let $L=\{x, y\}$ be a set of locations

Local SC-DRF (Dolan, et al, 2018)

$x:=1 ; y:=1$; atomic $\{F:=1\} ; z:=1$; if w then $x:=2$
$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Let $L=\{x, y\}$ be a set of locations
- Let σ be an L-stable point in an execution
- No extension, in any execution, has an L-race with σ

Local SC-DRF (Dolan, et al, 2018)

$$
x:=1 ; y:=1 \text {; atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Let $L=\{x, y\}$ be a set of locations
- Let σ be an L-stable point in an execution
- No extension, in any execution, has an L-race with σ
- Let ρ be an extension of σ in an execution

Local SC-DRF (Dolan, et al, 2018)

$$
x:=1 ; y:=1 ; \text { atomic }\{F:=1\} ; z:=1 \text {; if } w \text { then } x:=2
$$

$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Let $L=\{x, y\}$ be a set of locations
- Let σ be an L-stable point in an execution
- No extension, in any execution, has an L-race with σ
- Let ρ be an extension of σ in an execution
- No SC L-race in $\rho \Rightarrow L$ correctly published in ρ

Local SC-DRF (Dolan, et al, 2018)

$x:=1 ; y:=1$; atomic $\{F:=1\} ; z:=1$; if w then $x:=2$
$\| y:=2$; atomic $\{r:=F\} ; z:=2$; if r then $w:=y-y+x$

- Let $L=\{x, y\}$ be a set of locations
- Let σ be an L-stable point in an execution
- No extension, in any execution, has an L-race with σ
- Let ρ be an extension of σ in an execution
- No SC L-race in $\rho \Rightarrow L$ correctly published in ρ
- Ignore races outside L, in past (σ), in future (after ρ)

SC-LDRF: Reordering \& Optimization

- Reordering performed in hardware

$$
\begin{align*}
& x:=1 ; y:=1 \rightarrow y:=1 ; x:=1 \\
& r:=x ; q:=y \rightarrow q:=y ; r:=x \\
& x:=1 ; q:=y \rightarrow q:=y ; x:=1 \\
& r:=x ; q:=y \rightarrow q:=y ; r:=x
\end{align*}
$$

Independent Writes ;)
Independent Reads
Store Buffering $;$
Load Buffering :

- Peephole optimization + reordering enables common subexpression elimination, loop invariant code motion, etc

$$
\begin{aligned}
& r:=x ; q:=x \rightarrow r:=x ; q:=x \\
& x:=1 ; q:=x \rightarrow x:=1 ; q:=1 \\
& x:=1 ; x:=2 \rightarrow x:=2
\end{aligned}
$$

Dead Store ;

Load Buffering

$$
\begin{array}{rlr}
q:=y ; x:=1 \\
\| r:=x ; y:=1
\end{array} \quad \Longrightarrow \quad \begin{array}{r}
x:=1 ; q:=y \\
\| y:=1 ; r:=x
\end{array}
$$

$\mathrm{R} y \mathrm{~T} \longrightarrow \mathrm{~W} x 1$

$\mathrm{R} x 1 \longrightarrow \mathrm{~W} y 1$

- LDRF disables "reading the future"
- Require $(\xrightarrow{\mathrm{hb}} \cup \xrightarrow{\mathrm{wr}})$ acyclic
(Causality)

Load Buffering

$$
\left.\begin{array}{rlr}
q:=y ; x:=1 \\
\| r:=x ; y:=1
\end{array} \quad \Longrightarrow \quad \begin{array}{r}
x:=1 ; q:=y \\
\| y:=1 ; r:=x
\end{array}\right)
$$

- LDRF disables "reading the future"
- Require ($\xrightarrow{\mathrm{hb}} \cup \xrightarrow{\mathrm{wr}}$) acyclic
(Causality)
: Requires fences on ARMv8 and PowerPC

Load Buffering

$$
\left.\begin{array}{rlr}
q:=y ; x:=1 \\
\| r:=x ; y:=1
\end{array} \quad \Longrightarrow \quad \begin{array}{r}
x:=1 ; q:=y \\
\| y:=1 ; r:=x
\end{array}\right)
$$

- LDRF disables "reading the future"
- Require ($\xrightarrow{\mathrm{hb}} \cup \xrightarrow{\mathrm{wr}}$) acyclic
(Causality)
- Requires fences on ARMv8 and PowerPC
; < 1% overhead on ARMv8

Load Buffering

$$
\left.\begin{array}{rlr}
q:=y ; x:=1 \\
\| r:=x ; y:=1
\end{array} \quad \Longrightarrow \quad \begin{array}{r}
x:=1 ; q:=y \\
\| y:=1 ; r:=x
\end{array}\right)
$$

