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Abstract. Existing web services and mashups exemplify the need for flexible
construction of distributed applications. How to do so securely remains a topic of
current research. We present TAPIDO, a programming model to address Trust and
Authorization concerns via Provenance and Integrity in systems of Distributed
Objects. Creation of TAPIDO objects requires (static) authorization checks and
their communication provides fine-grain control of their embedded authorization
effects. TAPIDO programs constrain such delegation of rights by using prove-
nance information. A type-and-effect system with effect polymorphism provides
static support for the programmer to reason about security policies. We illustrate
the programming model and static analysis with example programs and policies.

1 Introduction

Web services, portlets, and mashups are collaborative distributed systems built by as-
sembling components from multiple independent web applications. Building such sys-
tems requires programming abstractions that directly address service composition and
content aggregation. From a security standpoint, such composition and aggregation in-
volves subtle combinations of authentication, authorization, delegation, and trust.

The issues are illustrated by account aggregation services that provide centralized
control of an individual’s accounts held with one or more institutions. An individual
first grants permission for an aggregator to access owned accounts located at various
institutions. In a typical use case, the aggregator is asked to provide a summary balance
of all registered accounts: the aggregator asks each institution for the relevant account
balance; the institution then determines whether or not to grant access; with the ac-
cumulated balances, the aggregator returns a summary of registered accounts to the
individual. This simple service already raises several security and privacy issues related
to trust and authorization. To name just two:

– The account owner’s intent to access their account should be established by the insti-
tution. Message integrity is required to verify such intent.

– Principals should establish that the flow of messages through the system complies
with authorization, audit, and privacy policies for account access. Message prove-
nance is required to verify that the message history does comply with such policies.
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Fig. 1. Principals Involved in Account Aggregation

It has been said that “An application can be mashup-friendly or it can be secure,
but it cannot be both.” [1]. We disagree. In this paper, we describe the use of message
provenance and integrity to achieve both security and flexibility aims in this general
programming context.

In the remainder of this section, we present an informal overview of our approach
using the account aggregation example. The principals involved are the account owner,
the aggregation service, and two principals for the institution holding the account.
The institution uses two principals to distinguish privileged monitor code from public-
facing, unprivileged code. The owner requests the balance from the public-facing ac-
count object, which in turn contacts a trusted monitor to determine whether access
should be granted or denied. The flow of messages is summarized in Figure 1.

Object model. TAPIDO’s object model is based upon Java’s notion of remote objects.
We locate objects at atomic principals. Examples of atomic principals are nodes on
a distributed system, a user or a process. For an object p, the location is available to
the programmer via p.loc. As with Java’s remote objects, objects are immobile and
rooted at the location where they are created. A method invocation on an object leads to
code execution at the location of the callee object. Thus, when the caller and callee ob-
jects are located at different locations, method invocation leads to a change of location
context. References to objects are mobile — they can be freely copied and they move
around through the system as arguments to methods or return values. We do not address
mobility of objects themselves; thus, we do not discuss serialization and code mobility.

TAPIDO assumes a communication model that guarantees the provenance and in-
tegrity of messages. Thus, TAPIDO focuses on semantic attacks on trust and authoriza-
tion, rather than on attacks against the cryptographic techniques required to achieve
this communication model. Thus, our approach assume an underlying network model
in which the sender of the message can be reliably determined; this model is well-
studied [2,3,4,5] and realizable [6,7,8]. Using a relatively high-level model permits us
to concentrate on attacks that seek unauthorized access, rather than studying the under-
lying cryptographic protocols that facilitate the integrity assumption.

Statics. Effects are communicated through object references. The language of effects
is a decidable monotonic fragment of first-order logic (e.g., Datalog) extended to work
over authorization logics. The modalities of authorization logics [9,10,11,12] permit
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different participants of a distributed system to maintain potentially inconsistent world-
views, e.g. if b receives an object with effect φ created by a, it receives the effect a says
φ , rather than the more absolute truth φ . Our language of effects also includes logic
variables to achieve ML-style polymorphism with respect to effects.

Our “object-centric” notion of effects differs from the more usual “method-centric”
notions explored in the literature on effects in Object-Oriented (OO) languages. The
effects on objects can only refer to the immutable data of the object — if the object is
an authorization token, this effect can record the rights associated with these object. For
honest agents, object effects are validated at the point of creation, effectively ensuring
that the global policy permits the creation of the object. When such an object is received
— e.g., as an argument to a method call — the effects are transferred as a benefit to the
recipient. In any execution of a well-typed program, there is a corresponding [13] object
creation validating such accrual of rights.

The attackers that we consider are untrustworthy atomic principals running any
well-typed Java program. Following [14] and our own earlier work [15], they may
“utter” anything whatsoever in terms of effects. For example, opponents may create
authorization objects without actually having the rights to create them, aiming to sub-
vert the global authorization policy. A program is safe [16] if every object creation at
runtime is justified by the accumulated effects. Our type system ensures that well-typed
programs remain safe under evaluation in the face of arbitrary opponent processes.

In the account aggregation example, consider when an individual requests their bal-
ance from the institution holding their account through the aggregator. The guarantee
sought is that the institution may only respond with the account balance when the re-
quest is approved by the account owner. With a pre-arranged protocol, approval can be
conveyed by a message passed from the account owner to the institution via the ag-
gregator. The institution’s code must be able to verify that it originates with the owner
and not been modified en route. The code must also ensure that the integrity-verified
message and the pre-arranged protocol entail the owner’s approval in the past; even in
the presence of attackers who (perhaps falsely) claim possession of rights.

We describe a program incorporating such a design in our model, and verify the
required properties with our static analysis.

Programming Provenance. Provenance — the history of ownership of an object —
has received much interest in databases, e.g., see [17] for a survey. Security-passing
style implementations [18] of stack inspection are already reminiscent of such ideas in
a security context, since the provenance of the extra security-token parameter can be
viewed as encoding the current relevant security context.

Provenance plays a crucial role in both the privacy architecture and the security
(access control and accountability) of the account aggregation example. Consider the
request from the account owner to the institution via the aggregator. The institution may
impose an access control policy on the provenance of the request, e.g., to restrict the ag-
gregators that can be used with the institution’s services. Such a policy is distinct from,
but can be used in conjunction with, an access control policy based upon the originator
of the request. Similarly, the institution’s audit policy may require a record of the prove-
nance of requests (including the identities of the owner and the aggregator) to support
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an accountability obligation, e.g., to explain why and to whom account information was
provided should the institution be accused of dishonest behavior.

Finally, the account owner can demand security of the path traversed by the result
of such a request to ensure data privacy. This is demonstrated to the account owner by
returning the relevant snapshot of the history of their data along with their data.

In contrast to stack inspection and history-based access control (e.g., see [19]) that
mandate the flow of the security token, and record in it the full history of information
used to make a judgement, our “user-defined” approach relies on trust relationships
between the principals that are recorded as part of the history to make judgements.

In the account aggregation example, the response from the institution to the account
owner has full history that can be described with the regular expression ACCT · trusted∗ ·
AGGR · trusted∗ · OWNER, where trusted represents a collection of trusted principals.
Our explicit programming of this path in the sequel maintains only a subsequence of
the history that matches ACCT · trusted∗ ·AGGR ·OWNER. Such abbreviations of the full
history are codified in the security policy by assumptions on these principals — e.g.,
that the aggregator received the result from a trustworthy principal that can be relied
upon to enforce the policy, and that the aggregator can be relied upon to report this
information accurately.

We describe a program incorporating such a design in our model, and verify the
required properties with our static analysis.

Related work. The study of effect systems was initiated in the context of functional
languages (e.g., see Gifford and Lucassen [20,21], and Talpin and Jouvelot [22,23]
amongst others). The ideas have since been applied broadly to OO languages; to name
but a few, specifying the read/write behavior of methods [24,25], confinement [26,27],
type reclassification [28], object protocols [29] and session types [30].

The most closely related papers are types for authorization, by Fournet, Gordon and
Maffeis [31], a successor paper by the same authors [14] and our own earlier paper [15].
All of these papers (including this one) focus on authorization issues and so the work
on information flow, e.g., see [32] for a survey, is not directly relevant. However, as in
information flow based methods, TAPIDO global policy drives program design.

Fournet, Gordon and Maffeis [31] introduce an assume-guarantee reasoning frame-
work with Datalog assertions for dealing with types for authorization. Both papers [31,14]
are based in a pi-calculus formalism and view authorization as “a complex crypto-
graphic protocol” [31] in the context of the traditional “network is the opponent” model.
The successor paper uses dependency analysis on authorization logic to formalize a sub-
tle notion of security despite compromise. Our object-centric effects adapt their static
annotations to an OO setting. Our requirements on object creation (resp. transfer of
effects to the callee) are analogous to their expectation (resp. statement) annotations.

