Eventual Consistency for CRDTs

Radha Jagadeesan James Riely

DePaul University
Chicago, USA

ESOP 2018

CRDTs?

CRDTs?

$\mathrm{C}=$ blah blah
$R=$ mumble

DT = Data Type

Data Type

- "An abstract data type defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)

Data Type

- "An abstract data type defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)
- Eg, binary set with operations:
- +0, +1: add
- $-0,-1$: remove
- $\mathrm{X}_{0}, \mathrm{X} 1$: membership query returning false
- $\sqrt{0}, \sqrt{ } 1$: membership query returning true

Data Type

- "An abstract data type defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)
- Eg, binary set with operations:
- +0, +1 : add
- $-0,-1$: remove
- $\mathrm{X0} 0, \mathrm{X1}$: membership query returning false
- $\sqrt{0}, \sqrt{ } 1$: membership query returning true
- Sequential interface:

$$
\begin{aligned}
& \text { : + + - } 0 \times 0 \\
& :+0-0 \sqrt{ } 0
\end{aligned}
$$

Data Type

- "An abstract data type defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)
- Eg, list with operations:
- put(0), put(1), put(2), \ldots : add to end
- $q=[], q=[0], q=[0,1], \ldots$: query returning list contents

Data Type

- "An abstract data type defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)
- Eg, list with operations:
- put(0), put(1), put(2), \ldots : add to end
- $q=[], q=[0], q=[0,1], \ldots$: query returning list contents
- Sequential interface:
(:) put(0) put(1) $q=[0,1]$
(: put (0) put (1) $q=[1,0]$

Data Type

- "An abstract data type defines a class of abstract objects which is completely characterized by the operations available on those objects." (Liskov/Zilles 1974)
- Eg, list with operations:
- put(0), put(1), put(2), \ldots : add to end
- $q=[], q=[0], q=[0,1], \ldots$: query returning list contents
- Sequential interface:
© $\operatorname{put}(0) \operatorname{put}(1) \mathrm{q}=[0,1]$
: put(0) put(1) $q=[1,0]$
- ADT: contract between implementor and client
- Implementor and client take turns

What about concurrent clients?

Linearizability (Herlihy/Wing 1990)

- "Each method call should appear to take effect instantaneously at some moment between its invocation and response." (Herlihy/Shavit 2008)

Linearizability (Herlihy/Wing 1990)

- "Each method call should appear to take effect instantaneously at some moment between its invocation and response." (Herlihy/Shavit 2008)

Specification

Linearizability (Herlihy/Wing 1990)

- "Each method call should appear to take effect instantaneously at some moment between its invocation and response." (Herlihy/Shavit 2008)

Specification

Linearizability (Herlihy/Wing 1990)

- "Each method call should appear to take effect instantaneously at some moment between its invocation and response." (Herlihy/Shavit 2008)

-) Client wins!
-) Compositional (Herlihy/Wing 1990)
;) Exactly characterizes programmer view (for coordinating clients) (Filipovic/O’Hearn/Rinetzky/Yang 2010)

Linearizability (Herlihy/Wing 1990)

- "Each method call should appear to take effect instantaneously at some moment between its invocation and response." (Herlihy/Shavit 2008)

-) Client wins!
-) Compositional (Herlihy/Wing 1990)
:) Exactly characterizes programmer view (for coordinating clients) (Filipovic/O’Hearn/Rinetzky/Yang 2010)
© Implementor loses!
:- Intrinsically inefficient (Dwork/Herlihy/Waarts 1997) See also: CAP theorem (Gilbert/Lynch 2002)

High performance? :

High performance? :

R = Replicated

Replicated Sets: Add-Wins Set

\rightarrow Specification of query:

- X0 if every +0 followed by -0
$\rightarrow \sqrt{ } 0$ if some +0 not followed by -0
- Example Execution:

