Eventual Consistency for CRDTs

Radha Jagadeesan James Riely

DePaul University Chicago, USA

ESOP 2018

CRDTs?

CRDTs?

C = blah blah R = mumble

DT = Data Type

 "An *abstract data type* defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)

- "An *abstract data type* defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)
- Eg, binary set with operations:
 - ► +0, +1: add
 - ▶ -0, -1: remove
 - X0, X1: membership query returning false
 - ► 🕫, 🖊1: membership query returning true

- "An *abstract data type* defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)
- Eg, binary set with operations:
 - ► +0, +1: add
 - ▶ -0, -1: remove
 - X0, X1: membership query returning false
 - 1. Membership query returning true
- Sequential interface:
 - **○** +0-0**×**0
 - 😑 +0−0√0

- "An *abstract data type* defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)
- Eg, list with operations:
 - put(0), put(1), put(2), ...: add to end
 - q=[], q=[0], q=[0, 1], ...: query returning list contents

- "An *abstract data type* defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)
- Eg, list with operations:
 - put(0), put(1), put(2), ...: add to end
 - q=[], q=[0], q=[0, 1], ...: query returning list contents
- Sequential interface:
 - put(0) put(1) q=[0,1]
 - put(0) put(1) q=[1,0]

- "An *abstract data type* defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)
- Eg, list with operations:
 - put(0), put(1), put(2), ...: add to end
 - q=[], q=[0], q=[0, 1], ...: query returning list contents
- Sequential interface:
 - put(0) put(1) q=[0,1]
 - put(0) put(1) q=[1,0]
- ADT: contract between implementor and client
 - Implementor and client take turns

What about concurrent clients?

- Client wins!
 - Compositional (Herlihy/Wing 1990)
 - Exactly characterizes programmer view (for coordinating clients) (Filipovic/O'Hearn/Rinetzky/Yang 2010)

- Client wins!
 - Compositional (Herlihy/Wing 1990)
 - \odot Exactly characterizes programmer view (for coordinating clients) (Filipovic/O'Hearn/Rinetzky/Yang 2010)
- Implementor loses!

 - Intrinsically inefficient (Dwork/Herlihy/Waarts 1997) See also: CAP theorem (Gilbert/Lynch 2002)

R = Replicated

Specification of query:
X0 if every +0 followed by -0
<0 if some +0 not followed by -0</p>

Example Execution:

- Specification of query:
 - ► X0 if every +0 followed by -0
 - $\sqrt{0}$ if some +0 not followed by -0
- Example Execution:

- Specification of query:
 - ► X0 if every +0 followed by -0
 - $\sqrt{0}$ if some +0 not followed by -0
- Example Execution:

Bigh-performance implementation Not linearizable: No interleaving satisfies both √0 and √1

- Specification of query:
 - ► X0 if every +0 followed by -0
 - $\sqrt{0}$ if some +0 not followed by -0
- Example Execution:

- High-performance implementation Not linearizable: No interleaving satisfies both 1 and 1
- Strong Eventual Consistency (SEC) Replicas that see same updates give same answers

Specification:

...sloppy quorum...vector clock...

- High-performance implementation
- Strong Eventual Consistency (SEC)

Replicas that see same updates give same answers

Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

Specification:

...sloppy quorum...vector clock...

- High-performance implementation
- Strong Eventual Consistency (SEC)

Replicas that see same updates give same answers

Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

Is this a set?

 $+0\sqrt{0}-0\sqrt{0}$ is not a set execution

Specification:

...sloppy quorum...vector clock...

- High-performance implementation
- Strong Eventual Consistency (SEC)

Replicas that see same updates give same answers

Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

Is this a set?

 $+0\sqrt{0}-0\sqrt{0}$ is not a set execution

On ti's a Multi-Value Register (Shapiro 2011, MSR Talk)

Specification:

...sloppy quorum...vector clock...

- High-performance implementation
- Strong Eventual Consistency (SEC)

Replicas that see same updates give same answers

Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

Is this a set?