Our prior paper [15] was inspired by [31]. It was also placed in a mobile process
calculus, but diverged from [31,14] in assuming a model with explicit identities and a
network that guaranteed integrity.

In this paper, we study imperative distributed objects by building on these intuitions.
Our primary aim in this paper is to provide foundations of a programming methodol-
ogy to ensure that distributed systems validate authorization and security policies; e.g.,
one of the aims of our examples is to illustrate the use of standard OO mechanisms
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to incrementally construct security guarantees. While the pi-calculus (with notions of
keys) is expressive enough to code distributed objects (with explicit identities), such a
translation is arguably inconsistent with our overall aims — just consider the complex
encoding of state in the control of a pi-program. Such a translation based semantics
approach obfuscates the simple (from an object standpoint) invariants that underlie our
analysis. At any rate, the type systems in these three papers do not include the invariants
of processes required to capture the type annotations of TAPIDO.

2 Language

We present the evaluation semantics for TAPIDO, a distributed class-based language
with mutable objects. Our treatment of classes follows earlier direct semantics for class-
based languages [33,34,24,35]. We do not address issues of genericity [36,34] or inner
classes [37]. Our treatment of concurrency follows Gordon and Hankin’s concurrent
object calculus [38]. As in Cardelli’s Obliq [39], our object references have distributed
scope, rather than local scope [40]. Our treatment of locations borrows heavily from
process algebras with localities (see [41] for a survey).

We first describe our naming conventions. Names for classes (c, d), methods ("),
fields (f , g), variables (x, y, z), objects (p, q) and principals (a, b) are drawn from sep-
arate namespaces, as usual. Predicate variables (α , β ) and predicate constructors (γ)
occur in static annotations used during type-checking.

The reserved words of the language include: the variable names “this” and “caller”;
the binary predicate constructors “∧”, representing conjunction, and “says”, represent-
ing quoting; the ternary predicate constructor Prov is used to indicate that the first argu-
ment (an object) was received from the second argument (source principal) by the third
argument (target principal). We write the binary constructors infix.

The language is explicitly typed. Object types (c<#φ>) include the actual predicate
parameters #φ , which we treat formally as extended values. Value types include objects
(C), principals (Prin) and Unit. Extended value types include predicate types (P), which
are resolved during typechecking. The process type (Proc) has no values.

C,D ::= Object Typesc<#φ>
T,S ::= Value TypesC | Prin | Unit
P,Q ::= Predicate TypesPred( #T )

T ,S ::= TypesT | P | Proc

µ ::= Mutability Annotationsfinal | mutable

D ::= Classes (#α bound in D, θ , #T , #M )class c<#α :#P>$D{#µ #T#f; #M }[θ]
M ::= Methods (#β bound in S, #T ,M;#x inM)<#β : #Q>S "(#T #x){M}

One may write classes and methods that are generic in the predicate variables,
achieving ML-style polymorphism with respect to effects. Class declarations thus in-
clude the formal predicate parameters #α , which may occur in the effect θ (see next
table) associated with instances of the class. In addition to effects, class declarations
include field and method declarations, but omit implicit constructor declarations. Fields
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include mutability annotations, which are used in the statics. The syntax of values and
terms is as follows1.

V,W,U,A,B,φ ,ψ ::= Open Extended Values
x | p | a | unit Variable, Runtime Value
α | γ | φ(#V) | · · · Predicates

M,N,L,θ ::= Terms
V | new c<#φ>(#V) Value, Object Creation
let x=V."<#φ>(#W);M | V.f | V.loc | V.f :=W Object Operations
if V =W thenM else N | let x=N;M | N ||

-M Control Flow
p:c{#f =#V} | (ν p:C)M | a[M] Runtime Terms

We use the metavariables φ , ψ and θ to represent values and terms of predicate
type, and the other metavariables to represent runtime values and terms, with A and
B reserved for values of principal type. Predicates are static annotations used in type-
checking, which do not play any role in the dynamics.

An expectation “expect θ” may be written as “new Proof<θ>()”, where class
Proof is defined “class Proof<α :Pred>{}[α]”.

The syntax of terms includes standard OO primitives for object creation, method
call, and field get/set. The let binder in method calls is necessary to describe the prove-
nance of return values. Constructors and methods take predicate parameters that are
used statically. The special “field” loc returns the location of an object. The conditional
allows equality testing of values.

Concurrent composition (||-) is asymmetric. In N ||
-M, the returned value comes

from M; the term N is available only for side effects. In the sequential composition
“let x=N;M”, x is bound with scope M. We elide the let, writing simply “N;M” when
x does not occur inM. We also use standard syntactic sugar in place of explicit sequenc-
ing. For example, we may write “y.f.g” to abbreviate “let x= y.f;x.g”.

Heap elements (p:c{ · · ·}), name restriction ((ν p)) and frames (a[M]) are meant
only to occur at runtime. The first two of these model the heap, whereas the last models
the (potentially distributed) “call stack”. We expect that these constructs do not occur
in user code. An object name binder (ν) is separate from the associated denotation
(p:c{#f =#V}), allowing arbitrary graphs of heap objects. (The preceding example in-
dicates that p is located at a, with actual class c and fields#f =#V .) The frame a[M]

indicates that M is running under the authority of a.

Structural Congruence. Evaluation is defined using a structural congruence on terms.
Let ≡ be the least congruence on terms that satisfies the following axioms. The rules

1 When writing definitions using classes and methods, we often elide irrelevant bits of syntax,
e.g., we leave out the parameters to classes when empty, such as writing Object rather than
Object< ·>. We identify syntax up to renaming of bound names, and write M[x :=V ] for sub-
stitution of V for x in M (and similarly for other categories). We sometimes write extends
for $ for clarity. We often elide type information. We write “S " (#T#x);” as shorthand for
“S " (#T#x) {}”.
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in the left column are from [38]. They capture properties of concurrent composition,
including semi-associativity and the interaction with let. The rules in the right column,
inspired by [41], capture properties of distribution. The first of these states that the
interpretation of a value is independent of the location at which it occurs. The second
states that computation of a frame does not depend upon the location from which the
frame was invoked.

Structural Congruence (M ≡M′) (where p /∈ fn(M))

(M ||
-N)||-L≡M ||

- (N ||
-L)

(M ||
-N)||-L≡ (N ||

-M)||-L
((ν p)N)||-M ≡ (ν p)(N ||

-M)
M ||

- ((ν p)N)≡ (ν p)(M ||
-N)

let x= (L||-N);M ≡ L||- (let x=N;M)
let x= ((ν p)N);M ≡ (ν p)(let x=N;M)

a[V]≡V
a[b[M]]≡ b[M]

a[N ||
-M]≡ a[N]||-a[M]

a[(ν p)N]≡ (ν p)a[N]
a[let x=N;M]≡ let x=a[N];a[M]

One may view interesting terms as configurations, which we now define. A store
Σ is a collection of distributed heap terms, b1[p1:c1{ · · ·}]||- · · ·||- bm[pm:cm{ · · ·}],
where each p j is unique. A thread is either a value or a term a[M] that does not con-
tain occurrences of a name restriction or heap term. (A value represents a terminated
thread.) An initial thread is a term a[M] such thatM additionally contains no blocks. A
configuration is a term of the form (ν#p)(Σ ||

-M1 ||- · · ·||-Mn), where eachMi is a thread.
A configuration is initial if each of its threads is initial. Evaluation preserves the shape
of a configuration up to structural equivalence: IfM is a configuration andM→M′ then
M′ is structurally equivalent to a configuration.
Evaluation. The evaluation relation is defined with respect to an arbitrary fixed class
table. The class table is referenced indirectly in the semantics through the lookup func-
tions fields and body; we elide the standard definitions. Evaluation is defined using the
following axioms; we elide the standard inductive rules that lift structural equivalence
to evaluation (M→M′ if M ≡ N→ N′ ≡M′) and that describe computation in context
(for example, b[M]→ b[M′] ifM→M′). We discuss the novelties below.