- LDRF disables "reading the future"
- Require $(\xrightarrow{\mathrm{hb}} \cup \xrightarrow{\mathrm{wr}})$ acyclic
(Causality)
- Requires fences on ARMv8 and PowerPC
; < 1% overhead on ARMv8
() Compiler optimization unaffected

Load Buffering

$$
\left.\begin{array}{rlr}
q:=y ; x:=1 \\
\| r:=x ; y:=1
\end{array} \quad \Longrightarrow \quad \begin{array}{r}
x:=1 ; q:=y \\
\| y:=1 ; r:=x
\end{array}\right)
$$

- LDRF disables "reading the future"
- Require ($\xrightarrow{\mathrm{hb}} \cup \xrightarrow{\mathrm{wr}}$) acyclic
(Causality)
- Requires fences on ARMv8 and PowerPC
; < 1% overhead on ARMv8
() Compiler optimization unaffected
:) Understandable semantics (compare C11, Java)

Our Paper

- Local Transactional Race Freedom (LTRF)
- Extend LDRF to handle transactions
- Transactional idioms supported

Our Paper

- Local Transactional Race Freedom (LTRF)
- Extend LDRF to handle transactions
- Transactional idioms supported
- Inspiration:
- Local Data Race Freedom (LDRF):
- Dolan, Sivaramakrishnan, Madhavapeddy, PLDI 2018
- Transactions in relaxed memory:
- Dongol, Jagadeesan, Riely, POPL 2018
- Chong, Sorensen, Wickerson, PLDI, 2018
- Safe Privatization in Transactional Memory:
- Khyzha, Attiya, Gotsman, Rinetzky PPoPP 2018

Our Paper

- Local Transactional Race Freedom (LTRF)
- Extend LDRF to handle transactions
- Transactional idioms supported
- Inspiration:
- Local Data Race Freedom (LDRF):
- Dolan, Sivaramakrishnan, Madhavapeddy, PLDI 2018
- Transactions in relaxed memory:
- Dongol, Jagadeesan, Riely, POPL 2018
- Chong, Sorensen, Wickerson, PLDI, 2018
- Safe Privatization in Transactional Memory:
- Khyzha, Attiya, Gotsman, Rinetzky PPoPP 2018
- This talk:
- Implementation model

Our Paper

- Local Transactional Race Freedom (LTRF)
- Extend LDRF to handle transactions
- Transactional idioms supported
- Inspiration:
- Local Data Race Freedom (LDRF):
- Dolan, Sivaramakrishnan, Madhavapeddy, PLDI 2018
- Transactions in relaxed memory:
- Dongol, Jagadeesan, Riely, POPL 2018
- Chong, Sorensen, Wickerson, PLDI, 2018
- Safe Privatization in Transactional Memory:
- Khyzha, Attiya, Gotsman, Rinetzky PPoPP 2018
- This talk:
- Implementation model
- Privatization idiom

Our Paper

- Local Transactional Race Freedom (LTRF)
- Extend LDRF to handle transactions
- Transactional idioms supported
- Inspiration:
- Local Data Race Freedom (LDRF):
- Dolan, Sivaramakrishnan, Madhavapeddy, PLDI 2018
- Transactions in relaxed memory:
- Dongol, Jagadeesan, Riely, POPL 2018
- Chong, Sorensen, Wickerson, PLDI, 2018
- Safe Privatization in Transactional Memory:
- Khyzha, Attiya, Gotsman, Rinetzky PPoPP 2018
- This talk:
- Implementation model
- Privatization idiom
- Example of a mixed race:

Our Paper

- Local Transactional Race Freedom (LTRF)
- Extend LDRF to handle transactions
- Transactional idioms supported
- Inspiration:
- Local Data Race Freedom (LDRF):
- Dolan, Sivaramakrishnan, Madhavapeddy, PLDI 2018
- Transactions in relaxed memory:
- Dongol, Jagadeesan, Riely, POPL 2018
- Chong, Sorensen, Wickerson, PLDI, 2018
- Safe Privatization in Transactional Memory:
- Khyzha, Attiya, Gotsman, Rinetzky PPoPP 2018
- This talk:
- Implementation model
- Privatization idiom
- Example of a mixed race:

- Programmer model

Synchronization Via Transactions (Store Buffering)

> atomic $\{x:=1\} ;$ atomic $\{q:=y\}$
> $\|$ atomic $\{y:=1\} ;$ atomic $\{r:=x\}$

- Strong Serializability
- Transactions appear sequential
- Respect program order ("real" time)

Synchronization Via Transactions (Store Buffering)

> atomic $\{x:=1\} ;$ atomic $\{q:=y\}$
> $\|$ atomic $\{y:=1\} ;$ atomic $\{r:=x\}$