Replicated Sets: Add-Wins Set

- Specification of query:
- X 0 if every +0 followed by -0
- $\sqrt{0}$ if some +0 not followed by -0
- Example Execution:

Replicated Sets: Add-Wins Set

- Specification of query:
- X 0 if every +0 followed by -0
- $\sqrt{0}$ if some +0 not followed by -0
- Example Execution:

;) High-performance implementation
Not linearizable: No interleaving satisfies both $\sqrt{ } 0$ and $\sqrt{ } 1$

Replicated Sets: Add-Wins Set

- Specification of query:
- X0 if every +0 followed by - 0
- $\sqrt{0}$ if some +0 not followed by -0
- Example Execution:

;) High-performance implementation
Not linearizable: No interleaving satisfies both $\sqrt{ } 0$ and $\sqrt{ } 1$
-) Strong Eventual Consistency (SEC)
Replicas that see same updates give same answers

Replicated Sets: Amazon Dynamo (?)

- Specification:
...sloppy quorum...vector clock...
;) High-performance implementation
-) Strong Eventual Consistency (SEC)
Replicas that see same updates give same answers
- Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

Replicated Sets: Amazon Dynamo (?)

- Specification:
...sloppy quorum...vector clock...
;) High-performance implementation
-) Strong Eventual Consistency (SEC)
Replicas that see same updates give same answers
- Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

© Is this a set?
$+0 \sqrt{ } 0-0 \sqrt{ } 0$ is not a set execution

Replicated Sets: Amazon Dynamo (?)

- Specification:
...sloppy quorum...vector clock...
;) High-performance implementation
-) Strong Eventual Consistency (SEC)
Replicas that see same updates give same answers
- Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

© Is this a set?
$+0 \sqrt{ } 0-0 \sqrt{ } 0$ is not a set execution
(-) No, it's a Multi-Value Register (Shapiro 2011, MSR Talk)

Replicated Sets: Amazon Dynamo (?)

- Specification:
...sloppy quorum...vector clock...
;) High-performance implementation
;) Strong Eventual Consistency (SEC)
Replicas that see same updates give same answers
- Example: (Bieniusa/Zawirski/Preguiça/Shapiro/Baquero/Balegas/Duarte 2012)

© Is this a set?
$+0 \sqrt{ } 0-0 \sqrt{ } 0$ is not a set execution
;) No, it's a Multi-Value Register (Shapiro 2011, MSR Talk)
- But SEC does not explain this

State Of Play

- Correctness Criterion: Strong Eventual Consistency (SEC)
() Add-Wins Set Example
;) Amazon Dynamo Example
; But Add-Wins is more set-like

State Of Play

- Correctness Criterion: Strong Eventual Consistency (SEC)
() Add-Wins Set Example
;) Amazon Dynamo Example
; But Add-Wins is more set-like
- Correctness: sequential vs replicated

Idea	Sequential	Replicated
Safety		
Termination		

State Of Play

- Correctness Criterion: Strong Eventual Consistency (SEC)
() Add-Wins Set Example
;) Amazon Dynamo Example
; But Add-Wins is more set-like
- Correctness: sequential vs replicated

Idea	Sequential	Replicated
Safety	Partial correctness	
Termination	Total correctness	

State Of Play

- Correctness Criterion: Strong Eventual Consistency (SEC)
() Add-Wins Set Example
;) Amazon Dynamo Example
; But Add-Wins is more set-like
- Correctness: sequential vs replicated

Idea	Sequential	Replicated
Safety	Partial correctness	
Termination	Total correctness	Convergence $=$ SEC

State Of Play

- Correctness Criterion: Strong Eventual Consistency (SEC)
() Add-Wins Set Example
;) Amazon Dynamo Example
; But Add-Wins is more set-like
- Correctness: sequential vs replicated

Idea	Sequential	Replicated
Safety	Partial correctness	???
Termination	Total correctness	Convergence = SEC

State Of Play

- Correctness Criterion: Strong Eventual Consistency (SEC)
:) Add-Wins Set Example
;) Amazon Dynamo Example
; But Add-Wins is more set-like
- Correctness: sequential vs replicated

Idea	Sequential	Replicated
Safety	Partial correctness	???
Termination	Total correctness	Convergence = SEC

- This paper: What is a good notion of safety?