Term Evaluation (M→M′)

new c(#V)→ (ν p)(p:c{#f =#V}||- p)
if fields(c) =#f and |#f |= |#V |

b[p:c{ · · ·}]||-a[let y= p."(#W);L]→ b[p:c{ · · ·}]||-a[let y=b[M′];L′]
if body(c.") = (#x){M} and |#x|= |#W |
where M′ = Prov(#W ,a,b)||-M[caller := a][this := p][#x := #W ]
and L′ = Prov(y,b,a)||-L

b[p:c{ · · ·}]||- p.loc→ b[p:c{ · · ·}]||-b
b[p:c{f =V · · ·}]||- p.f :=W → b[p:c{f =W · · ·}]||-unit
b[p:c{f =V · · ·}]||- p.f → b[p:c{f =V · · ·}]||-V
if V =V thenM else N→M
if V =W thenM else N→ N if V '=W
let x=V;M→M[x :=V ]
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The rule for new creates an object and returns a reference to it; in the Gordon/Hankin
formalism, the heap stays on the left, whereas the return value goes on the right. p.loc
returns the location of p.

Method invocation happens at the callee site, and thus a new frame is introduced in
the consequent b[M′]. The provenance of the actual parameters is recorded in Prov(#W ,
a,b), which is shorthand for Prov(W1,a,b), . . . ,Prov(Wn,a,b). In M′, the special vari-
able caller is bound to calling principal; there are also standard substitutions for this
and the formal parameters. In L′, the provenance of the return value is recorded in
Prov(y,b,a).

Effects. Effects play a crucial role in the statics, but are ignored by evaluation. In sum-
mary, trustworthy processes are required to justify object creation by validating the ex-
pectations associated with classes in terms of accumulated effects. Opponent processes,
on the other hand, may ignore expectations but are otherwise well typed. We say that
a term is safe if the expectations associated with object creation by trusted principals
during evaluation are always justified by the accumulated effects. We establish the stan-
dard properties of Preservation and Progress. As a corollary, we deduce that well-typed
trustworthy processes remain safe when composed with arbitrary opponents.

Our proof of type-safety identifies the key properties required of the logic of effects.
Thus, the logic of effects has to support structural rules on the left, support transitivity
via cut, and ensure closure of the equality predicate under substitution and reduction. In
addition, typechecking of examples (such as the ones that follow) also requires closure
of inference under the inference rules of affirmation in the authorization logic of [10],
e.g., functoriality of says, distribution of says over conjunction, and (α⇒ A says β )⇒
(A says α ⇒ A says β ). The full type and effect system and results with proofs can be
found in the appendix.

3 Examples

In these examples, effects are described in a variant of Datalog extended to work over
authorization logic. As with regular Datalog, a program is built from a set of Horn
clauses without function symbols. In contrast to regular Datalog, the literals can also
be in the form of quotes of principals. The well-formed user predicates are typed, with
fixed arity. They are always instantiated with pure terms in a type-respecting fashion;
pure terms are guaranteed to converge to a value without mutating the heap.

3.1 Workflow.

In this stateful workflow pattern, a user submits data of type T by creating an object of
class SubmittedCell. (For simplicity, we do not address generic types here.) The man-
ager must subsequently approve the data by creating an object of class ApprovedCell.

class CellI<α,β :Pred(T)> { }
class SubmittedCell<α,β :Pred(T)> extends CellI<α,β> {
final T data; final Prin user; final Prin manager;

} [this.user says α(this.data)]
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class ApprovedCell<α,β :Pred(T)> extends CellI<α,β> {
final T data; final Prin user; final Prin manager;

} [this.user says α(this.data) ∧ this.manager says β (this.data)]
class FailedCell<α,β :Pred(T)> extends CellI<α,β> { }

In CellI<α,β>, α is the predicate that the user establishes on the data in the submission.
β is the predicate that the manager establishes on the data. The final effect on approved
cells represents both approvals in the static types.

The submission and approval objects are generated by a CellFactory in response to
receipt of a request object (of class CellReq<γ>). The submitmethod ofCellFactory<α,β>
receives the effect req.loc says α(req.data) on its req parameter. The resulting instance
of SubmittedCell<α,β> carries this assumption, along with the name of a manager that
must approve the request.

class CellReq<γ:Pred(T)> { final T data; } [γ(this.data)]
class CellFactory<α,β :Pred(T)> {

SubmittedCell<α,β> submit(CellReq<α> req, Prin manager) {
new SubmittedCell<α,β>(req.data, req.loc, manager)

}
CellI<α,β> approve(CellReq<β> req, SubmittedCell<α,β> cell) {
if ((req.loc=cell.manager) && (req.data=cell.data) && (this.loc=cell.loc))
then new ApprovedCell<α,β>(cell.data, cell.user, cell.manager)
else new FailedCell<α,β>()

} }

The approve method receives the effect req.loc says β (req.data). After checking that
req.loc is the same as cell.manager, it may conclude that cell.manager says β (req.data).
To establish the final effect on the ApprovedCell, the factory must establish that the data
in the approval request is the same as the data in the initial request. Further, it must be
the case that submit and approve are called upon factories located at the same princi-
pal, since the ApprovedCell vouches for both α and β , although these are validated at
different times. If any of the equality tests are missing, the code fails to typecheck.

Visitors for typecases. The class CellI is an interface for cells. The visitor design pat-
tern [42] provides a type-safe way to write code that is dependent on the actual dynamic
type/subclass. Thus, we add methods such as visitApprovedCell to class CellV<α,β>
(in general, one such visit method for each subclass). To dispatch to the visitor, the CellI
interface is augmented with an accept method, implemented in each subclass; e.g., if S
is the return type of the visitor, the implementation of ApprovedCell<α,β>.accept is:

S accept(CellV<α,β> v) { v.visitApprovedCell(this) }

Encoding Provenance. The submission and approval requests described above for the
workflow cell do not track provenance. To accommodate provenance tracking, e.g., for
the account balance requests discussed in Section 1, we develop an idiom for decorating
such requests as they are passed from principal to principal. The decorations indicate
the provenance of the transmitted data. As usual with a decorator design pattern [42],
the Req<α> class is split into three classes: the interface ReqI<α>, the concrete class
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ReqC<α> (which corresponds to the original Req<α>), and the decorator ReqD<α>.
We use a visitor to inspect the resulting object. Again, let T be the type of the request
data and S be the arbitrary return type of the visitor.

class ReqV<α> { S visitReqC(ReqC<α> x); S visitReqD(ReqD<α> x); }
class ReqI<α> { S accept(ReqV<α> v); }
class ReqC<α> extends ReqI<α> { final T data;

S accept(ReqV<α> v) { v.visitReqC(this) }
} [α(this)]
class ReqD<α> extends ReqI<α> { final ReqI<α> payload; final Prin src; final Prin tgt;

S accept(ReqV<α> v) { v.visitReqD(this); }
} [Prov(this.payload, this.src, this.tgt)]

Significantly, it is the concrete class ReqC<α> that retains the original effect α(this).
The decorator, instead, carries an effect concerning the provenance of the decorated
data. The effect Prov, used here at type Pred(ReqI<α>,Prin,Prin), is a claim about
the provenance of one hop of a request. It indicates that this.payload was received from
this.src by this.tgt. Thus, the object creation new ReqD(p,A,B) typechecks only when
the static semantics can deduce that p has been received by B from A.

To illustrate request decoration, consider the following trustworthy forwarder2:

class TrustworthyForwarder extends AggrI { mutable AggrI next;
RespI getAllBalances(ReqI<SubmitBal> req) {
let resp:RespI = next.approve(new ReqD<SubmitBal>(req, caller, this.loc));
new RespD(resp, next.loc, this.loc); } }

Themethod body is typechecked in the context of the assertion Prov(req,caller, this.loc),
thus permitting the construction of the ReqD object. Similarly, the Prov(resp,next.loc,
this.loc) assertion established by the method invocation on next enables the typecheck-
ing of the construction of the new RespD object. In contrast, an untrustworthy for-
warder might produce an inaccurate provenance decoration for the request, e.g., using
newReqD<SubmitBal>(req, FAKESRC, FAKETGT)). In the following account aggrega-
tion example, the principals trusted to provide accurate provenance decorations are
specified via the θ2 component of the global policy.

3.2 Account Aggregation.

Recall, from Figure 1, a rough outline of the protocol: (1) OWNER informs ACCT that
AGGR may aggregate its balances (using Acct.addAggr); (2) OWNER requests a sum-
mary of its balances from AGGR (using Aggr.getAllBalances); (3) AGGR requests the
balance from ACCT using Acct.getBalance. Steps (1) and (3) involve communication
between the public-facing ACCT and the private MONITOR. In addition, let the princi-
pal FORWARDER be trusted to relay messages using the decorator previously discussed.