- Rules:
$\stackrel{\text { hb }}{\longrightarrow}$ includes $(\longrightarrow \cup \xrightarrow{\mathrm{xwr}})$
$\rightarrow(\xrightarrow{\mathrm{hb}} \cup \xrightarrow{\mathrm{xrw}}\rangle \cup \xrightarrow{\mathrm{wr}})$ acyclic
(Causality)

Synchronization Via Transactions (Store Buffering)

$$
\begin{aligned}
& \begin{array}{ll}
x:=1 ; & q:=y \\
y:=1 ; & r:=x
\end{array} \\
& \mathrm{~W} x 1 \longrightarrow \mathrm{Ry} 0
\end{aligned}
$$

- Rules:
$\rightarrow \xrightarrow{\text { hb }}$ includes $(\longrightarrow \cup \xrightarrow{\mathrm{xwr}})$
$-(\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xrw}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}})$ acyclic
- $\xrightarrow{\text { hb }}$; $\xrightarrow{\text { rw }} \cdot \stackrel{\rightharpoonup}{)}$ irreflexive
$\left(\mathrm{HB}_{\text {basE }}\right)$
(Causality)
(Observation)

Prevents $\mathrm{W} x 1 \rightarrow \mathrm{~W} \times 2 \rightarrow \mathrm{R} x 1 x$ $\stackrel{r}{r}, \ldots \ldots \ldots . .^{\bullet}$

2+2W Litmus Test

atomic $\{x:=1\}$; atomic $\{y:=2\}$; atomic $\{q:=y\}$
|| atomic $\{y:=1\}$; atomic $\{x:=2\}$; atomic $\{r:=x\}$

- Rules:
$\stackrel{\text { hb }}{\longrightarrow}$ includes $(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup-\stackrel{\mathrm{xww}}{\rightarrow})$ $\left(\mathrm{HB}_{\text {BASE }}\right)$
- $(\xrightarrow{\mathrm{hb}} \cup \stackrel{\mathrm{xrw}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}})$ acyclic
(Causality)
- $(\xrightarrow{\mathrm{hb}} ; \stackrel{r \omega}{\longrightarrow}>)$ irreflexive
(Observation)
- $(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{ww}}{-})$ irreflexive
(Coherence)

Publication

$$
\begin{aligned}
& \sqrt{ } \text { By Dependency } \\
& x:=1 ; \text { atomic }\{y:=1\} \\
& \| \text { atomic }\{q:=y\} ; r:=x
\end{aligned}
$$

- Rules:
$>\xrightarrow{\mathrm{hb}}$ includes $\left(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup \stackrel{\mathrm{xww}}{ }^{\mathrm{xww}}\right)$ $\left(\mathrm{HB}_{\text {BASE }}\right)$

- $(\xrightarrow{\mathrm{hb}} ; \cdot \stackrel{r w}{\longrightarrow}>)$ irreflexive
(Causality)
$>(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{ww}}{-}>)$ irreflexive

Publication

$$
\begin{array}{lr}
\text { JBy Dependency } & \text { XBy Antidependency } \\
x:=1 ; \text { atomic }\{y:=1\} & x:=1 ; \text { atomic }\{q:=y\} \\
\| \text { atomic }\{q:=y\} ; r:=x & \| \text { atomic }\{y:=1\} ; r:=x
\end{array}
$$

- Rules:
$\rightarrow \xrightarrow{\mathrm{hb}}$ includes $(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup-\stackrel{\mathrm{xww}}{\longrightarrow})$ $\left(\mathrm{HB}_{\text {BASE }}\right)$

(Causality)
- $(\xrightarrow{\mathrm{hb}} ; \cdot \stackrel{r w}{\longrightarrow}>)$ irreflexive (Observation)
$\Rightarrow\left(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{w}}{\mathrm{w}}_{-}^{>}\right)$irreflexive

Implementation Model

- Rules:
$\rightarrow \xrightarrow{\mathrm{hb}}$ includes $\left(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup{ }_{-}^{\mathrm{xww}} \xrightarrow{-}\right)$ ($\mathrm{HB}_{\text {BASE }}$)
- $(\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xrw}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}})$ acyclic
$\stackrel{(\mathrm{hb}}{\longrightarrow} ; \stackrel{r w}{\bullet}>)$ irreflexive
(Causality)
- $(\xrightarrow{\mathrm{hb}} ;-\underline{\mathrm{ww}})$ irreflexive

