
DRAFT
1/22

Eventual Consistency for CRDTs

Radha Jagadeesan James Riely

DePaul University
Chicago, USA

ESOP 2018



DRAFT
2/22

CRDTs?

C = blah blah
R = mumble

DT = Data Type



DRAFT
2/22

CRDTs?

C = blah blah
R = mumble

DT = Data Type



DRAFT
3/22

Data Type

I “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)



DRAFT
3/22

Data Type

I “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)

I Eg, binary set with operations:
I +0, +1: add
I -0, -1: remove
I 70, 71: membership query returning false
I 30, 31: membership query returning true

I Sequential interface:
+0-070
+0-030



DRAFT
3/22

Data Type

I “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)

I Eg, binary set with operations:
I +0, +1: add
I -0, -1: remove
I 70, 71: membership query returning false
I 30, 31: membership query returning true

I Sequential interface:
+0-070
+0-030



DRAFT
3/22

Data Type

I “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)

I Eg, list with operations:
I put(0), put(1), put(2), . . . : add to end
I q=[], q=[0], q=[0,1], . . . : query returning list contents

I Sequential interface:
put(0) put(1) q=[0,1]
put(0) put(1) q=[1,0]

I ADT: contract between implementor and client
I Implementor and client take turns



DRAFT
3/22

Data Type

I “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)

I Eg, list with operations:
I put(0), put(1), put(2), . . . : add to end
I q=[], q=[0], q=[0,1], . . . : query returning list contents

I Sequential interface:
put(0) put(1) q=[0,1]
put(0) put(1) q=[1,0]

I ADT: contract between implementor and client
I Implementor and client take turns



DRAFT
3/22

Data Type

I “An abstract data type defines a class of abstract objects which is
completely characterized by the operations available on those
objects.” (Liskov/Zilles 1974)

I Eg, list with operations:
I put(0), put(1), put(2), . . . : add to end
I q=[], q=[0], q=[0,1], . . . : query returning list contents

I Sequential interface:
put(0) put(1) q=[0,1]
put(0) put(1) q=[1,0]

I ADT: contract between implementor and client
I Implementor and client take turns



DRAFT
4/22

What about concurrent
clients?



DRAFT
5/22

Linearizability (Herlihy/Wing 1990)

I “Each method call should appear to take e�ect instantaneously
at some moment between its invocation and response.”
(Herlihy/Shavit 2008)

Specification

Execution

Client wins!
Compositional (Herlihy/Wing 1990)
Exactly characterizes programmer view (for coordinating clients)
(Filipovic/O’Hearn/Rinetzky/Yang 2010)

Implementor loses!
Intrinsically ine�icient (Dwork/Herlihy/Waarts 1997)
See also: CAP theorem (Gilbert/Lynch 2002)



DRAFT
5/22

Linearizability (Herlihy/Wing 1990)

I “Each method call should appear to take e�ect instantaneously
at some moment between its invocation and response.”
(Herlihy/Shavit 2008)

Specification

Execution

Client wins!
Compositional (Herlihy/Wing 1990)
Exactly characterizes programmer view (for coordinating clients)
(Filipovic/O’Hearn/Rinetzky/Yang 2010)

Implementor loses!
Intrinsically ine�icient (Dwork/Herlihy/Waarts 1997)
See also: CAP theorem (Gilbert/Lynch 2002)



DRAFT
5/22

Linearizability (Herlihy/Wing 1990)

I “Each method call should appear to take e�ect instantaneously
at some moment between its invocation and response.”
(Herlihy/Shavit 2008)

Specification

Execution

Client wins!
Compositional (Herlihy/Wing 1990)
Exactly characterizes programmer view (for coordinating clients)
(Filipovic/O’Hearn/Rinetzky/Yang 2010)

Implementor loses!
Intrinsically ine�icient (Dwork/Herlihy/Waarts 1997)
See also: CAP theorem (Gilbert/Lynch 2002)



DRAFT
5/22

Linearizability (Herlihy/Wing 1990)