2 For reasons of space we omit definition of AggrI, an interface class with a single
getAllBalances method, and classes RespI, RespC, RespD for responses by analogy with
non-generic versions of request classes ReqI, ReqC, ReqD.
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For simplicity, we use a single forwarder and account as well as a single class to rep-
resent the code running at each principal. (We follow the convention that field owner
references an instance of class Owner located at principal OWNER.) Due to space limi-
tations, we elide the code implementing step (1) of the protocol. We recall that Step (2)
of the protocol is initiated by the OWNER, with a call to Aggr.getAllBalances.

The global security policy. The global system policy has the form [OWNER says (θ0)]∧
[AGGR says (θ1∧θ2∧θ3)]∧ [MONITOR says (θ4∧θ5)]∧ [ACCT says θ6]. The predicates
θ0 . . .θ6 are formalized shortly. Informally, θ0 will ensure that the OWNER is authorized
to submit balance requests. θ1 and θ2 will characterize the paths that are considered
secure. θ3 will ensure that the aggregator only creates requests that arrive from owner on
secure paths. θ4 and θ5 will ensure that the MONITOR only accepts requests from owner
or from aggregators certified by the owner. θ6 will ensure that the account delegates
authorization decisions to the monitor.

The design of the entire program that follows is driven by this global policy, i.e.,
our code is set up to satisfy the expectations of each principal. Our presentation of the
formal policies piecemeal along with the associated classes is only for concise exposi-
tion.

Notation. To encode the policy, we use several predicate constructors, which we write
in italics. SubmitAggr, with type Pred(Prin), indicates that an aggregator has been
submitted for approval. Likewise ApproveAggr indicates that the request was approved.
SubmitBal, with type Pred(ReqC<SubmitBal>), is a claim that a balance request has
been submitted. ApproveBal, with type Pred(ReqI<SubmitBal>), is a claim that a bal-
ance request (perhaps with decorators) has been approved. As described previously,
Prov, used here at type Pred(ReqI<SubmitBal>,Prin,Prin), is a claim about the prove-
nance of one hop of a request. CheckedProv, with type Pred(ReqI<SubmitBal>), indi-
cates that the provenance of a request has been checked, and is specified using reacha-
bility via Prov, incorporating trust in principals that report about each hop.

We assume that the field Monitor.cell is set appropriately. For simplicity, we have
hard-coded AGGR and other principals throughout the example code; one may instead
use a final field to store principals of interest, deferring the choice to instantiation-time.

Owner. We use some abbreviations and elide the code to check the response re-
ceived back from the aggregator, which is similar to the visitor used by the aggregator,
shown later below. Acct.addAggr expects arguments of type CellReq<SubmitAggr>,
and Aggr.getAllBalances expects arguments of type ReqI<SubmitBal>.

class Owner { mutable AcctI acct; mutable AggrI aggr; /* could be forwarders */
Unit main() {

acct.addAggr(new CellReq<SubmitAggr>(aggr));
let response:RespI = aggr.getAllBalances(new ReqC<SubmitBal>(this.loc));
. . . /* check response for compliance with privacy policy */ }

} [θ0]

where θ0 = (SubmitAggr(AGGR))∧ (SubmitBal(X):-X.data= X.loc= this.loc). This
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effect indicates that the instantiator must be able to submit the aggregator request and
that the instantiator must be able to submit any balance request that it creates, so long as
the data field truthfully records its identity. The second requirement is expressed using
a Datalog variable X, ranging over values of type ReqC<SubmitBal>.

Aggregator. The code uses the following effects.
θ1 = CheckedProv(X) :- Prov(X, S, this.loc), S = owner OR S = forwarder

θ2 = CheckedProv(X.payload) :- forwarder says Prov(X.payload, S, forwarder),
CheckedProv(X)

θ3 = SubmitBal(X) :- owner says SubmitBal(Y), Y.data=X.data=owner, CheckedProv(Y)

The first two of these deal with provenance. The base case θ1 validates an object deliv-
ered to aggregator from forwarder or owner. θ2 recurses down one level of the decorated
object, making explicit the trust on trusted forwarders. Together θ1 and θ2 ensure that
a request is deemed valid if it has passed through trusted intermediaries. θ3 allows the
aggregator to create new balance requests, if it has checked the provenance of the re-
quest: both the new request X and the old one Ymust have the data field set to OWNER;
further, the OWNER must avow that they created the old request.

class Aggr extends AggrI { final Acct acct;
RespI getAllBalances(ReqI<SubmitBal> req) {
if ((caller=forwarder) || (caller=owner)) then
let req2:ReqI<SubmitBal> = req.accept(new AggrReqV(req));
let resp:RespI = acct.getBalance(req2);
new RespD(resp, acct.loc, this.loc) }

} [θ1 ∧ θ2 ∧ θ3]

The validation of the creation of req2 uses θ1 to satisfy the effect of the the class
AggrReqV. The auxiliary class AggrReqV is a visitor to typecase on the request be-
ing either a concrete request, or being a forwarded request.

class AggrReqV extends ReqV<SubmitBal> {
final ReqI<SubmitBal> in;
ReqI<SubmitBal> visitReqC(ReqC<SubmitBal> x) {
if ((this.in=x) && (x.loc=x.data=owner)) then
new ReqC<SubmitBal>(x.data)

else . . . /* error */ }
ReqI<SubmitBal> visitReqD(ReqD<SubmitBal> x) {
if ((this.in=x) && (x.loc=x.tgt=forwarder)) then

x.payload.accept(new AggrReqV(x.payload))
else . . . /* error */ }

} [θ1 ∧ θ2 ∧ θ3 ∧ CheckedProv(this.in)]

As the visitor traverses the decorators, it maintains the invariant that CheckedProv is
true of the object being visited. The visitor updates the effect each time it moves
to a new element by creating (and using) a new visitor. On callback to visitReqC
or visitReqD, the ReqI should be the same as the one with the effect; the type sys-
tem ensures that this is explicitly checked. To type visitReqC requires θ3, which al-
lows us to create the new ReqC located at AGGR. To type visitReqD, we first de-
duce CheckedProv(x) from this.in = x and the class effect. Since x is a ReqD, we
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have x.loc says Prov(x.payload, x.src, x.tgt). Since x.loc = x.tgt = FORWARDER and
CheckedProv(x), then θ2 yields CheckedProv(x.payload), allowing creation of the new
AggrReqV.

The enforcement of the privacy policy of the introduction by the OWNER can be
achieved using similar techniques.

Account. Calls to Acct.getBalance are delegated toMonitor.checkBalance, which re-
sults in a call back to either Acct.granted or Acct.denied.

class Acct { mutable int Balance; mutable Monitor monitor; mutable RespI result;
RespI getBalance(ReqI<SubmitBal> req) {

monitor.checkBalance(req, this);
this.result }

Unit granted(ReqI<ApproveBal> req) {
if (req.loc=monitor) then
expect monitor says ApproveBal(req);
this.result := new RespC(req)

else . . . /* error */ }
Unit denied() { . . . /* error */ } . . .

} [θ6]

Here θ6 =ApproveBal(X):-MONITOR says ApproveBal(X). Thus, if the grantedmethod
is called back, then it must be the case that the monitor approved the request.

Monitor. The effects of the monitor code are expressed using the following predicates.

θ4 = ApproveBal(X) :- owner says SubmitBal(X), X.data=owner

θ5 = ApproveBal(X) :- owner says SubmitAggr(Y), this.loc says ApproveAggr(Y),
Y says SubmitBal(X), X.data=owner

class Monitor { mutable CellI<SubmitAggr, ApproveAggr> cell;
Unit checkBalance(ReqI<SubmitBal> req, Acct acct) {
if (req.loc=req.data=owner)
then /* audit the request */ ; acct.granted(new ReqC<ApproveBal>(req.data))
else this.cell.accept(new MonitorCellV(req, acct)) }

} [θ4 ∧ θ5]
class MonitorCellV extends CellV<SubmitAggr, ApproveAggr> {
final ReqI<SubmitBal> req; final Acct acct;
Unit visitFailedCell(FailedCell<SubmitAggr, ApproveAggr> x) { this.acct.denied() }
Unit visitSubmittedCell(SubmittedCell<SubmitAggr, ApproveAggr> x) { this.acct.denied() }
Unit visitApprovedCell(ApprovedCell<SubmitAggr, ApproveAggr> x) {
if ((x.loc=this.loc) && (owner=x.user) && (this.loc=x.manager)

&& (this.req.loc=x.data) && (this.req.data=owner))
then /* audit the request */ ; this.acct.granted(new ReqC<ApproveBal>(this.req.data))
else this.acct.denied() }

} [θ5]

In checkBalance, θ4 establishes the safety of creating the ReqC, whereas θ5 establishes
the safety of creating theMonitorCellV.
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4 Conclusion

TAPIDO is designed to counter the claim that “an application can be mashup-friendly
or it can be secure, but it cannot be both.” Our model of dynamics adds only two non-
standard features, namely (a) the ability to detect the creator location, and (b) integrity
of remote method invocation. We have shown that this suffices to code useful tracking
of the provenance of an object reference. Our type system adds (polymorphic) object
level effects to standard types. From a programming point of view, this style allows
trust-based decisions that are validated by the policy context of the application.
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A Background: Authorization Logics

We refer the reader to [11,10] for the intuitions underlying authorization logics. Our
presentation satisfies more commutativity properties than [11] in the proof theory. In
comparison to [10], we have no second-order quantifiers. This background section is
drawn from our earlier paper [15].