Implementation Model

- Rules:
$\rightarrow \xrightarrow{\mathrm{hb}}$ includes $\left(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup{ }^{\mathrm{xww}}-\stackrel{\rightharpoonup}{-}\right)$ $\left(\mathrm{HB}_{\text {BASE }}\right)$
- $(\xrightarrow{\mathrm{hb}} \cup \stackrel{\text { xrw }}{\longrightarrow} \cup \stackrel{\text { wr }}{\longrightarrow})$ acyclic
$\stackrel{(\mathrm{hb}}{\longrightarrow} ; \stackrel{r \omega}{\bullet}>)$ irreflexive
(Causality)
$>(\xrightarrow{\mathrm{hb}} ;-\underline{\mathrm{ww}} \gg)$ irreflexive
© Satisfies SC-LTRF
;) Validates many transactional idioms
- Eg, Publication
;) Does not overconstrain implementation
- Eg, No publication by antidependency

Implementation Model

- Rules:
 $\left(\mathrm{HB}_{\text {BASE }}\right)$
- $(\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xrw}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}})$ acyclic
(Causality)
- $(\xrightarrow{\mathrm{hb}} ; \stackrel{r \mathrm{rw}}{\longrightarrow})$ irreflexive
(Observation)
$>(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{ww}}{-}>)$ irreflexive
© Satisfies SC-LTRF
() Validates many transactional idioms
- Eg, Publication
;) Does not overconstrain implementation
- Eg, No publication by antidependency
;) Validates reorderings \& optimizations (except Load Buffering)
;) Efficient compilation to x86-TSO and ARMv8

Implementation Model

- Rules:
 $\left(\mathrm{HB}_{\text {BASE }}\right)$
- $(\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xrw}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}})$ acyclic
(Causality)
- $(\xrightarrow{\mathrm{hb}} ; \stackrel{r}{r w}>)$ irreflexive
(Observation)
$>(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{ww}}{-}>)$ irreflexive
© Satisfies SC-LTRF
() Validates many transactional idioms
- Eg, Publication
;) Does not overconstrain implementation
- Eg, No publication by antidependency
;) Validates reorderings \& optimizations (except Load Buffering)
;) Efficient compilation to x86-TSO and ARMv8
- Does not validate privatization

Proof Case For SC-LTRF: Switching Reads

$$
\begin{aligned}
& x:=1 \text {; atomic }\{x:=2\} \\
& \| \text { atomic }\{r:=x\} \\
& \mathrm{W} x 1 \longrightarrow \mathrm{~W} \times 2
\end{aligned}
$$

- Let ρ be execution of top thread

Proof Case For SC-LTRF: Switching Reads

$$
\begin{aligned}
& x:=1 ; \text { atomic }\{x:=2\} \\
& \| \text { atomic }\{r:=x\}
\end{aligned}
$$

- Let ρ be execution of top thread, then add bottom read

Proof Case For SC-LTRF: Switching Reads

$$
\begin{aligned}
& x:=1 ; \text { atomic }\{x:=2\} \\
& \| \text { atomic }\{r:=x\}
\end{aligned}
$$

- Let ρ be execution of top thread, then add bottom read
- SC-LTRF requires that we find a sequential action with race

Proof Case For SC-LTRF: Switching Reads

$$
\begin{aligned}
& x:=1 ; \text { atomic }\{x:=2\} \\
& \| \text { atomic }\{r:=x\}
\end{aligned}
$$

- Let ρ be execution of top thread, then add bottom read
- SC-LTRF requires that we find a sequential action with race
- No Race After ρ

Proof Case For SC-LTRF: Switching Reads

$$
\begin{aligned}
& x:=1 ; \text { atomic }\{x:=2\} \\
& \| \text { atomic }\{r:=x\}
\end{aligned}
$$

- Let ρ be execution of top thread, then add bottom read
- SC-LTRF requires that we find a sequential action with race
; No Race After ρ

;) Race After Prefix

Privatization

atomic $\{$ if $!y$ then $\operatorname{cheap}(x)\}$
$\|$ atomic $\{y:=1\} ; \operatorname{expensive}(x)$

Privatization

$$
\begin{aligned}
& \text { atomic }\{\text { if }!y \text { then } x:=1\} \\
& \| \text { atomic }\{y:=1\} ; x:=2
\end{aligned}
$$

- Considered race free

Privatization

$$
\text { atomic }\{\text { if }!y \text { then } x:=1\}
$$

$\|$ atomic $\{y:=1\} ; x:=2$

- Considered race free

Privatization

$$
\begin{aligned}
& \text { atomic }\{\text { if !y then } x:=1\} \\
& \| \text { atomic }\{y:=1\} ; x:=2 \\
& \begin{array}{l}
\text { Ry } 0 \rightarrow \mathrm{~W} x 1 \\
\text { xrw } \vdots \\
\mathrm{W} y 1
\end{array} \mathrm{~W} x 2 ?
\end{aligned}
$$