I “Each method call should appear to take e�ect instantaneously
at some moment between its invocation and response.”
(Herlihy/Shavit 2008)

Specification

Execution

Client wins!
Compositional (Herlihy/Wing 1990)
Exactly characterizes programmer view (for coordinating clients)
(Filipovic/O’Hearn/Rinetzky/Yang 2010)

Implementor loses!
Intrinsically ine�icient (Dwork/Herlihy/Waarts 1997)
See also: CAP theorem (Gilbert/Lynch 2002)



DRAFT
5/22

Linearizability (Herlihy/Wing 1990)

I “Each method call should appear to take e�ect instantaneously
at some moment between its invocation and response.”
(Herlihy/Shavit 2008)

Specification

Execution

Client wins!
Compositional (Herlihy/Wing 1990)
Exactly characterizes programmer view (for coordinating clients)
(Filipovic/O’Hearn/Rinetzky/Yang 2010)

Implementor loses!
Intrinsically ine�icient (Dwork/Herlihy/Waarts 1997)
See also: CAP theorem (Gilbert/Lynch 2002)



DRAFT
6/22

High performance?

R = Replicated



DRAFT
6/22

High performance?

R = Replicated



DRAFT
7/22

Replicated Sets: Add-Wins Set

I Specification of query:
I 70 if every +0 followed by -0
I 30 if some +0 not followed by -0

I Example Execution:

+0 +1 -1
71

+1 +0 -0
70

30 31



DRAFT
7/22

Replicated Sets: Add-Wins Set

I Specification of query:
I 70 if every +0 followed by -0
I 30 if some +0 not followed by -0

I Example Execution:

+0 +1 -1
71

+1 +0 -0
70

30 31



DRAFT
7/22

Replicated Sets: Add-Wins Set

I Specification of query:
I 70 if every +0 followed by -0
I 30 if some +0 not followed by -0

I Example Execution:

+0 +1 -1
71

+1 +0 -0
70

30 31

High-performance implementation
Not linearizable: No interleaving satisfies both 30 and 31



DRAFT
7/22

Replicated Sets: Add-Wins Set

I Specification of query:
I 70 if every +0 followed by -0
I 30 if some +0 not followed by -0

I Example Execution:

+0 +1 -1
71

+1 +0 -0
70

30 31

High-performance implementation
Not linearizable: No interleaving satisfies both 30 and 31

Strong Eventual Consistency (SEC)
Replicas that see same updates give same answers



DRAFT
8/22

Replicated Sets: Amazon Dynamo (?)

I Specification:
. . . sloppy quorum. . . vector clock. . .

High-performance implementation

Strong Eventual Consistency (SEC)
Replicas that see same updates give same answers

I Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

+0 30 31 +2

+1 30 31 -0
30 31 32



DRAFT
8/22

Replicated Sets: Amazon Dynamo (?)

I Specification:
. . . sloppy quorum. . . vector clock. . .

High-performance implementation

Strong Eventual Consistency (SEC)
Replicas that see same updates give same answers

I Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

+0 30 31 +2

+1 30 31 -0
30 31 32

Is this a set?
+030-030 is not a set execution



DRAFT
8/22

Replicated Sets: Amazon Dynamo (?)

I Specification:
. . . sloppy quorum. . . vector clock. . .

High-performance implementation

Strong Eventual Consistency (SEC)
Replicas that see same updates give same answers

I Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

+0 30 31 +2

+1 30 31 -0
30 31 32

Is this a set?
+030-030 is not a set execution

No, it’s a Multi-Value Register (Shapiro 2011, MSR Talk)



DRAFT
8/22

Replicated Sets: Amazon Dynamo (?)

I Specification:
. . . sloppy quorum. . . vector clock. . .