The formulas are given by the following grammar: for expository purposes, we only
consider conjunction & and implication !.

α,β ::= true | α&β | α!β | A says α

A says α connects the calculus of principals to the logic: this is the quoting combinator
of the logic and is related to the quoting combinator of the lattice by defining A |B saysα
to be A says B says α .

We describe Hilbert-style axioms, inspired by those for propositional lax logic [43],
to describe the tautologies. We first define B-protected formulas [10,44]. Informally,
if there is a proof of a B-protected formula, then there is one that does not require
statements of principals that are more trustworthy than B.

Definition 1. The class of B-protected formulas is defined inductively as follows: (a) true
is B-protected. (b) A says α is B-protected if either α is B-protected. (c) α &β (resp.
α!β ) is B-protected if α and β (resp. β ) are B-protected.

In concordance with the informal intuitions, the following axiom system satisfies the
property that if a formula is B-protected and A⇒B, then the formula is also A-protected.

B! . . .
α! (A!α)
) α ) α ′

true *→ true
p *→ p
A says α *→ A!α ′

α&β *→ α ′&β ′
α!β *→ α ′!β ′

A says α!α
B says α
true
(α \A)′ = α ′[A *→⊥]
If ) α then ) α \A
If ) α!β and β is B-protected, then ) (B says α)!β
If α ′! (A!β ′) then (A!α ′)! (A!β ′)

Definition 2. The axioms of authorization logic () α) are as follows.

(a) Propositional validity: If α is an instance of a intuitionist propositional tautology,
then ) α .

(b) Modus Ponens: If ) α and ) α!β , then ) β .
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(c) Modality-Unit: If ) α , then ) A says α
(d) Modality-Mult: If ) α&α ′!β and β is B-protected, then ) (B says α)&α ′!β .

Following [10], examples of provable theorems are (a) Order Naturality: if ) A says α
and A⇒B, then B saysα; (b) Reflexivity: A says A saysα↔ A saysα; (c) Commutativ-
ity: A says B says α↔ B says A says α; and (d) Extensivity: A says α!B says A says α .

Remark 1. The primary use of principals in the logic is via the quoting formulas con-
structed with says. So, it is conceptually consistent to assume that properties (b)–(d) are
reflected back into the security lattice, i.e., | is reflexive, commutative, and extensive.

Extended Datalog. We describe a variant of Datalog extended to work over the au-
thorization logic. In this discussion, for concreteness, we focus on extending positive
Datalog— the same development works for more expressive fragments such as positive
disjunctive Datalog [45].

As with regular Datalog, a program will be built from a set of Horn clauses without
function symbols. In contrast to regular Datalog, the literals can also be in the form of
quotes of principals.

The well-formed user predicates are typed and of fixed arity. They are always in-
stantiated with pure terms in a type-respecting fashion. We will use binary predicates
for quoting and equality, written respectively as A says φ and V =W . (We make liberal
use of syntax sugar, more generally writing M =N.) The pieces of logic that occur in a
program are extended Datalog programs that use such predicates.

We assume that the Datalog programs always contain the axioms required for = to be
an equivalence, e.g. the clause for reflexivity is x= x:-; and congruence for each predi-
cate in the program, e.g. for every 1-ary predicate γ , there is a clause γ(x):-γ(y),x=y
as part of the Datalog program. We account for the logic variables by closing up the
source program under all type-valid substitutions of predicates for logic variables.

Despite this extra generality, the extended formalism has decidable clause inference
following [15] by a translation of extended Datalog into Datalog that is sound and
complete for the inference of ground literals.

B Elided Definitions

We present several definitions elided from the main text.

Term Evaluation (Context Rules)
M→M′

b[M]→ b[M′]
N→ N′

let x=N;M→ let x=N′;M
M ≡ N→ N′ ≡M′

M→M′

M→M′

M ||
-N→M′ ||-N

N→ N′

M ||
-N→M ||

-N′
M→M′

(ν p)M→ (ν p)M′

Fix a global class table #DDD . The fields and method lookup functions are standard.
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Field Lookup (fields(C) =#µ #T#f)

fields(Object) = ·

#DDD - class c<#α>$D{#µ #T#f; · · ·}
fields(D[#α := #φ ]) =#µD #TD#fD
fields(c<#φ>) =#µD #TD#fD,(#µ #T#f)[#α := #φ ]

Method Lookup (body(C.") = <#β : #Q>S(#T #x){M})

#DDD - class c<#α :#P>$D{ · · ·<#β : #Q>S "(#T #x){M} · · ·}

body(c<#φ>.") = (<#β : #Q>S(#T #x){M})[#α := #φ ]
#DDD - class c<#α :#P>$D{ · · · #M } " not defined in #M

body(D[#α := #φ ].") = <#β : #Q>S(#T #x){M}

body(c<#φ>.") = <#β : #Q>S(#T #x){M}

The typing system additionally uses a related function for predicate lookup, as well
as a standard notion of well formed overriding. Recall that “θD ∧ θ [#α := #φ ]” is sugar
for “let x=θD; let y=θ [#α := #φ ];x ∧ y”.

Predicate Lookup (effect(C) = θ)

effect(Object) = true

#DDD - class c<#α :#P>$D{ · · ·}[θ]
effect(D[#α := #φ ]) = θD
effect(c<#φ>) = θD ∧ θ [#α := #φ ]

Well Formed Overriding () <#β : #Q>S(#T) can override D.")

body(D.") not defined
) <#β : #Q>S(#T) can override D."

body(D.") = <#β : #Q>S(#T)
) S′ <: S
) <#β : #Q>S′(#T) can override D."

We now define a canonical form for terms up to structural equivalence. Let simple
terms be defined as follows.

L ::= new c<#φ>(#V) | V."<#φ>(#W) | V.f | V.loc | V.f :=W
| if V =W thenM else N | let x=a[L];M | let x=V;M

N ::= new c<#φ>(#V) | V."<#φ>(#W) | V.f | V.loc | V.f :=W
| if V =W thenM else N | let x=N;M | let x=V;M
| p:c{#f =#V}

Proposition 1. For any term M there exists M ≡ (ν#p:#C)(W1 ||- · · · ||-W" ||
-
N1 ||

- · · · ||-

Nm||
-b1[L1]||- · · ·||-bn[Ln]||-M′) such that M′ has the formV or L or a[N]; moreover,

M′ is unique.
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right(M)
!
=











V ′ ifM ≡ (ν#p:#C)(#W ||
-#N||

-#b[#L]||-V ′)
N′ ifM ≡ (ν#p:#C)(#W ||

-#N||
-#b[#L]||-N′)

a[L′] ifM ≡ (ν#p:#C)(#W ||
-#N||

-#b[#L]||-a[L′])

C Types

We now describe typing. To shorten some definitions, we define a category of identi-
fiers, which include bound names and atomic principals.

Syntax
η ::= Identifiersx | p | a | α

Δ ::= Environments· | Δ ,η :T | Δ ,φ | Δ ,V =M
Φ ::= · | Φ ,φ | Φ ,V =M Logic Environments

Environments have two types of data: type bindings for names (as usual) and logical
phrases, including equalities and predicates.

In our initial presentation, we will not be specific about the form of the logics.
Specific requirements are given before the theorems, below, and we sketch an example
logic afterwords.

In addition to the usual notion of values (i.e., no further reductions possible), the
type system also formalizes “purity” annotations: Pure terms are are guaranteed to con-
verge to a value without mutating the heap. An example of a pure term that is not a
value is V.loc.

Pure terms are used to formalize well-formed types.