 $+0\sqrt{0}-0\sqrt{0}$ is not a set execution

- On ti's a Multi-Value Register (Shapiro 2011, MSR Talk)
- But SEC does not explain this

- Correctness Criterion: Strong Eventual Consistency (SEC)
 - Add-Wins Set Example
 - Amazon Dynamo Example
- But Add-Wins is more set-like

- Correctness Criterion: Strong Eventual Consistency (SEC)
 - Add-Wins Set Example
 - Amazon Dynamo Example
- But Add-Wins is more set-like
- Correctness: sequential vs replicated

Idea	Sequential	Replicated
Safety		
Termination		

- Correctness Criterion: Strong Eventual Consistency (SEC)
 - Add-Wins Set Example
 - Amazon Dynamo Example
- But Add-Wins is more set-like
- Correctness: sequential vs replicated

Idea	Sequential	Replicated
Safety	Partial correctness	
Termination	Total correctness	

- Correctness Criterion: Strong Eventual Consistency (SEC)
 - Add-Wins Set Example
 - Amazon Dynamo Example
- But Add-Wins is more set-like
- Correctness: sequential vs replicated

Idea	Sequential	Replicated
Safety	Partial correctness	
Termination	Total correctness	<i>Convergence</i> = SEC

- Correctness Criterion: Strong Eventual Consistency (SEC)
 - Add-Wins Set Example
 - Amazon Dynamo Example
- But Add-Wins is more set-like
- Correctness: sequential vs replicated

Idea	Sequential	Replicated
Safety	Partial correctness	???
Termination	Total correctness	Convergence = SEC

- Correctness Criterion: Strong Eventual Consistency (SEC)
 - Add-Wins Set Example
 - Amazon Dynamo Example
- But Add-Wins is more set-like
- Correctness: sequential vs replicated

Idea	Sequential	Replicated
Safety	Partial correctness	???
Termination	Total correctness	Convergence = SEC

This paper: What is a good notion of safety?

C = Conflict-free

- Conflict-free, operationally defined = either
 - Convergent, State-based
 - Commutative, Operation-based

- Conflict-free, operationally defined = either
 - Convergent, State-based
 - Commutative, Operation-based
- Sufficient to establish SEC

- Conflict-free, operationally defined = either
 - Convergent, State-based
 - Commutative, Operation-based
- Sufficient to establish SEC
- 😑 Examples also appear to satisfy safety (in some sense)

- Conflict-free, operationally defined = either
 - Convergent, State-based
 - Commutative, Operation-based
- Sufficient to establish SEC
- Examples also appear to satisfy safety (in some sense)
- Correctness defined using concurrent spec

"It is infinitely easier and more intuitive for us humans to specify how abstract data structures behave in a sequential setting, where there are no interleavings. Thus, the standard approach to arguing the safety properties of a concurrent data structure is to specify the structure's properties sequentially, and find a way to map its concurrent executions to these 'correct' sequential ones." (Shavit 2011)
CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

- Conflict-free, operationally defined = either
 - Convergent, State-based
 - Commutative, Operation-based
- Sufficient to establish SEC
- Examples also appear to satisfy safety (in some sense)
- Correctness defined using *concurrent* spec

"It is infinitely easier and more intuitive for us humans to specify how abstract data structures behave in a sequential setting, where there are no interleavings. Thus, the standard approach to arguing the safety properties of a concurrent data structure is to specify the structure's properties sequentially, and find a way to map its concurrent executions to these 'correct' sequential ones." (Shavit 2011)

😑 This paper:

An extensional notion of safety for CRDTs appealing only to the *sequential* spec

This talk: From Linearizability to CRDTs in 5 relaxations

Relaxations:

- Real time: Distributed system
- Order after an accessor: Update serializability
- Order between independent updates: Preserved Program Order
- Linearize labels, not events: Punning
- Quotient specification by observational equivalence: Stuttering

This talk: From Linearizability to CRDTs in 5 relaxations

Evidence that definition is the "right" one (in paper)

- Simulation-based characterization
 - Most General CRDT, expressed as Labelled Transition System
 - Compositionality and Substitutivity results
 - Validation of CRDT Graph built using CRDT sets
- Corner cases
 - \bigcirc Updates to one replica only \Rightarrow linearizable
 - \bigcirc Permutation equivalence in spec \Rightarrow ...
- Validates all known CRDTs
 - Add-Wins Set (Shapiro/Preguiça/Baquero/Zawirski 2011)
 - Collaborative Text-Editing Protocol

(Attiya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)

This talk: From Linearizability to CRDTs in 5 relaxations

Evidence that definition is the "right" one (in paper)