High-performance implementation

Strong Eventual Consistency (SEC)
Replicas that see same updates give same answers

I Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

+0 30 31 +2

+1 30 31 -0
30 31 32

Is this a set?
+030-030 is not a set execution

No, it’s a Multi-Value Register (Shapiro 2011, MSR Talk)

But SEC does not explain this



DRAFT
9/22

State Of Play

I Correctness Criterion: Strong Eventual Consistency (SEC)
Add-Wins Set Example
Amazon Dynamo Example

But Add-Wins is more set-like

I Correctness: sequential vs replicated

Idea Sequential Replicated

Safety

Partial correctness ???

Termination

Total correctness Convergence = SEC

I This paper: What is a good notion of safety?



DRAFT
9/22

State Of Play

I Correctness Criterion: Strong Eventual Consistency (SEC)
Add-Wins Set Example
Amazon Dynamo Example

But Add-Wins is more set-like
I Correctness: sequential vs replicated

Idea Sequential Replicated

Safety

Partial correctness ???

Termination

Total correctness Convergence = SEC

I This paper: What is a good notion of safety?



DRAFT
9/22

State Of Play

I Correctness Criterion: Strong Eventual Consistency (SEC)
Add-Wins Set Example
Amazon Dynamo Example

But Add-Wins is more set-like
I Correctness: sequential vs replicated

Idea Sequential Replicated

Safety Partial correctness

???

Termination Total correctness

Convergence = SEC

I This paper: What is a good notion of safety?



DRAFT
9/22

State Of Play

I Correctness Criterion: Strong Eventual Consistency (SEC)
Add-Wins Set Example
Amazon Dynamo Example

But Add-Wins is more set-like
I Correctness: sequential vs replicated

Idea Sequential Replicated

Safety Partial correctness

???

Termination Total correctness Convergence = SEC

I This paper: What is a good notion of safety?



DRAFT
9/22

State Of Play

I Correctness Criterion: Strong Eventual Consistency (SEC)
Add-Wins Set Example
Amazon Dynamo Example

But Add-Wins is more set-like
I Correctness: sequential vs replicated

Idea Sequential Replicated

Safety Partial correctness ???
Termination Total correctness Convergence = SEC

I This paper: What is a good notion of safety?



DRAFT
9/22

State Of Play

I Correctness Criterion: Strong Eventual Consistency (SEC)
Add-Wins Set Example
Amazon Dynamo Example

But Add-Wins is more set-like
I Correctness: sequential vs replicated

Idea Sequential Replicated

Safety Partial correctness ???
Termination Total correctness Convergence = SEC

I This paper: What is a good notion of safety?



DRAFT
10/22

Safety?

C = Conflict-free



DRAFT
11/22

CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

I Conflict-free, operationally defined = either
I Convergent, State-based
I Commutative, Operation-based

Su�icient to establish SEC

Examples also appear to satisfy safety (in some sense)

Correctness defined using concurrent spec
“It is infinitely easier and more intuitive for us humans to specify how
abstract data structures behave in a sequential se�ing, where there are no
interleavings. Thus, the standard approach to arguing the safety properties
of a concurrent data structure is to specify the structure’s properties sequen-
tially, and find a way to map its concurrent executions to these ‘correct’
sequential ones.” (Shavit 2011)

This paper:

An extensional notion of safety for CRDTs
appealing only to the sequential spec



DRAFT
11/22

CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

I Conflict-free, operationally defined = either
I Convergent, State-based
I Commutative, Operation-based

Su�icient to establish SEC

Examples also appear to satisfy safety (in some sense)

Correctness defined using concurrent spec
“It is infinitely easier and more intuitive for us humans to specify how
abstract data structures behave in a sequential se�ing, where there are no
interleavings. Thus, the standard approach to arguing the safety properties
of a concurrent data structure is to specify the structure’s properties sequen-
tially, and find a way to map its concurrent executions to these ‘correct’
sequential ones.” (Shavit 2011)

This paper:

An extensional notion of safety for CRDTs
appealing only to the sequential spec



DRAFT
11/22

CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

I Conflict-free, operationally defined = either
I Convergent, State-based
I Commutative, Operation-based

Su�icient to establish SEC

Examples also appear to satisfy safety (in some sense)