Well Formed Type (Δ )T )

Δ ) Unit Δ ) Prin Δ ) Object< ·>

#DDD - class c<#α :#P> Δ ) #φ : #P
Δ ) c<#φ>

Δ ) #T

Δ ) Pred( #T )

Note that Proc is not well formed, and thus cannot appear in an environment. The
key new case in the above table is that for classes. The purity condition in this definition
ensures that all the free names in #φ that are not bound in Δ are (hereditarily) immutable.

Subtyping ()T ′ <:T )

)T <:T
)T ′ <:T ′′ )T ′′ <:T
)T ′ <:T

)C <: Object< ·>
#DDD - class c<#α>$D
) c<#φ><: D[#α := #φ ]

#DDD - class c<#α> #φ " #ψ |#α|= |#φ |= |#ψ|

) c<#φ><: c<#ψ>

Subtyping is reflexive and transitive. As usual, the declared inheritances give rise to
subtyping, as does the implication of the effects for the same base class. Subtyping is
preserved by substitutions for the logic variables. Define dom(Δ) = {η | η :T ∈ Δ}.
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Well Formed Environment (Δ ;Σ ) .)
Δ - x :T implies T = Pred or (∃T ) T = T and Δ ) T
Δ - p :T implies (∃C) T =C and Δ )C
Δ - a :T implies T = Prin
Δ - α :T implies (∃P) T = P and Δ ) P
Δ -V =M implies (∃T ) Δ )V : T and Δ ;Σ )a M : T Pure

Δ - p :T implies (∃H)Σ - H and H = p:c{#f =#V}
Σ - H implies Δ ;Σ )a H : Proc Pure
each element in dom(Δ) appears exactly once
Δ ;Σ ) .

The function heap takes a term and returns its collection of heap elements, Σ . The
function env likewise returns the collections of declarations, Δ .

Env (env(M) = Δ)

env(let x=N;M) = env(N)
env(N ||

-M) = env(N),env(M)
env(b[M]) = env(M)
env((ν p:C)M) = p :C,env(M)
env(M) = · Otherwise

Heap (heap(M) = Σ)

heap(p:c{#f =#V}) = p:c{#f =#V}
heap(let x=N;M) = heap(N)
heap(N ||

-M) = heap(N),heap(M)
heap(a[M]) = heap(M)
heap((ν p:C)M) = heap(M)
heap(M) = · Otherwise

Definition 3. Σ ||
-θ ⇓ φ is defined to mean Σ ||

-θ →∗ Σ ||
-φ '→.

The function clauses function takes an environment Δ and returns a logic environ-
ment Φ . The key cases extract effects from a declaration. For example:

clausesa[p:c{#f=#V}](p :C) = a says (effect(C))[this := x]

As expected, the extracted effects are relativized with respect to the location of the
object.

Clauses (clausesΣ (Δ) =Φ)

clausesΣ ( · ) = ·
clausesΣ (Δ ,x :C) = clausesΣ (Δ),x.loc says (effect(C))[this := x]
clausesΣ (Δ , p :C) = clausesΣ (Δ),V says (effect(C))[this := p] where Σ ||

- p.loc ⇓V
clausesΣ (Δ ,η :T ) = clausesΣ (Δ) T not a class type
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clausesΣ (Δ ,V =M) = clausesΣ (Δ),V =W where Σ ||
-M ⇓W

clausesΣ (Δ ,φ) = clausesΣ (Δ),φ

Well Formed Values (Δ )V :T )

Δ ) unit : Unit
Δ - x :T
Δ ) x : T

Δ - p :T
Δ ) p : T

Δ - a :Prin
Δ ) a : Prin

Δ - α :Pred( #T )

Δ ) α : Pred( #T )

arity(γ) = #T

Δ ) γ : Pred( #T )

Δ ) φ : Pred( #T ) Δ )#V : #T

Δ ) φ(#V) : Pred

Well Formed Terms (Δ ;Σ )a M :T ρ) (ρ ::= Pure | Impure)

Δ )V :T
Δ ;Σ )a V :T ρ

Δ\p;Σ ) . Δ ) p : c<#φ> fields(c) =#µ #T#f Δ )#V : #T ′ ) #T ′ <: #T
Δ ;Σ )a p:c{#f =#V} : Proc ρ

Δ ;Σ ) . Δ )V :C fields(C) =#µ #T#f µi = final

Δ ;Σ )a V.f i : Ti ρ
Δ ;Σ ) . Δ )V :C
Δ ;Σ )a V.loc : Prin ρ

Δ ;Σ ) . Δ )V : T Δ )W : S Δ ,V =W ;Σ )a M :T ′ ρ Δ ;Σ )a N :T ρ )T ′ <:T
Δ ;Σ )a if V =W thenM else N :T ρ

Δ ;Σ ) . Δ )V : T Δ )W : S Δ ,V =W ;Σ )a M :T ρ Δ ;Σ )a N :T ′ ρ )T ′ <:T
Δ ;Σ )a if V =W thenM else N :T ρ

Δ ;Σ )a N : T ρ Δ ,env(N);Σ ,heap(N) )a N′ : T Pure
Δ ,env(N),x :T,x=N′;Σ ,heap(N) )a M :T ρ right(N) = N′

Δ ;Σ )a let x=N;M :T ρ

Δ ) b : Prin Δ ;Σ )b M :T ρ
Δ ;Σ )a b[M] :T ρ

Δ , p :C;Σ )a M :T ρ
Δ ;Σ )a (ν p:C)M :T ρ

Δ ,env(M);Σ ,heap(M) )a N :S ρ
Δ ,env(N);Σ ,heap(N) )a M :T ρ
fn(N ||

-M)⊆ dom(Δ)
Δ ;Σ )a N ||

-M :T ρ

In the rule for discharging conditionals, a predicate is added into the environment.
We will discuss well-formed predicates later. In the rule for let, the equations are added
to the typing environment only if the term N is pure.

The rule for located terms causes the expected switch of principal in the type judge-
ment. The rules for new scoped object references and heap objects is as expected.

The rule for concurrent composition reflects the ideas from conjoining specifica-
tions of concurrent systems [46] — each component can assume the information ex-
posed by the other component. The accumulation of effects from parallel components
will aid in discharging the proof obligations that will be discussed in the forthcoming
constructor and expectation rules.
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Well Formed Terms (continued)
Δ ;Σ )a N : T Impure Δ ,env(N),x :T ;Σ ,heap(N) )a M :T ρ
Δ ;Σ )a let x=N;M :T Impure

Δ ;Σ ) . Δ ) c<#φ>
fields(c<#φ>) =#µ #T#f Δ )#V : #T ′ ) #T ′ <: #T
effect(c<#φ>) = θ (Σ ||

-a[p:c<#φ>{#V}])||-θ [this := p] ⇓ ψ
clausesΣ (Δ) " a says ψ p /∈ fn(θ)
Δ ;Σ )a new c<#φ>(#V) : c<#φ> Impure

Δ ;Σ ) . Δ )V :C body(C.") = <#β : #Q>S(#T)
Δ ) #φ : #Q Δ ) #W : #T ′ ) #T ′ <: #T [#β := #φ ]
Δ ,x :S[#β := #φ ],b :Prin,b=V.loc,Prov(x,b,a);Σ )a M :T ρ b '∈ fn(M,T )

Δ ;Σ )a let x=V."<#φ>(#W);M :T Impure

Δ ;Σ ) . Δ )V :C fields(C) =#µ #T#f
Δ ;Σ )a V.f i : Ti Impure

Δ ;Σ ) . Δ )V :C fields(C) =#µ #T#f µi =mutable Δ )W : T ′ ) T ′ <: Ti
Δ ;Σ )a V.f i :=W : Unit Impure

The constructor rule is a key rule in our system. The hypothesis for typing fields is
standard. The lookup of the effect obligation via effect(C) yields a conjunction of the
effects for this class and all its superclasses. Σ ||

-θ ⇓ φ is defined as Σ ||
-θ →∗ Σ ||

-φ '→
— this evaluation is guaranteed to terminate, and establishes the required bindings,
including those of the immutable fields of the newly constructed object, into the class
predicate that has been extracted. The actual proof obligation established is in the form
of the utterance of the principal at whom the object is located, so the effect carried by
an object is really uttered by its loc. The statements that can be used to discharge this
proof obligation are derived from the environment via clausesΣ (Δ) that accumulates
the benefits derivable from the objects declared in the environment and the equations
accumulated in the environment via lets and conditionals.

The rule for “generic” methods is standard, apart from the substitution of concrete
formulas for the logical variables being carried in the method definition. Similarly, field
gets and sets are standard.

The rule for statements ensures that the statement being made at location A is equiv-
alent to an utterance of A— a formal treatment of this point of authorization logics is
available in the background section on authorization logics in the appendix.