- Considered race free
- Rules:
$\rightarrow \xrightarrow{\mathrm{hb}}$ includes $(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup \stackrel{\mathrm{xww}}{\longrightarrow})$
$\left(\mathrm{HB}_{\text {bASE }}\right)$
(Causality)
$\Rightarrow(\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xrw}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}})$ acyclic
$\stackrel{(\mathrm{hb}}{\longrightarrow} ; \cdot \stackrel{r w}{\bullet} \gg)$ irreflexive
- $\left(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{w}}{ }_{\mathrm{w}}^{>}\right)$irreflexive

Privatization

$$
\begin{aligned}
& \text { atomic }\{\text { if }!y \text { then } x:=1\} \\
& \| \text { atomic }\{y:=1\} ; x:=2
\end{aligned}
$$

- Considered race free
- Rules:
$-\xrightarrow{\mathrm{hb}}$ includes $(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup \stackrel{\mathrm{xww}}{\longrightarrow-\underline{\longrightarrow}})$
$\left(\mathrm{HB}_{\text {base }}\right)$
(Causality)
- ($\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xrw}}{\cdots} \cup \xrightarrow{\mathrm{wr}})$ acyclic
$\stackrel{(\mathrm{hb}}{\longrightarrow} ; \cdot \stackrel{r w}{\longrightarrow}>)$ irreflexive
- $\left(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{w}}{ }_{\mathrm{w}}^{-}\right)$irreflexive
(Observation)
(Coherence)

Privatization

$$
\begin{aligned}
& \text { atomic }\{\text { if !y then } x:=1\} \\
& \| \text { atomic }\{y:=1\} ; x:=2 \\
& \begin{array}{l}
\text { Ry } 0 \rightarrow \mathrm{~W} x 1 \\
\text { xrw } \vdots \\
\mathrm{W} y 1 \rightarrow \mathrm{~W} x
\end{array}
\end{aligned}
$$

- Considered race free
- Rules:
$\rightarrow \xrightarrow{\mathrm{hb}}$ includes $(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup \stackrel{\mathrm{xww}}{\longrightarrow})$
($\mathrm{HB}_{\text {BASE }}$)
(Causality)
$\Rightarrow(\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xrw}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}})$ acyclic
$\stackrel{(\mathrm{hb}}{\longrightarrow} ; \cdot \stackrel{r w}{\bullet}>)$ irreflexive
- $\left(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{w}}{ }_{\mathrm{w}}^{>}\right)$irreflexive

Privatization

$$
\begin{aligned}
& \text { atomic }\{\text { if !y then } x:=1\} \\
& \| \text { atomic }\{y:=1\} ; x:=2 \\
& \begin{array}{l}
\text { Ry } 0 \rightarrow \mathrm{~W} x 1 \\
\text { xrw } \vdots \\
\mathrm{Ww} \text { i }
\end{array} \\
& \mathrm{W} y 1 \rightarrow \mathrm{~Wb} \times 2
\end{aligned}
$$

- Considered race free
- Rules:
$>\xrightarrow{\mathrm{hb}}$ includes $(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup \xrightarrow{\mathrm{xww}} \rightarrow)$
$\left(\mathrm{HB}_{\text {bASE }}\right)$

$\stackrel{(\mathrm{hb}}{\longrightarrow} ; \cdot \stackrel{r}{\sim} \cdot>)$ irreflexive
$\rightarrow(\xrightarrow{\mathrm{hb}} ;-\underline{\mathrm{ww}}->)$ irreflexive
$\stackrel{\text { hb }}{\longrightarrow}$ includes $(-\stackrel{\mathrm{ww}}{\longrightarrow} \cap(\ldots \stackrel{\mathrm{xrw}}{>}>\xrightarrow{\mathrm{hb}}))$
(Causality)
(Observation)
(Coherence)
$\left(\mathrm{HB}_{\mathrm{ww}}\right)$

Privatization

$$
\begin{aligned}
& \text { atomic }\{\text { if }!y \text { then } x:=1\} \\
& \| \text { atomic }\{y:=1\} ; x:=2 \\
& \operatorname{Ry} 0 \rightarrow \mathrm{~W} x 1 \\
& \text { xrw } \vdots \mathrm{Ww} \uparrow\} \\
& \mathrm{W} y 1 \rightarrow \mathrm{~W} x 2
\end{aligned}
$$

- Considered race free
- Rules:
$\rightarrow \xrightarrow{\mathrm{hb}}$ includes $\left(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup-^{\mathrm{xww}} \rightarrow\right)$
$\left(\mathrm{HB}_{\text {BASE }}\right)$

(Causality)
$\stackrel{(\mathrm{hb}}{\longrightarrow} ; \cdot \stackrel{r w}{\bullet}>)$ irreflexive (Observation)
- $(\xrightarrow{\mathrm{hb}} ;-\underline{\mathrm{ww}}->)$ irreflexive