Correctness defined using concurrent spec
“It is infinitely easier and more intuitive for us humans to specify how
abstract data structures behave in a sequential se�ing, where there are no
interleavings. Thus, the standard approach to arguing the safety properties
of a concurrent data structure is to specify the structure’s properties sequen-
tially, and find a way to map its concurrent executions to these ‘correct’
sequential ones.” (Shavit 2011)

This paper:

An extensional notion of safety for CRDTs
appealing only to the sequential spec



DRAFT
11/22

CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

I Conflict-free, operationally defined = either
I Convergent, State-based
I Commutative, Operation-based

Su�icient to establish SEC

Examples also appear to satisfy safety (in some sense)

Correctness defined using concurrent spec
“It is infinitely easier and more intuitive for us humans to specify how
abstract data structures behave in a sequential se�ing, where there are no
interleavings. Thus, the standard approach to arguing the safety properties
of a concurrent data structure is to specify the structure’s properties sequen-
tially, and find a way to map its concurrent executions to these ‘correct’
sequential ones.” (Shavit 2011)

This paper:

An extensional notion of safety for CRDTs
appealing only to the sequential spec



DRAFT
11/22

CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

I Conflict-free, operationally defined = either
I Convergent, State-based
I Commutative, Operation-based

Su�icient to establish SEC

Examples also appear to satisfy safety (in some sense)

Correctness defined using concurrent spec
“It is infinitely easier and more intuitive for us humans to specify how
abstract data structures behave in a sequential se�ing, where there are no
interleavings. Thus, the standard approach to arguing the safety properties
of a concurrent data structure is to specify the structure’s properties sequen-
tially, and find a way to map its concurrent executions to these ‘correct’
sequential ones.” (Shavit 2011)

This paper:

An extensional notion of safety for CRDTs
appealing only to the sequential spec



DRAFT
12/22

This talk: From Linearizability to CRDTs in 5 relaxations

Relaxations:
I Real time: Distributed system
I Order a�er an accessor: Update serializability
I Order between independent updates: Preserved Program Order
I Linearize labels, not events: Punning
I �otient specification by observational equivalence: Stu�ering



DRAFT
12/22

This talk: From Linearizability to CRDTs in 5 relaxations

Evidence that definition is the “right” one (in paper)
Simulation-based characterization

Most General CRDT, expressed as Labelled Transition System
Compositionality and Substitutivity results
Validation of CRDT Graph built using CRDT sets

Corner cases
Updates to one replica only⇒ linearizable
Permutation equivalence in spec⇒ . . .

Validates all known CRDTs
Add-Wins Set (Shapiro/Preguiça/Baquero/Zawirski 2011)
Collaborative Text-Editing Protocol
(A�iya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)

Validates every possible CRDTs
Def of CRDT does not mention sequential spec
Our def = proposal for meaning of CRDT



DRAFT
12/22

This talk: From Linearizability to CRDTs in 5 relaxations

Evidence that definition is the “right” one (in paper)
Simulation-based characterization

Most General CRDT, expressed as Labelled Transition System
Compositionality and Substitutivity results
Validation of CRDT Graph built using CRDT sets

Corner cases
Updates to one replica only⇒ linearizable
Permutation equivalence in spec⇒ . . .

Validates all known CRDTs
Add-Wins Set (Shapiro/Preguiça/Baquero/Zawirski 2011)
Collaborative Text-Editing Protocol
(A�iya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)

Validates every possible CRDTs
Def of CRDT does not mention sequential spec
Our def = proposal for meaning of CRDT



DRAFT
13/22

Components of Safety

I Linearization: response must be consistent with some spec string
I List replica that sees put(0) and put(2) may respond

q=[0,2]
q=[2,0]
q=[]
q=[1,0,2]

I Monotonicity: responses evolve sensibly
I List replica in state q=[0,2], may evolve to

q=[0,1,2], due to arrival of put(1)
q=[2,0], no support for delete or reorder



DRAFT
14/22

Relaxation 1: Order in Distributed Systems

I v is valid for Σ if . . .