The last rule for expectations is the second place where proof obligations are estab-
lished in the system. The accumulation of statements in the environment via clausesΣ (Δ)
is as in the constructor case — the static expectation annotation itself specifies the proof
obligation.
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Well Formed Declaration (Δ )D) (Δ )M in c<#α :#P>$D)

Δ ,#α :#P ) D,#T Δ ,#α :#P, this : c<#α>; · ) θ : Pred Pure
fields(D) =#µD #TD#fD #fD disjoint#f
Δ ) #M in c<#α :#P>$D
Δ ) class c<#α :#P>$D{#µ #T#f; #M }[θ]

Δ ,#α :#P,#β : #Q ) S,#T
Δ ,#α :#P,#β : #Q,#x :#T ,caller :Prin, this : c<#α>,a :Prin,a= this.loc,Prov(#x,caller,a); · )a M : S′ ρ
) S′ <: S a /∈ fn(M)

) <#β>S(#T) can override D."
Δ ) <#β : #Q>S "(#T #x){M} in c<#α :#P>$D

Note that the effect on a class must be a pure term of type Pred. The rule for typing
methods uses a standard well-formed overriding definition. The typing of the method
body occurs in the context of an abstract principal a that is constrained to coincide
with the location of the ambient object. In typing the method body, one can use the
logical variables of the class and the method declaration, as well as the provenance of
the parameters, which is expressed using the predicate Prov. We write Prov(#x,caller,a)
as shorthand for Prov(x1,caller,a), . . . ,Prov(xn,caller,a).

Correspondingly, Prov also appears in the rule for typing method call to allow the
caller to use the provenance of the return value.

Results. We identify the properties required of the logic safety. These properties broadly
fall into the following categories. Firstly, the closure of inference under the structural
properties of exchange and weakening (so the underlying logic has to be affine and
commutative) and transitivity via cut3. Secondly, the equality predicate is substitutive
and closed wrt reduction. Finally, conditions on opponents.

Let the principal name “0” represents the most trustworthy principal, and “1” rep-
resents the least. We say that a logic is enforceable if the following properties hold. In
this definition, we use σ to stand for for substitutions of pure terms M for x.

1. φ " φ .
2. If Φ " ψ then Φ ,Φ ′ " ψ , for any Φ ′.
3. If Φ ,Φ ′,Φ ′ " ψ then Φ ,Φ ′ " ψ .
4. If Φ ,Φ ′,Φ ′′ " φ then Φ ,Φ ′′,Φ ′ " φ .
5. If Φ ,φ " ψ and Φ " φ then Φ " ψ .
6. If Φ " ψ then Φσ " ψσ , for any substitution σ from variables to values, or from
atomic principals to atomic principals.

7. If Φ ,V =V,Φ ′ " ψ then Φ ,Φ ′ " ψ .
8. If Φ ,η =V,Φ ′ " ψ then Φ ,Φ ′ " ψ[η :=V ].
9. Φ " 1 says ψ , for any Φ , ψ .

3 The type system does not require other logical connectives such as conjunction. If these were
present in the logic, their normal properties would have to be enforced by their usual rules.
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An opponent is any process located at the principal 1. From the final requirement, it
follows that opponents may utter any clause and are thus completely free to construct
any new objects.

Fix a class table #DDD . The class table is well formed if ) D , for every D in #DDD . The
concrete interpretation of the labelling functions and tag is enforceable if Δ ) V : T
and Δ ) A : Prin implies that Δ )V : T and Δ ) tag(A,V ) : T .

The following results suppose that the class table is well formed, that the underlying
logic is enforceable, and that the concrete interpretation of the labelling functions is
enforceable.

Theorem 1 (Preservation). Suppose that the class table is well formed with respect
to Δ . If Δ ; · )M and M→M′ then Δ ; · )M′.

Theorem 2 (Progress). Suppose #p:#C;Σ ) M. Then either right(M) is a value, or
(ν#p:#C)Σ ||

-M→M′ for some M′.

Definition 4 (Safety). A term M is safe if whenever M→∗≡ (ν#p:#C)a[new c(#φ)]||-
M′, either a= 1 or clausesheap(M′)(#p:#C,env(M′)) " effect(c<#φ>).

Corollary 1 (Safety). Suppose that #p:#C;Σ )M. Then (ν#p:#C)1[N]||-Σ ||
- a[M] is

safe for any N such that #p:#C;Σ ) 1[N].

Safety requires that any objects created by trustworthy processes have their effects jus-
tified by the accumulated effects. The effects of objects created by opponent processes
are not required to hold.

Our safety corollary ensures that well-typed trustworthy programs are safe when
combined with arbitrary (typed but untrustworthy) opponents.

D Proofs

In all proofs we assume that the underlying logic is enforceable. We also assume that
the class table #D is well formed.

Lemma 1 (Weakening). Suppose Δ ;Σ )a M : T Impure. Then Δ ,Δ ′;Σ ,Σ ′ )a M :
T Impure if Δ ,Δ ′;Σ ,Σ ′ ) ..

Proof. Follows from the standard argument and property 2 of the logic.

Lemma 2 (Exchange). Suppose Δ ,Δ ′,Δ ′′;Σ ,Σ ′,Σ ′′ )a M : T Impure, and fn(Δ ′′) ⊆
dom(Δ). Then Δ ,Δ ′′,Δ ′;Σ ,Σ ′′,Σ ′ )a M :T Impure.

Proof. Follows from the standard argument and property 4 of the logic.

Lemma 3 (Bounds Weakening). Suppose Δ ,x : S;Σ )a M : T ρ and ) S′ <: S. Then
Δ ,x :S′;Σ )a M : T ′ ρ where ) T ′ <: T .

Proof. By induction on the derivation of Δ ,x :S;Σ )a M : T ρ .
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Lemma 4 (Structural Equivalence Preservation by Substitution). Suppose M ≡ N.
Then M[x :=V ]≡ N[x :=V ].

Proof. By induction on the derivation of M ≡ N.

Lemma 5 (Type Preservation by Substitution of Locations). Suppose Δ ,b :
Prin,Δ ′;Σ )a M :T ρ and Δ ) b′ :Prin , where b,b′ '∈ fn(M,T ). Then Δ ,Δ ′[b := b′];Σ )a[b:=b′]
M :T ρ .

Proof. By induction on the derivation of Δ ,b :Prin,Δ ′;Σ )a M :T ρ .

Lemma 6 (Well-Formed Type Preservation by Substitution). Suppose Δ ,x :T,Δ ′ )
T and Δ )V : T . Then Δ ,Δ ′[x :=V ] )T [x :=V ].

Proof. By induction on the derivation of Δ ,x :T,Δ ′ )T .

Lemma 7 (Well-Formed Environment Preservation by Substitution). Suppose
Δ ,x :T,Δ ′;Σ ) . and Δ )V : T . Then Δ ,Δ ′[x :=V ];Σ ) ..

Proof. By induction on the derivation of Δ ,x :T,Δ ′;Σ ) ., appealing to Lemma 6.

Lemma 8 (Subtype Preservation by Substitution). Suppose ) T ′ <: T . Then )
T ′[x :=V ]<: T [x :=V ] for any x,V.

Proof. By induction on the derivation of ) T <: T ′, appealing to property 6 of the
logic.

Lemma 9. Suppose body(C.") = <#β : #Q>S(#T #x){M}. Then body(C[x :=V ].") =
(<#β : #Q>S(#T #x){M})[x :=V ].

Proof. Follows directly from the definition of body.

Lemma 10. Suppose body(C.") = <#β :#Q>S(#T #x){M}. Then Δ ,#β :#Q,caller :Prin, this :
C,#x :#T ;Σ )a M : S Impure for any Δ ,Σ ,a where Δ ;Σ ) . and a '∈ fn(M).

Lemma 11. Suppose Δ ,env(N);Σ ,heap(N) )a M : T Impure and N → N′ for some
M,N,a,T . Then Δ ,env(N′);Σ ,heap(N′) )a M :T Impure.

Proof. By induction on the derivation of N → N′. All cases are easy, appealing to
weakening.

Lemma 12. Suppose Δ ,V =V ;Σ )a M :T Impure. Then Δ ;Σ )a M :T Impure.

Proof. By induction on the derivation of Δ ,x :T,x= right(N);Σ )a M : T Impure. The
only case that is affected is the case for new, which follows directly from property 8 of
the logic.

Lemma 13. Suppose Δ ,V =N,Δ ′;Σ )b M : T ρ , and Σ ||
-N → Σ ||

-N′, for some N′.
Then Δ ,V =N′,Δ ′;Σ )b M :T ρ .