- SC-LTRF requires we find SC execution with a race

Privatization

$$
\begin{aligned}
& \text { atomic }\{\text { if ! } y \text { then } x:=1\} \\
& \| \text { atomic }\{y:=1\} ; x:=2 \\
& \operatorname{Ry} 0 \rightarrow \mathrm{~W} x 1 \\
& \text { xrw } \vdots \mathrm{Ww} \uparrow\} \\
& \mathrm{W} y 1 \rightarrow \mathrm{~W} x 2
\end{aligned}
$$

- Considered race free
- Rules:
$\rightarrow \xrightarrow{\mathrm{hb}}$ includes $\left(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup-^{\mathrm{xww}} \rightarrow\right)$
$\left(\mathrm{HB}_{\text {BASE }}\right)$
- ($\left.\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xr}^{w}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}}\right)$ acyclic
(Causality)
$\rightarrow(\xrightarrow{\mathrm{hb}} ; \stackrel{r}{\mathrm{rw}}>)$ irreflexive (Observation)
- $(\xrightarrow{\mathrm{hb}} ;-\underline{\mathrm{ww}}->)$ irreflexive

- SC-LTRF requires we find SC execution with a race $\mathrm{R} y 0 \stackrel{\mathrm{xrw}}{\longrightarrow} \mathrm{W} y 1 \Longrightarrow \mathrm{~W} x 1-\underline{\mathrm{w}}>\mathrm{W} x 2$

Privatization

$$
\begin{aligned}
& \text { atomic }\{\text { if }!y \text { then } x:=1\} \\
& \| \text { atomic }\{y:=1\} ; x:=2 \\
& \mathrm{Ry} 0 \rightarrow \mathrm{~W} x 1 \\
& \text { xrw } \vdots \mathrm{Ww} \uparrow\} \\
& \mathrm{W} y 1 \rightarrow \mathrm{~W} x 2
\end{aligned}
$$

- Considered race free
- Rules:
$\rightarrow \xrightarrow{\mathrm{hb}}$ includes $\left(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup-^{\mathrm{xww}} \rightarrow\right)$
$\left(\mathrm{HB}_{\text {BASE }}\right)$
- ($\left.\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xr}^{w}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}}\right)$ acyclic
(Causality)
$\rightarrow(\xrightarrow{\mathrm{hb}} ; \stackrel{r}{\mathrm{rw}}>)$ irreflexive (Observation)
- $(\xrightarrow{\mathrm{hb}} ;-\underline{\mathrm{ww}}->)$ irreflexive
$\stackrel{\text { hb }}{\longrightarrow}$ includes $(-\stackrel{\mathrm{ww}}{\rightarrow} \cap(. \times \stackrel{\mathrm{xrw}}{>} ; \xrightarrow{\mathrm{hb}}))$
- SC-LTRF requires we find SC execution with a race

$$
\mathrm{Ry} 0 \stackrel{\text { xrw }}{\stackrel{W}{W}} \mathrm{~W} 1 \Rightarrow \mathrm{~W} x 1_{-}^{\underline{\mathrm{ww}}}>\mathrm{W} x 2 \Rightarrow \mathrm{~W} x 1 \xrightarrow{\mathrm{hb}} \mathrm{~W} x 2
$$

Privatization

$$
\begin{aligned}
& \text { atomic }\{\text { if ! } y \text { then } x:=1\} \\
& \| \text { atomic }\{y:=1\} ; x:=2 \\
& \begin{array}{c}
\operatorname{Ry} 0 \rightarrow \mathrm{~W} x 1 \\
\text { xrw } \vdots \\
\mathrm{Ww} \uparrow\} \\
\mathrm{W} y 1 \rightarrow \mathrm{~W} x 2
\end{array}
\end{aligned}
$$

- Considered race free
- Rules:
$\rightarrow \xrightarrow{\mathrm{hb}}$ includes $\left(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup\right.$ - $\left.^{\mathrm{xww}} \rightarrow\right)$
$\left(\mathrm{HB}_{\text {BASE }}\right)$
- ($\left.\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xr}^{w}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}}\right)$ acyclic
(Causality)
- $(\xrightarrow{\mathrm{hb}} ; \stackrel{r w}{\longrightarrow} \gg)$ irreflexive
$>(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{w} w}{-}>)$ irreflexive
 Observation)
(Coherence)

$\left(\mathrm{HB}_{\mathrm{ww}}\right)$
(ANTI ${ }_{w w}$)
- SC-LTRF requires we find SC execution with a race $\mathrm{R} y 0 \stackrel{\mathrm{xrw}}{>} \mathrm{W} y 1 \Longrightarrow \mathrm{~W} x 1-\underline{\underline{\mathrm{ww}}}>\mathrm{W} x 2 \Rightarrow \mathrm{~W} x 1 \xrightarrow{\mathrm{hb}} \mathrm{W} x 2$