there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)

Σ = specification = set of strings of labels
v = execution = Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)

I Example:
= a c

b

Cuts = {a}, {a, c}, {b}, {a, b}, {a, b, c}
Frontiers = {a}, { c}, {b}, {a, b}, { b, c} (Maximal elements)

For specification abc, f maps cuts to subsequences of abc
I Replicated system: No global clock



DRAFT
14/22

Relaxation 1: Order in Distributed Systems

I v is valid for Σ if . . .

there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
Σ = specification = set of strings of labels
v = execution = Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)

I Example:
= a c

b

Cuts = {a}, {a, c}, {b}, {a, b}, {a, b, c}
Frontiers = {a}, { c}, {b}, {a, b}, { b, c} (Maximal elements)

For specification abc, f maps cuts to subsequences of abc
I Replicated system: No global clock



DRAFT
14/22

Relaxation 1: Order in Distributed Systems

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
Σ = specification = set of strings of labels
v = execution = Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)

I Example:
= a c

b

Cuts = {a}, {a, c}, {b}, {a, b}, {a, b, c}
Frontiers = {a}, { c}, {b}, {a, b}, { b, c} (Maximal elements)

For specification abc, f maps cuts to subsequences of abc

I Replicated system: No global clock



DRAFT
14/22

Relaxation 1: Order in Distributed Systems

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
Σ = specification = set of strings of labels
v = execution = Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)

I Example:
= a c

b

Cuts = {a}, {a, c}, {b}, {a, b}, {a, b, c}
Frontiers = {a}, { c}, {b}, {a, b}, { b, c} (Maximal elements)

For specification abc, f maps cuts to subsequences of abc
I Replicated system: No global clock



DRAFT
14/22

Relaxation 1: Order in Distributed Systems

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
Σ = specification = set of strings of labels
v = execution = Labeled Partial Order (LPO)
Order of LPO = per-replica visibility

I Example:
= a c

b

Cuts = {a}, {a, c}, {b}, {a, b}, {a, b, c}
Frontiers = {a}, { c}, {b}, {a, b}, { b, c} (Maximal elements)

For specification abc, f maps cuts to subsequences of abc
I Replicated system: No global clock



DRAFT
15/22

Relaxation 2: Update Serializability

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = downclosed sets

+0 71

+1 70

+0 31

+1

I Cannot linearize 70 and 71 together
I When linearizing 31, must not include both 70 and 71

I State of prior art (Burckhardt/Leijen/Fähndrich/Sagiv 2012)
Cf. Update serializability: global order for updates
(Hansdah/Patnaik 1986, Garcia-Molina and Wiederhold 1982)



DRAFT
15/22

Relaxation 2: Update Serializability

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = downclosed sets

+0 71

+1 70

+0 31

+1

I Cannot linearize 70 and 71 together

I When linearizing 31, must not include both 70 and 71

I State of prior art (Burckhardt/Leijen/Fähndrich/Sagiv 2012)
Cf. Update serializability: global order for updates
(Hansdah/Patnaik 1986, Garcia-Molina and Wiederhold 1982)



DRAFT
15/22

Relaxation 2: Update Serializability

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed downclosed sets

+0 71

+1 70

+0 31

+1

I Cannot linearize 70 and 71 together

I When linearizing 31, must not include both 70 and 71

I State of prior art (Burckhardt/Leijen/Fähndrich/Sagiv 2012)
Cf. Update serializability: global order for updates
(Hansdah/Patnaik 1986, Garcia-Molina and Wiederhold 1982)



DRAFT
15/22

Relaxation 2: Update Serializability

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed downclosed sets

+0 71

+1 70

+0 31

+1

I Cannot linearize 70 and 71 together
I When linearizing 31, must not include both 70 and 71

I State of prior art (Burckhardt/Leijen/Fähndrich/Sagiv 2012)
Cf. Update serializability: global order for updates
(Hansdah/Patnaik 1986, Garcia-Molina and Wiederhold 1982)