- Simulation-based characterization
 - Most General CRDT, expressed as Labelled Transition System
 - Compositionality and Substitutivity results
 - Validation of CRDT Graph built using CRDT sets
- 🙂 Corner cases
 - \bigcirc Updates to one replica only \Rightarrow linearizable
 - \bigcirc Permutation equivalence in spec \Rightarrow ...
- Validates all known CRDTs
 - Add-Wins Set (Shapiro/Preguiça/Baquero/Zawirski 2011)
 - Collaborative Text-Editing Protocol (Attiya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)
- Validates every possible CRDTs
 - Def of CRDT does not mention sequential spec
 - Our def = proposal for meaning of CRDT

Components of Safety

- Linearization: response must be consistent with some spec string
 - List replica that sees put(0) and put(2) may respond
 - ♀ q=[0,2]
 - 🙂 q=[2,0]
 - 😑 q=[]
 - **e** q=[1,0,2]

Monotonicity: responses evolve sensibly

- List replica in state q=[0, 2], may evolve to
 - \bigcirc q=[0,1,2], due to arrival of put(1)
 - q=[2,0], no support for delete or reorder

• v is valid for Σ if ...

 Σ = specification = set of strings of labels v = execution = Labeled Partial Order (LPO) Order of LPO = non-overlapping method calls (real time)

$$\underbrace{ [] () }_{b} = \underbrace{ a }_{b} \underbrace{ c }_{c}$$

• v is valid for Σ if ...

C(v) = downclosed sets of v (i.e., *cuts*) (Chandy/Lamport 1985) Σ = specification = set of strings of labels v = execution = Labeled Partial Order (LPO) Order of LPO = non-overlapping method calls (real time)

Example:

$$\underbrace{ [\longrightarrow]}_{(b)} = \underbrace{ a }_{(b)} \underbrace{ c }_{(c)}$$

 $Cuts = \{a\}, \{a, c\}, \{b\}, \{a, b\}, \{a, b, c\}$ Frontiers = {a}, { c}, {b}, {a, b}, { b, c} (Maximal elements)

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

► $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$

▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = downclosed sets of v (i.e., *cuts*) (Chandy/Lamport 1985) Σ = specification = set of strings of labels

v = execution = Labeled Partial Order (LPO)

Order of LPO = non-overlapping method calls (real time)

Example:

 $Cuts = \{a\}, \{a, c\}, \{b\}, \{a, b\}, \{a, b, c\}$

Frontiers = $\{a\}$, $\{c\}$, $\{b\}$, $\{a, b\}$, $\{b, c\}$ (Maximal elements)

For specification *abc*, *f* maps cuts to subsequences of *abc*

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

► $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$

► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = downclosed sets of v (i.e., *cuts*) (Chandy/Lamport 1985) Σ = specification = set of strings of labels

v = execution = Labeled Partial Order (LPO)

Order of LPO = non-overlapping method calls (real time)

Example:

$$\underbrace{ \begin{array}{c} \hline \\ \hline \\ \end{array} \end{array} } = \underbrace{ a }_{b} \underbrace{ c }_{c}$$

 $Cuts = \{a\}, \{a, c\}, \{b\}, \{a, b\}, \{a, b, c\}$

Frontiers = $\{a\}$, $\{c\}$, $\{b\}$, $\{a, b\}$, $\{b, c\}$ (Maximal elements)

For specification abc, f maps cuts to subsequences of abc

Replicated system: No global clock

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

► $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$

► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = downclosed sets of v (i.e., *cuts*) (Chandy/Lamport 1985) Σ = specification = set of strings of labels

v = execution = Labeled Partial Order (LPO)

Order of LPO = *per-replica visibility*

Example:

$$\underbrace{ \begin{array}{c} \leftarrow \\ \leftarrow \end{array} \end{array} } = \underbrace{ a }_{b} \underbrace{ c }_{c}$$

 $Cuts = \{a\}, \{a, c\}, \{b\}, \{a, b\}, \{a, b, c\}$ Frontiers = $\{a\}, \{c\}, \{b\}, \{a, b\}, \{b, c\}$ (Maximal elements)

For specification abc, f maps cuts to subsequences of abc

Replicated system: No global clock

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$
- ▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = downclosed sets