Safety? :

$C=$ Conflict-free

CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

- Conflict-free, operationally defined = either
- Convergent, State-based
- Commutative, Operation-based

CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

- Conflict-free, operationally defined = either
- Convergent, State-based
- Commutative, Operation-based
© Sufficient to establish SEC

CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

- Conflict-free, operationally defined = either
- Convergent, State-based
- Commutative, Operation-based
© Sufficient to establish SEC
- Examples also appear to satisfy safety (in some sense)

CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

- Conflict-free, operationally defined = either
- Convergent, State-based
- Commutative, Operation-based
© Sufficient to establish SEC
- Examples also appear to satisfy safety (in some sense)
: Correctness defined using concurrent spec
"It is infinitely easier and more intuitive for us humans to specify how abstract data structures behave in a sequential setting, where there are no interleavings. Thus, the standard approach to arguing the safety properties of a concurrent data structure is to specify the structure's properties sequentially, and find a way to map its concurrent executions to these 'correct' sequential ones." (Shavit 2011)

CRDTs (Shapiro/Preguiça/Baquero/Zawirski 2011)

- Conflict-free, operationally defined = either
- Convergent, State-based
- Commutative, Operation-based
;) Sufficient to establish SEC
- Examples also appear to satisfy safety (in some sense)
: Correctness defined using concurrent spec
"It is infinitely easier and more intuitive for us humans to specify how abstract data structures behave in a sequential setting, where there are no interleavings. Thus, the standard approach to arguing the safety properties of a concurrent data structure is to specify the structure's properties sequentially, and find a way to map its concurrent executions to these 'correct' sequential ones." (Shavit 2011)
;) This paper:
An extensional notion of safety for CRDTs appealing only to the sequential spec

This talk: From Linearizability to CRDTs in 5 relaxations

Relaxations:

- Real time: Distributed system
- Order after an accessor: Update serializability
- Order between independent updates: Preserved Program Order
- Linearize labels, not events: Punning
- Quotient specification by observational equivalence: Stuttering

This talk: From Linearizability to CRDTs in 5 relaxations

Evidence that definition is the "right" one (in paper)
;) Simulation-based characterization
;) Most General CRDT, expressed as Labelled Transition System
;) Compositionality and Substitutivity results
;) Validation of CRDT Graph built using CRDT sets
;) Corner cases
(:) Updates to one replica only \Rightarrow linearizable
() Permutation equivalence in spec \Rightarrow...
;) Validates all known CRDTs
:) Add-Wins Set (Shapiro/Preguiça/Baquero/Zawirski 2011)
;) Collaborative Text-Editing Protocol (Attiya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)

This talk: From Linearizability to CRDTs in 5 relaxations

Evidence that definition is the "right" one (in paper)
;) Simulation-based characterization
;) Most General CRDT, expressed as Labelled Transition System
;) Compositionality and Substitutivity results
;) Validation of CRDT Graph built using CRDT sets
;) Corner cases
(:) Updates to one replica only \Rightarrow linearizable
() Permutation equivalence in spec $\Rightarrow \ldots$
;) Validates all known CRDTs
:) Add-Wins Set (Shapiro/Preguiça/Baquero/Zawirski 2011)
;) Collaborative Text-Editing Protocol (Attiya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)

- : Validates every possible CRDTs
- Def of CRDT does not mention sequential spec
(): Our def = proposal for meaning of CRDT