DRAFT
15/22

Relaxation 2: Update Serializability

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed update-downclosed sets

+0 71

+1 70

+0 31

+1

I Cannot linearize 70 and 71 together
I When linearizing 31, must not include both 70 and 71

I State of prior art (Burckhardt/Leijen/Fähndrich/Sagiv 2012)
Cf. Update serializability: global order for updates
(Hansdah/Patnaik 1986, Garcia-Molina and Wiederhold 1982)



DRAFT
15/22

Relaxation 2: Update Serializability

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed update-downclosed sets

+0 71

+1 70

+0 31

+1

I Cannot linearize 70 and 71 together
I When linearizing 31, must not include both 70 and 71

I State of prior art (Burckhardt/Leijen/Fähndrich/Sagiv 2012)
Cf. Update serializability: global order for updates
(Hansdah/Patnaik 1986, Garcia-Molina and Wiederhold 1982)



DRAFT
15/22

Relaxation 2: Update Serializability

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed update-downclosed sets

+0 71

+1 70

+0 31

+1

I Cannot linearize 70 and 71 together
I When linearizing 31, must not include both 70 and 71

I State of prior art (Burckhardt/Leijen/Fähndrich/Sagiv 2012)
Cf. Update serializability: global order for updates
(Hansdah/Patnaik 1986, Garcia-Molina and Wiederhold 1982)



DRAFT
16/22

Relaxation 3: Preserved Program Order

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed update-downclosed sets

+0 +1 -1

+1 +0 -0
30 31

+0

+0 -0
30

+1

+1 -1
31

I Cannot linearize -1 and -0 together
I Cf. Preserved Program Order in relaxed memory models

(Higham/Kawash 2000, Alglave 2012).

I Independency is a property of the specification



DRAFT
16/22

Relaxation 3: Preserved Program Order

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed update-downclosed sets

+0 +1 -1

+1 +0 -0
30 31

+0

+0 -0
30

+1

+1 -1
31

I Cannot linearize -1 and -0 together

I Cf. Preserved Program Order in relaxed memory models
(Higham/Kawash 2000, Alglave 2012).

I Independency is a property of the specification



DRAFT
16/22

Relaxation 3: Preserved Program Order

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

+0 +1 -1

+1 +0 -0
30 31

+0

+0 -0
30

+1

+1 -1
31

I Cannot linearize -1 and -0 together

I Cf. Preserved Program Order in relaxed memory models
(Higham/Kawash 2000, Alglave 2012).

I Independency is a property of the specification



DRAFT
16/22

Relaxation 3: Preserved Program Order

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

+0 +1 -1

+1 +0 -0
30 31

+0

+0 -0
30

+1

+1 -1
31

I Cannot linearize -1 and -0 together

I Cf. Preserved Program Order in relaxed memory models
(Higham/Kawash 2000, Alglave 2012).

I Independency is a property of the specification



DRAFT
16/22

Relaxation 3: Preserved Program Order

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

+0 +1 -1

+1 +0 -0
30 31

+0

+0 -0
30

+1

+1 -1
31

I Cannot linearize -1 and -0 together
I Cf. Preserved Program Order in relaxed memory models

(Higham/Kawash 2000, Alglave 2012).

I Independency is a property of the specification



DRAFT
16/22

Relaxation 3: Preserved Program Order

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

+0 +1 -1

+1 +0 -0
30 31

+0

+0 -0
30

+1

+1 -1
31

I Cannot linearize -1 and -0 together
I Cf. Preserved Program Order in relaxed memory models

(Higham/Kawash 2000, Alglave 2012).