Privatization: Order Can Cascade

```
    atomic \(\{\) if \(!y\) then \(x:=1\}\)
|| atomic \(\{y:=1\}\); atomic \(\left\{\right.\) if \(!y^{\prime}\) then \(\left.x^{\prime}:=1\right\}\)
|| atomic \(\left\{y^{\prime}:=1\right\} ; x^{\prime}:=2 ; x:=2\)
```


- Rules:
$\rightarrow \xrightarrow{\mathrm{hb}}$ includes $\left(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup \mathrm{N}^{\mathrm{xww}} \underset{\rightarrow}{\rightarrow}\right)$
$\stackrel{\text { hb }}{\longrightarrow}$ includes $(-\stackrel{\mathrm{ww}}{\longrightarrow} \cap(\stackrel{\mathrm{xrw}}{\stackrel{\mathrm{x}}{ }>} ; \xrightarrow{\mathrm{hb}}))$ ($\mathrm{HB}_{\mathrm{ww}}$)
- $(\xrightarrow{\mathrm{hb}} \cup \stackrel{. \mathrm{xrw}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}})$ acyclic
(Causality)
$\stackrel{(\mathrm{hb}}{\longrightarrow} ; . \stackrel{r}{\bullet} \gg)$ irreflexive (Observation)
- $(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{ww}}{-}>)$ irreflexive (Coherence)

Programmer Model

- Rules:
$>\xrightarrow{\mathrm{hb}}$ includes $\left(\longrightarrow \cup \xrightarrow{\mathrm{xwr}} \cup\right.$ - $\left.^{\mathrm{xww}} \xrightarrow{\rightarrow}\right)$
$\left(\mathrm{HB}_{\text {BASE }}\right)$
$\stackrel{\text { hb }}{\longrightarrow}$ includes $(-\stackrel{\mathrm{ww}}{\rightarrow} \cap(. . \stackrel{\mathrm{xrw}}{\longrightarrow}\rangle \xrightarrow{\mathrm{hb}}))$
$\stackrel{(\mathrm{hb}}{\longrightarrow} \cup \stackrel{\mathrm{xrw}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}})$ acyclic
- $(\xrightarrow{\mathrm{hb}} ; \cdot \stackrel{r \omega}{r}>)$ irreflexive
$\rightarrow(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{ww}}{-}>)$ irreflexive

($\mathrm{HB}_{\mathrm{ww}}$)
(Causality)
(Observation)
(Coherence)
(ANTI ${ }_{\text {ww }}$)

Programmer Model

- Rules:

$\stackrel{\text { hb }}{\longrightarrow}$ includes $(-\stackrel{\mathrm{ww}}{\longrightarrow} \cap(\ldots \stackrel{\mathrm{xrw}}{\longrightarrow}>\xrightarrow{\mathrm{hb}}))$
$\stackrel{(\mathrm{hb}}{\longrightarrow} \cup \stackrel{\text { xrw }}{\stackrel{ }{\longrightarrow}} \cup \xrightarrow{\mathrm{wr}})$ acyclic
(Causality)
$\stackrel{(\mathrm{hb}}{\longrightarrow} ; . \stackrel{r w}{\bullet}>)$ irreflexive
$>(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{ww}}{\rightarrow}>)$ irreflexive
- $(\stackrel{\text { xrw }}{\cdots}\rangle ; \xrightarrow{h b} ;-\underline{w w}->)$ irreflexive
() Satisfies SC-LTRF
(-) Validates many more transactional idioms
- Eg, Publication, Privatization
© Does not overconstrain implementation
- Eg, No publication by antidependency

Programmer Model

- Rules:

$\stackrel{\text { hb }}{\longrightarrow}$ includes $(-\stackrel{\mathrm{ww}}{\rightarrow} \cap(. . \stackrel{\mathrm{xrw}}{\longrightarrow}\rangle \xrightarrow{\mathrm{hb}}))$
$\stackrel{(\mathrm{hb}}{\longrightarrow} \cup \stackrel{\mathrm{xrw}}{\longrightarrow} \cup \xrightarrow{\mathrm{wr}})$ acyclic
$\stackrel{(\mathrm{hb}}{\longrightarrow} ; \cdot \stackrel{r \omega}{\bullet}>)$ irreflexive
(Causality)
$>(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{w} w}{-}>)$ irreflexive
- $(\stackrel{\text { xrw }}{\cdots}\rangle ; \xrightarrow{h b} ;-\underline{w w}->)$ irreflexive
() Satisfies SC-LTRF
(-) Validates many more transactional idioms
- Eg, Publication, Privatization
© Does not overconstrain implementation
- Eg, No publication by antidependency
- Overtuned to one idiom?