Components of Safety

- Linearization: response must be consistent with some spec string
- List replica that sees put (0) and put (2) may respond
() $q=[0,2]$
() $q=[2,0]$
(2) $q=[]$
(ㄷ) $\mathrm{q}=[1,0,2]$
- Monotonicity: responses evolve sensibly
- List replica in state $q=[0,2]$, may evolve to
(:) $q=[0,1,2]$, due to arrival of put (1)
(:) $q=[2,0]$, no support for delete or reorder

Relaxation 1: Order in Distributed Systems

- v is valid for \sum if...
$\Sigma=$ specification $=$ set of strings of labels
$v=$ execution $=$ Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)
- Example:

Relaxation 1: Order in Distributed Systems

- v is valid for \sum if...
$\mathcal{C}(v)=$ downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
$\Sigma=$ specification $=$ set of strings of labels
$v=$ execution $=$ Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)
- Example:

$$
\text { Cuts }=\{a\},\{a, c\},\{b\},\{a, b\},\{a, b, c\}
$$

$$
\text { Frontiers }=\{a\},\{c\},\{b\},\{a, b\},\{b, c\} \text { (Maximal elements) }
$$

Relaxation 1: Order in Distributed Systems

- v is valid for Σ if there exists a map $f: C(v) \rightarrow$ events $(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
$\Sigma=$ specification $=$ set of strings of labels
$v=$ execution $=$ Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)
- Example:

$$
\text { Cuts }=\{a\},\{a, c\},\{b\},\{a, b\},\{a, b, c\}
$$

Frontiers $=\{a\},\{c\},\{b\},\{a, b\},\{b, c\}$ (Maximal elements)
For specification $a b c, f$ maps cuts to subsequences of $a b c$

Relaxation 1: Order in Distributed Systems

- v is valid for Σ if there exists a map $f: C(v) \rightarrow$ events $(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
$\Sigma=$ specification $=$ set of strings of labels
$v=$ execution $=$ Labeled Partial Order (LPO)
Order of LPO = non-overlapping method calls (real time)
- Example:

$$
\text { Cuts }=\{a\},\{a, c\},\{b\},\{a, b\},\{a, b, c\}
$$

Frontiers $=\{a\},\{c\},\{b\},\{a, b\},\{b, c\}$ (Maximal elements)
For specification $a b c, f$ maps cuts to subsequences of $a b c$

- Replicated system: No global clock

Relaxation 1: Order in Distributed Systems

- v is valid for Σ if there exists a map $f: C(v) \rightarrow$ events $(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$C(v)=$ downclosed sets of v (i.e., cuts) (Chandy/Lamport 1985)
$\Sigma=$ specification $=$ set of strings of labels
$v=$ execution $=$ Labeled Partial Order (LPO)
Order of LPO = per-replica visibility
- Example:

$$
\text { Cuts }=\{a\},\{a, c\},\{b\},\{a, b\},\{a, b, c\}
$$

Frontiers $=\{a\},\{c\},\{b\},\{a, b\},\{b, c\}$ (Maximal elements)
For specification $a b c, f$ maps cuts to subsequences of $a b c$

- Replicated system: No global clock

Relaxation 2: Update Serializability

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$C(v)=$ downclosed sets

Relaxation 2: Update Serializability

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$C(v)=$ downclosed sets

- Cannot linearize $X 0$ and $X 1$ together

Relaxation 2: Update Serializability

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed downclosed sets

- Cannot linearize $X 0$ and $X 1$ together

Relaxation 2: Update Serializability

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$C(v)=$ pointed downclosed sets

- Cannot linearize $X 0$ and $X 1$ together
- When linearizing $\sqrt{ } 1$, must not include both $X 0$ and $X 1$

Relaxation 2: Update Serializability

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$C(v)=$ pointed update-downclosed sets

- Cannot linearize $X 0$ and $X 1$ together
- When linearizing $\sqrt{ } 1$, must not include both $\mathrm{X0}$ and X 1

Relaxation 2: Update Serializability

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$C(v)=$ pointed update-downclosed sets

- Cannot linearize $X 0$ and $X 1$ together
- When linearizing $\sqrt{ } 1$, must not include both $\mathrm{X0}$ and X 1