I Independency is a property of the specification



DRAFT
17/22

Relaxation 4: Puns

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

+0
a

+0
e

-0
b

30
c

-0
f 30

g

I Linearization must have -0b before +0e

I Linearization must have -0f before +0a

I Must linearize actions/labels, not events

+0a, +0e : +0
-0b, -0f : +0-0
30c, 30g : +0-0+030



DRAFT
17/22

Relaxation 4: Puns

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

+0
a

+0
e

-0
b

30
c

-0
f 30

g

I Linearization must have -0b before +0e

I Linearization must have -0f before +0a

I Must linearize actions/labels, not events

+0a, +0e : +0
-0b, -0f : +0-0
30c, 30g : +0-0+030



DRAFT
17/22

Relaxation 4: Puns

I v is valid for Σ if there exists a map f : C(v) → events(v)∗ s.t.
I ∀p ∈ C(v). p linearizes to f (p) and labels(f (p)) ∈ Σ
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

+0
a

+0
e

-0
b

30
c

-0
f 30

g

I Linearization must have -0b before +0e

I Linearization must have -0f before +0a

I Must linearize actions/labels, not events

+0a, +0e : +0
-0b, -0f : +0-0
30c, 30g : +0-0+030



DRAFT
17/22

Relaxation 4: Puns

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

+0
a

+0
e

-0
b

30
c

-0
f 30

g

I Linearization must have -0b before +0e

I Linearization must have -0f before +0a

I Must linearize actions/labels, not events

+0a, +0e : +0
-0b, -0f : +0-0
30c, 30g : +0-0+030



DRAFT
17/22

Relaxation 4: Puns

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

+0
a

+0
e

-0
b

30
c

-0
f 30

g

I Linearization must have -0b before +0e

I Linearization must have -0f before +0a

I Must linearize actions/labels, not events

+0a, +0e : +0
-0b, -0f : +0-0
30c, 30g : +0-0+030



DRAFT
18/22

Relaxation 4: A Bad Joke

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

, for accessors
all dependent-update-downclosed sets, for updates

+0
a

-0
b

+0
e

-0
f

30
c

70
x

I Update order +0-0+0-0 with subsequences:

30c : +0-0+030 (70c requires -0 between the +0s)
70x : +0+0-070 (70x requires -0 a�er the +0s)

I Execution disallowed by monotonicity
{+0a, -0b, +0e} cannot be linearized to satisfy both 30c and 70x



DRAFT
18/22

Relaxation 4: A Bad Joke

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets

, for accessors
all dependent-update-downclosed sets, for updates

+0
a

-0
b

+0
e

-0
f

30
c

70
x

I Update order +0-0+0-0 with subsequences:

30c : +0-0+030 (70c requires -0 between the +0s)
70x : +0+0-070 (70x requires -0 a�er the +0s)

I Execution disallowed by monotonicity
{+0a, -0b, +0e} cannot be linearized to satisfy both 30c and 70x



DRAFT
18/22

Relaxation 4: A Bad Joke

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

+0
a

-0
b

+0
e

-0
f

30
c

70
x

I Update order +0-0+0-0 with subsequences:

30c : +0-0+030 (70c requires -0 between the +0s)
70x : +0+0-070 (70x requires -0 a�er the +0s)

I Execution disallowed by monotonicity
{+0a, -0b, +0e} cannot be linearized to satisfy both 30c and 70x



DRAFT
18/22

Relaxation 4: A Bad Joke

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

+0
a

-0
b

+0
e

-0
f

30
c

70
x

I Update order +0-0+0-0 with subsequences:

30c : +0-0+030 (70c requires -0 between the +0s)
70x : +0+0-070 (70x requires -0 a�er the +0s)

I Execution disallowed by monotonicity
{+0a, -0b, +0e} cannot be linearized to satisfy both 30c and 70x



DRAFT
19/22

Relaxation 5: Observationally Equivalent Specifications

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

+0 -0 +0

-0

-0

+0

-0

-0

I Should this linearize to +0-0-0+0-0+0-0-0, or
+0-0+0-0-0+0-0-0?

I These are observationally equivalent
Cf. stu�ering equivalence (Brookes 96)

I Observational subsequence is a property of the specification



DRAFT
19/22

Relaxation 5: Observationally Equivalent Specifications

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤seq f (q)

C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

+0 -0 +0

-0

-0

+0

-0

-0

I Should this linearize to +0-0-0+0-0+0-0-0, or
+0-0+0-0-0+0-0-0?