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$
- ► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = downclosed sets

Cannot linearize X0 and X1 together

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

► $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$

▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) =*pointed* downclosed sets

Cannot linearize X0 and X1 together

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$
- ► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = pointed downclosed sets

- Cannot linearize X0 and X1 together
- When linearizing 1, must not include both 10 and 11

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- $\forall p \in C(v)$. *p* linearizes to *f*(*p*) and labels(*f*(*p*)) ∈ Σ
- ▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

- Cannot linearize X0 and X1 together
- When linearizing 1, must not include both X0 and X1

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- $\forall p \in C(v)$. *p* linearizes to *f*(*p*) and labels(*f*(*p*)) ∈ Σ
- ► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

- Cannot linearize X0 and X1 together
- When linearizing 1, must not include both 10 and 11

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- $\forall p \in C(v)$. *p* linearizes to *f*(*p*) and labels(*f*(*p*)) ∈ Σ
- ▶ $\forall p, q \in C(v). p \subseteq q \text{ implies } f(p) \leq_{\text{seq}} f(q)$

- Cannot linearize X0 and X1 together
- When linearizing 1, must not include both 10 and 11
- State of prior art (Burckhardt/Leijen/Fähndrich/Sagiv 2012) Cf. Update serializability: global order for updates (Hansdah/Patnaik 1986, Garcia-Molina and Wiederhold 1982)

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$
- ▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$
- ▶ $\forall p, q \in C(v). p \subseteq q \text{ implies } f(p) \leq_{\text{seq}} f(q)$

C(v) = pointed update-downclosed sets

Cannot linearize -1 and -0 together

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$
- ▶ $\forall p, q \in C(v). p \subseteq q \text{ implies } f(p) \leq_{\text{seq}} f(q)$

C(v) = pointed *dependent*-update-downclosed sets

Cannot linearize -1 and -0 together

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$
- ▶ $\forall p, q \in C(v). p \subseteq q \text{ implies } f(p) \leq_{\text{seq}} f(q)$

C(v) = pointed *dependent*-update-downclosed sets

Cannot linearize -1 and -0 together

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- \forall *p* ∈ *C*(*v*). *p* linearizes to *f*(*p*) and labels(*f*(*p*)) ∈ Σ
- ▶ $\forall p, q \in C(v). p \subseteq q \text{ implies } f(p) \leq_{\text{seq}} f(q)$

- Cannot linearize -1 and -0 together
- Cf. Preserved Program Order in relaxed memory models (Higham/Kawash 2000, Alglave 2012).

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- $\forall p \in C(v)$. *p* linearizes to *f*(*p*) and labels(*f*(*p*)) ∈ Σ
- ▶ $\forall p, q \in C(v). p \subseteq q \text{ implies } f(p) \leq_{\text{seq}} f(q)$

- Cannot linearize -1 and -0 together
- Cf. Preserved Program Order in relaxed memory models (Higham/Kawash 2000, Alglave 2012).
- Independency is a property of the specification

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$
- ▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = pointed dependent-update-downclosed sets

• Linearization must have -0^b before $+0^e$

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p) and $labels(f(p)) \in \Sigma$
- ► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

- Linearization must have -0^b before $+0^e$
- Linearization must have -0^f before +0^a

▶ *v* is *valid for* Σ if there exists a map $f : C(v) \rightarrow \text{events}(v)^*$ s.t.

- \forall *p* ∈ *C*(*v*). *p* linearizes to *f*(*p*) and labels(*f*(*p*)) ∈ Σ
- ► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

- Linearization must have -0^b before +0^e
- Linearization must have -0^f before +0^a
- Must linearize actions/labels, not events

• *v* is *valid for* Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p)
- ▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

- Linearization must have -0^b before +0^e
- Linearization must have -0^f before +0^a
- Must linearize actions/labels, not events

• *v* is *valid for* Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ▶ $\forall p \in C(v)$. *p* linearizes to f(p)
- ▶ $\forall p, q \in C(v). p \subseteq q \text{ implies } f(p) \leq_{\text{seq}} f(q)$

- Linearization must have -0^b before +0^e
- Linearization must have -0^f before +0^a
- Must linearize actions/labels, not events

+0^{*a*}, +0^{*e*} : +0
−0^{*b*}, −0^{*f*} : +0−0
$$\checkmark$$
0^{*c*}, \checkmark 0^{*g*} : +0−0+0 \checkmark 0