Relaxation 2: Update Serializability

- v is valid for Σ if there exists a map $f: C(v) \rightarrow$ events $(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$C(v)=$ pointed update-downclosed sets

- Cannot linearize $X 0$ and $X 1$ together
- When linearizing $\sqrt{ } 1$, must not include both $X 0$ and $X 1$
- State of prior art (Burckhardt/Leijen/Fähndrich/Sagiv 2012) Cf. Update serializability: global order for updates (Hansdah/Patnaik 1986, Garcia-Molina and Wiederhold 1982)

Relaxation 3: Preserved Program Order

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and $\operatorname{labels}(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$C(v)=$ pointed update-downclosed sets

Relaxation 3: Preserved Program Order

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed update-downclosed sets

- Cannot linearize -1 and -0 together

Relaxation 3: Preserved Program Order

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Cannot linearize -1 and -0 together

Relaxation 3: Preserved Program Order

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Cannot linearize -1 and -0 together

Relaxation 3: Preserved Program Order

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Cannot linearize -1 and -0 together
- Cf. Preserved Program Order in relaxed memory models (Higham/Kawash 2000, Alglave 2012).

Relaxation 3: Preserved Program Order

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Cannot linearize -1 and -0 together
- Cf. Preserved Program Order in relaxed memory models (Higham/Kawash 2000, Alglave 2012).
- Independency is a property of the specification

Relaxation 4: Puns

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Linearization must have -0^{b} before $+\theta^{e}$

Relaxation 4: Puns

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Linearization must have $-\theta^{b}$ before $+\theta^{e}$
- Linearization must have $-\theta^{f}$ before $+\theta^{a}$

Relaxation 4: Puns

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \operatorname{events}(v)^{*}$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$ and labels $(f(p)) \in \Sigma$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Linearization must have $-\theta^{b}$ before $+\theta^{e}$
- Linearization must have $-\theta^{f}$ before $+\theta^{a}$
- Must linearize actions/labels, not events

Relaxation 4: Puns

- v is valid for Σ if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Linearization must have $-\theta^{b}$ before $+\theta^{e}$
- Linearization must have $-\theta^{f}$ before $+\theta^{a}$
- Must linearize actions/labels, not events

Relaxation 4: Puns

- v is valid for Σ if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Linearization must have $-\theta^{b}$ before $+\varnothing^{e}$
- Linearization must have $-\theta^{f}$ before $+\theta^{a}$
- Must linearize actions/labels, not events

$$
\begin{array}{ll}
+0^{a},+0^{e} & :+0 \\
-0^{b},-\theta^{f} & :+0-0 \\
\sqrt{ } 0^{c}, \sqrt{ } 0^{g} & :+0-0+0 \sqrt{ } 0
\end{array}
$$

Relaxation 4: A Bad Joke

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Update order $+0-0+0-0$ with subsequences:

$$
\begin{array}{lll}
\sqrt{ } \theta^{c} & :+0-0+0 \sqrt{ } 0 & \left(X \theta^{c} \text { requires }-0 \text { between the }+0 \mathrm{~s}\right) \\
X 0^{x} & :+0+0-0 X 0 & \left(X 0^{x} \text { requires }-0 \text { after the }+0 \mathrm{~s}\right)
\end{array}
$$

Relaxation 4: A Bad Joke

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets

- Update order $+0-0+0-0$ with subsequences:

$$
\begin{array}{lll}
\sqrt{ } 0^{c} & :+0-0+0 \sqrt{ } 0 & \left(X 0^{c} \text { requires }-0 \text { between the }+0 \mathrm{~s}\right) \\
X 0^{x} & :+0+0-0 X 0 & \left(X 0^{x} \text { requires }-0 \text { after the }+0 \mathrm{~s}\right)
\end{array}
$$