I These are observationally equivalent
Cf. stu�ering equivalence (Brookes 96)

I Observational subsequence is a property of the specification



DRAFT
19/22

Relaxation 5: Observationally Equivalent Specifications

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤obs f (q)

C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

+0 -0 +0

-0

-0

+0

-0

-0

I Should this linearize to +0-0-0+0-0+0-0-0, or
+0-0+0-0-0+0-0-0?

I These are observationally equivalent
Cf. stu�ering equivalence (Brookes 96)

I Observational subsequence is a property of the specification



DRAFT
19/22

Relaxation 5: Observationally Equivalent Specifications

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤obs f (q)

C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

+0 -0 +0

-0

-0

+0

-0

-0

I Should this linearize to +0-0-0+0-0+0-0-0, or
+0-0+0-0-0+0-0-0?

I These are observationally equivalent
Cf. stu�ering equivalence (Brookes 96)

I Observational subsequence is a property of the specification



DRAFT
20/22

Safety: Summary

I v is valid for Σ if there exists a map f : C(v) → Σ s.t.
I ∀p ∈ C(v). p linearizes to f (p)
I ∀p, q ∈ C(v). p ⊆ q implies f (p) ≤obs f (q)

C(v) = pointed dependent-update-downclosed sets, for accessors
all dependent-update-downclosed sets, for updates

I Relaxations from linearizability:
I Real time: Distributed system
I Order a�er an accessor: Update serializability
I Order between independent updates: Preserved Program Order
I Linearize labels, not events: Punning
I �otient specification by observational equivalence: Stu�ering



DRAFT
21/22

The Most General CRDT

ε

+0

-0

+0-0-0+0

+0

-0

-0‖+0-0‖+0

+0-0

-0

-0+0+0

70

70, +030

70, -070

7
0,
-0

7
0,
-0

+0
3
0,

(-
0
‖
+0
)3
0

7
0,
+0

3
0,
+0-0

7
0,

(-0
‖+0
)7
0

-0

+0

I What is the programmer model?
Interacting with any CRDT implementation, for any specification

I Example for Set, with single +0 and -0
LTS with labels = LPOs showing client history
Maximal elements = new client actions



DRAFT
21/22

The Most General CRDT

ε

+0

-0

+0-0-0+0

+0

-0

-0‖+0-0‖+0

+0-0

-0

-0+0+0

70

70, +030

70, -070

7
0,
-0

7
0,
-0

+0
3
0,

(-
0
‖
+0
)3
0

7
0,
+0

3
0,
+0-0

7
0,

(-0
‖+0
)7
0

-0

+0

I Contrast with linearizability
I Updates may come out of order

I Accessors don’t cause change of state



DRAFT
21/22

The Most General CRDT

ε

+0

-0

+0-0-0+0

+0

-0

-0‖+0-0‖+0

+0-0

-0

-0+0+0

70

70, +030

70, -070

7
0,
-0

7
0,
-0

+0
3
0,

(-
0
‖
+0
)3
0

7
0,
+0

3
0,
+0-0

7
0,

(-0
‖+0
)7
0

-0

+0

I Contrast with linearizability
I Updates may come out of order
I Accessors don’t cause change of state



DRAFT
22/22

This talk: Definition of safe execution for CRDTs

In paper:
Simulation-based characterization

Most General CRDT, expressed as Labelled Transition System
Compositionality and Substitutivity results
Validation of CRDT Graph built using CRDT sets

Corner cases
Updates to one replica only⇒ linearizable
Permutation equivalence in spec⇒ . . .

Validates all known CRDTs
Add-Wins Set (Shapiro/Preguiça/Baquero/Zawirski 2011)
Collaborative Text-Editing Protocol
(A�iya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)

Validates every possible CRDTs
Def of CRDT does not mention sequential spec
Our def = proposal for meaning of CRDT