• v is valid for Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p)
- ▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = pointed dependent-update-downclosed sets

Update order +0-0+0-0 with subsequences:

√ 0 ^c	: +0-0+0 √ 0	(X0 ^c requires -0 between the +0s)
X 0 ^x	: +0+0-0 X 0	($\times 0^{x}$ requires -0 after the $+0$ s)

• *v* is *valid for* Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ▶ $\forall p \in C(v)$. *p* linearizes to f(p)
- ▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

- Update order +0-0+0-0 with subsequences:
 - $\checkmark 0^c$: +0-0+0 $\checkmark 0$ ($\divideontimes 0^c$ requires -0 between the +0s) $\divideontimes 0^x$: +0+0-0 $\And 0$ ($\divideontimes 0^x$ requires -0 after the +0s)

• *v* is *valid for* Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p)
- ► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

- Update order +0-0+0-0 with subsequences:
 - $\checkmark 0^c$: +0-0+0 $\checkmark 0$ ($\divideontimes 0^c$ requires -0 between the +0s) $\divideontimes 0^x$: +0+0-0 $\And 0$ ($\divideontimes 0^x$ requires -0 after the +0s)

• v is valid for Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p)
- ► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

- Update order +0-0+0-0 with subsequences:
 - $\sqrt[]{0^c} : +0-0+0\sqrt[]{0} \qquad (\times^{0^c} \text{ requires } -0 \text{ between the } +0s) \\ \times^{0^x} : +0+0-0\times^{0} \qquad (\times^{0^x} \text{ requires } -0 \text{ after the } +0s)$
- Execution disallowed by monotonicity {+0^a, -0^b, +0^e} cannot be linearized to satisfy both √0^c and ×0^x

• *v* is *valid for* Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p)
- ► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

• v is valid for Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p)
- ► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{seq} f(q)$

C(v) = pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

Should this linearize to +0−0−0+0−0+0−0−0, or +0−0+0−0−0+0−0−0?

• v is valid for Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p)
- ▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{obs} f(q)$

C(v) = pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

- Should this linearize to +0−0−0+0−0+0−0−0, or +0−0+0−0−0+0−0−0?
- These are observationally equivalent Cf. stuttering equivalence (Brookes 96)

• v is valid for Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p)
- ▶ $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{obs} f(q)$

C(v) = pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

- Should this linearize to +0−0−0+0−0+0−0−0, or +0−0+0−0−0+0−0−0?
- These are observationally equivalent
 Cf. stuttering equivalence (Brookes 96)
- Observational subsequence is a property of the specification
Safety: Summary

• *v* is *valid for* Σ if there exists a map $f : C(v) \to \Sigma$ s.t.

- ► $\forall p \in C(v)$. *p* linearizes to f(p)
- ► $\forall p, q \in C(v)$. $p \subseteq q$ implies $f(p) \leq_{obs} f(q)$

C(v) = pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

Relaxations from linearizability:

- Real time: Distributed system
- Order after an accessor: Update serializability
- Order between independent updates: Preserved Program Order
- Linearize labels, not events: Punning
- Quotient specification by observational equivalence: Stuttering

The Most General CRDT

- What is the programmer model? Interacting with any CRDT implementation, for any specification
- Example for Set, with single +0 and -0 LTS with labels = LPOs showing client history Maximal elements = new client actions

The Most General CRDT

Contrast with linearizability

Updates may come out of order

The Most General CRDT

Contrast with linearizability

- Updates may come out of order
- Accessors don't cause change of state

This talk: Definition of *safe* execution for CRDTs

In paper:

- Simulation-based characterization
 - Most General CRDT, expressed as Labelled Transition System
 - Compositionality and Substitutivity results
 - Validation of CRDT Graph built using CRDT sets
- Corner cases
 - \bigcirc Updates to one replica only \Rightarrow linearizable
 - \bigcirc Permutation equivalence in spec \Rightarrow ...
- Validates all known CRDTs
 - Add-Wins Set (Shapiro/Preguiça/Baquero/Zawirski 2011)
 - Collaborative Text-Editing Protocol (Attiya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)
- Validates every possible CRDTs
 - Def of CRDT does not mention sequential spec
 - Our def = proposal for meaning of CRDT