Relaxation 4: A Bad Joke

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

- Update order $+0-0+0-0$ with subsequences:

$$
\begin{array}{lll}
\sqrt{ } 0^{c} & :+0-0+0 \sqrt{ } 0 & \left(X 0^{c} \text { requires }-0 \text { between the }+0 \mathrm{~s}\right) \\
X 0^{x} & :+0+0-0 X 0 & \left(X 0^{x} \text { requires }-0 \text { after the }+0 \mathrm{~s}\right)
\end{array}
$$

Relaxation 4: A Bad Joke

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

- Update order $+0-0+0-0$ with subsequences:

$$
\begin{array}{lll}
\sqrt{ } 0^{c} & :+0-0+0 \sqrt{ } 0 & \left(X 0^{c} \text { requires }-0 \text { between the }+0 \mathrm{~s}\right) \\
X 0^{x} & :+0+0-0 X 0 & \left(X 0^{x} \text { requires }-0 \text { after the }+0 \mathrm{~s}\right)
\end{array}
$$

- Execution disallowed by monotonicity $\left\{+\theta^{a},-\theta^{b},+\theta^{e}\right\}$ cannot be linearized to satisfy both $\sqrt{ } 0^{c}$ and $X \theta^{x}$

Relaxation 5: Observationally Equivalent Specifications

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

Relaxation 5: Observationally Equivalent Specifications

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {seq }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

- Should this linearize to $+0-0-0+0-0+0-0-0$, or

$$
+0-0+0-0-0+0-0-0 ?
$$

Relaxation 5: Observationally Equivalent Specifications

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {obs }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

- Should this linearize to $+0-0-0+0-0+0-0-0$, or

$$
+0-0+0-0-0+0-0-0 ?
$$

- These are observationally equivalent Cf. stuttering equivalence (Brookes 96)

Relaxation 5: Observationally Equivalent Specifications

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {obs }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates

- Should this linearize to $+0-0-0+0-0+0-0-0$, or

$$
+0-0+0-0-0+0-0-0 ?
$$

- These are observationally equivalent Cf. stuttering equivalence (Brookes 96)
- Observational subsequence is a property of the specification

Safety: Summary

- v is valid for \sum if there exists a map $f: C(v) \rightarrow \Sigma$ s.t.
- $\quad \forall p \in C(v) . p$ linearizes to $f(p)$
- $\forall p, q \in C(v) . p \subseteq q$ implies $f(p) \leq_{\text {obs }} f(q)$
$\mathcal{C}(v)=$ pointed dependent-update-downclosed sets, for accessors all dependent-update-downclosed sets, for updates
- Relaxations from linearizability:
- Real time: Distributed system
- Order after an accessor: Update serializability
- Order between independent updates: Preserved Program Order
- Linearize labels, not events: Punning
- Quotient specification by observational equivalence: Stuttering

The Most General CRDT

- What is the programmer model?

Interacting with any CRDT implementation, for any specification

- Example for Set, with single +0 and -0

LTS with labels = LPOs showing client history
Maximal elements = new client actions

The Most General CRDT

- Contrast with linearizability
- Updates may come out of order

The Most General CRDT

- Contrast with linearizability
- Updates may come out of order
- Accessors don't cause change of state

This talk: Definition of safe execution for CRDTs

In paper:
;) Simulation-based characterization
;) Most General CRDT, expressed as Labelled Transition System
;) Compositionality and Substitutivity results
;) Validation of CRDT Graph built using CRDT sets
;) Corner cases
(:) Updates to one replica only \Rightarrow linearizable
() Permutation equivalence in spec \Rightarrow...
;) Validates all known CRDTs
:) Add-Wins Set (Shapiro/Preguiça/Baquero/Zawirski 2011)
;) Collaborative Text-Editing Protocol (Attiya/Burckhardt/Gotsman/Morrison/Yang/Zawirski)
: Validates every possible CRDTs
: Def of CRDT does not mention sequential spec
() Our def = proposal for meaning of CRDT