Programmer Model

- Rules:

$\stackrel{\text { hb }}{\longrightarrow}$ includes $(-\stackrel{\mathrm{ww}}{\rightarrow} \cap(. \stackrel{\mathrm{xrw}}{\longrightarrow}>\xrightarrow{\mathrm{hb}}))$
$\stackrel{(\mathrm{hb}}{\longrightarrow} \cup \stackrel{\text { xrw }}{\stackrel{ }{\longrightarrow}} \cup \xrightarrow{\mathrm{wr}})$ acyclic
(Causality)
$\stackrel{(\mathrm{hb}}{\longrightarrow} ; . \xrightarrow{r w}>)$ irreflexive
$>(\xrightarrow{\mathrm{hb}} ;-\stackrel{\mathrm{w} w}{-}>)$ irreflexive
- $(\stackrel{\text { xrw }}{\cdots}\rangle ; \xrightarrow{h b} ;-\underline{w w}->)$ irreflexive
() Satisfies SC-LTRF
;) Validates many more transactional idioms
- Eg, Publication, Privatization
© Does not overconstrain implementation
- Eg, No publication by antidependency
- Overtuned to one idiom?
© Validates reorderings \& optimizations (except Load Buffering)
: Efficient compilation to x86-TSO and ARMv8

Programmer Model Invalidates Store Buffering

Programmer Model Invalidates Store Buffering

In Paper

- Details
- Lifting
- Aborted/Live transactions
- Programmer Model \Rightarrow Implementation Model
- Quiescent Fences
- Variant Programmer Models

Aborted Transactions

Allowed

Coherence

\checkmark Us, X C11

$\mathrm{R} x 2 \longrightarrow \mathrm{R} x 1 \longrightarrow \mathrm{R} x 2$
\checkmark Us, $\sqrt{ }$ Java, $\sqrt{\text { C11 }}$

WW Variants

$$
\begin{array}{ll}
\text { atomic }\{r:=y ; x:=1\} & \operatorname{Ry} 0 \rightarrow \mathrm{~W} \times 1^{\text {new }} \text { atomic }\{y:=1\} ; x:=2
\end{array}
$$

$$
\xrightarrow{\text { hb }} \text { includes }-\underline{\underline{w}} \underset{>}{>} \cap(\xrightarrow{\text { hb }} ; \cdots \stackrel{\text { row }}{>} \gg)
$$

$$
(\xrightarrow{\mathrm{hb}} ; \ldots \xrightarrow{\mathrm{xrw}} \gg-\underline{\underline{w}}->) \text { is irreflexive. }
$$

$$
\begin{array}{r}
x:=1 ; \text { atomic }\{r:=y\} \\
\| \text { atomic }\{x:=2 ; y:=1\}
\end{array}
$$

$$
\begin{aligned}
& \xrightarrow{\mathrm{hb}} \text { includes }-\underline{\mathrm{w}} \underline{\mathrm{w}}>\cap(\stackrel{\mathrm{xrw}}{\stackrel{\mathrm{w}}{ }>} ; \xrightarrow{\mathrm{hb}}) \\
& (\ldots \stackrel{\text { xrw }}{>} \gg \xrightarrow{\mathrm{hb}} ;-\underline{\mathrm{ww}}\rangle) \text { is reflexive. } \\
& \text { (} \mathrm{HB}_{\mathrm{ww}} \text {) } \\
& \text { (ANTI }{ }_{w w} \text {) }
\end{aligned}
$$

RW Variants

$$
\xrightarrow{\mathrm{hb}} \text { includes } \stackrel{\text { rw }}{>}>\cap(\stackrel{\text { rrw }}{\underset{\longrightarrow}{\longrightarrow}} ; \xrightarrow{\text { hb }})
$$

($\mathrm{HB}_{\mathrm{Rw}}$)
$(\stackrel{\mathrm{xrw}}{>} \gg \xrightarrow{\mathrm{hb}} ; \ldots \xrightarrow{\mathrm{rw}} \gg)$ is irreflexive
(ANTI ${ }_{\text {RW }}$)

$\xrightarrow{\mathrm{hb}}$ includes $\stackrel{\text { rw }}{\longrightarrow} \cap(\xrightarrow{\mathrm{hb}} ; \stackrel{. \stackrel{\text { xrw }}{\longrightarrow} \gg)}{ }$
$\left(\mathrm{HB}_{\mathrm{Rw}}^{\prime}\right)$

(ANTI ${ }_{\text {RW }}^{\prime}$)

WR Variants