Proof. By induction on the derivation of Δ ,V =N,Δ ′;Σ )b M : T ρ . The only case that
is affected is the case for new, which follows from the basic properties of convergence.
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Lemma 14. Suppose Δ ,x :T,x = right(N);Σ )a M : T ρ , and Δ ;Σ )a N : T Pure, and
N→ N′ for some N′. Then Δ ,x :T,x= right(N′);Σ )a M :T ρ .

Proof. By induction on the derivation of Δ ,x :T,x = right(N);Σ )a M : T ρ . The only
case that is affected is the case for new, which follows from the basic properties of
convergence.

Theorem 3 (Type Preservation by Structural Equivalence). Suppose Δ ;Σ )b M :
T ρ and M ≡M′. Then Δ ;Σ )b M′ :T ρ .

Proof. By induction on the derivation of M ≡M′.

Case (M ||
-N)||-L≡M ||

- (N ||
-L)

(−→)
Assume Δ ;Σ )b (M ||

-N)||-L :T ρ .
By the type rule, Δ ,env(L);Σ ,heap(L) )b M ||

-N :T ′ ρ ,
and, Δ ,env(M),env(N);Σ ,heap(M),heap(N) )b L :T ρ .

By the type rule, Δ ,env(L),env(N);Σ ,heap(L),heap(N) )b M :T ′′ ρ ,
and, Δ ,env(L),env(M);Σ ,heap(L),heap(M) )b N :T ′ ρ .

By Lemma 2, Δ ,env(M),env(L);Σ ,heap(M),heap(L) )b N :T ′ ρ .
By the type rule, Δ ,env(M);Σ ,heap(M) )b N ||

-L :T ρ .
By the type rule, Δ ;Σ )b M ||

- (N ||
-L) :T ρ .

(←−)
Similar argument.

Case (M ||
-N)||-L≡ (N ||

-M)||-L
The left and right cases are symmetric.
Assume Δ ;Σ )b (M ||

-N)||-L :T ρ .
By the type rule, Δ ,env(L);Σ ,heap(L) )b M ||

-N :T ′ ρ ,
and, Δ ,env(M),env(N);Σ ,heap(M),heap(N) )b L :T ρ .

By Lemma 2, Δ ,env(N),env(M);Σ ,heap(N),heap(M) )b L :T ρ .
By the type rule, Δ ,env(L),env(N);Σ ,heap(L),heap(N) )b M :T ′′ ρ ,
and, Δ ,env(L),env(M);Σ ,heap(L),heap(M) )b N :T ′ ρ .

By the type rule, Δ ,env(L);Σ ,heap(L) )b N ||
-M :T ′′ ρ .

By the type rule, Δ ;Σ )b (N ||
-M)||-L :T ρ .

CaseM ||
- ((ν p:C)N)≡ (ν p)(M ||

-N)
(−→)
Assume Δ ;Σ )b M ||

- ((ν p)N) :T ρ .
By the type rule, Δ , p:C,env(N);Σ ,heap(N) )b M :T ′ ρ ,
and, Δ ,env(M);Σ ,heap(M) )b (ν p:C)N :T ρ .

By the type rule, Δ ,env(M), p:C;Σ ,heap(M) )b N :T ρ .
By Lemma 2, Δ , p:C,env(M);Σ ,heap(M) )b N :T ρ .
By the type rule, Δ , p:C;Σ )b M ||

-N :T ρ .
By the type rule, Δ ;Σ )b (ν p:C)M ||

-N :T ρ .
(←−)
Similar argument, in reverse.

Case let x= (L||-N);M ≡ L||- (let x=N;M)
(−→)
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There are two matching type rules; we consider each separately.
(i) Assume Δ ;Σ )b let x= (L||-N);M :T ρ by the first rule.
By the type rule, Δ ;Σ )b L||-N : T ′ ρ ,
and, Δ ,env(N);Σ ,heap(N) )b N′ : T ′ Pure,
and, ) T ′ <: T ,
and, right(L||-N) = N′,
and, Δ ,env(L),env(N),x:T ,x=N′;Σ ,heap(L),heap(N) )b M :T Impure.

By the type rule, Δ ,env(N) ) L :T ′ ρ ,
and, Δ ,env(L) ) N : T ρ .

By the type rule, Δ ,env(L);Σ ,heap(L) )b let x=N;M :T ρ .
By the type rule, Δ ;Σ )b L||- (let x=N;M) :T ρ .
(ii) Assume Δ ;Σ )b let x= (L||-N);M :T ρ by the second rule.
By the type rule, Δ ;Σ )b L||-N : T ρ ,
and, Δ ,env(L),env(N),x:T ;Σ ,heap(L),heap(N) )b M :T ρ .

By the type rule, Δ ,env(N);Σ ,heap(N) )b L :T ′ ρ ,
and, Δ ,env(L);Σ ,heap(L) )b N : T ρ .

By the type rule, Δ ,env(L);Σ ,heap(L) )b let x=N;M :T ρ .
By the type rule, Δ ;Σ )b L||- : let x=N;M ρT .
(←−)
Assume Δ ;Σ )b L||- (let x=N;M) :T ρ .
By the type rule, Δ ,env(N);Σ ,heap(N) )b L :T ′ ρ ,
and, Δ ,env(L);Σ ,heap(L) )b let x=N;M :T ρ .

There are two matching type rules; we consider each separately.
(i) Assume Δ ,env(L);Σ ,heap(L) )b let x=N;M :T ρ by the first.
By the type rule, Δ ,env(L);Σ ,heap(L) )b N : T ′ ρ ,
and, Δ ,env(L);Σ ,heap(L) )b N′ : T ′ Pure,
and, ) T ′ <: T ,
and, Δ ,env(L),env(N),x :T,x=N′;Σ ,heap(L),heap(N) )b M :T Pure,
and, right(N) = N′.

By the type rule, Δ ;Σ )b (L||-N) : T ′ ρ .
From def. of right, it is easy to see that right(L||-N) = N′.
By the type rule, Δ ;Σ )b let x= (L||-N);M :T ρ .
(ii) Assume Δ ,env(L);Σ ,heap(L) )b let x=N;M :T ρ by the second.
By the type rule, Δ ,env(L);Σ ,heap(L) )b N : T ′ ρ ,
and ) T ′ <: T ,
and Δ ,env(L),env(N),x :T ;Σ ,heap(L),heap(N) )b M :T ρ .

By the type rule, Δ ;Σ )b N : T ′ ρ .
By the type rule, Δ ;Σ )b let T = (L||-N);M :T ρ .

Case let x= ((ν p:C)N);M ≡ (ν p:C)(let x=N;M)
By hypothesis, p '∈ fn(M).
(−→)
There are two matching type rules; we consider each separately.
(i) Assume Δ ;Σ )b let x= ((ν p:C)N);M :T ρ by the first rule.
By the type rule, Δ ;Σ )b (ν p:C)N : T ′ ρ ,
and Δ , p :C,env(N);Σ ,heap(N) )b N′ : T ′ Pure,
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and ) T ′ <: T ,
and right((ν p:C)N) = N′,
and Δ , p :C,env(N),x :T,x=N′;Σ ,heap(N) )b M :T ρ .

By def. right(N) = N′.
By the type rule, Δ , p :C;Σ )b let x=N;M :T ρ .
By the type rule, Δ ;Σ )b (ν p:C)(let x=N;M) :T ρ .
(ii) Assume Δ ;Σ )b let x= ((ν p:C)N);M :T ρ by the second rule.
By the type rule, Δ ;Σ )b (ν p:C)N : T ′ ρ ,
and ) T ′ <: T ,
and, Δ , p:C,env(N),x:T ;Σ ,heap(N) )b M :T ρ .

By the type rule, Δ , p:C;Σ )b N : T ′ ρ .
By the type rule, Δ , p:C;Σ )b let x=N;M :T ρ .
By the type rule, Δ ;Σ )b (ν p:C)(let x=N;M) :T ρ .
(←−)
Assume Δ ;Σ )b (ν p:C)(let x=N;M) :T ρ .
By the type rule, Δ , p :C;Σ )b let x=N;M :T ρ .
There are two matching type rules; we consider each separately.
(i) Assume Δ , p :C;Σ )b let x=N;M :T ρ by the first rule.
By the type rule, Δ , p :C;Σ )b N : T ′ ρ ,
and, Δ , p :C,env(N);Σ ,heap(N) )b N′ : T ′ Pure,
and, ) T ′ <: T ,
and, Δ , p :C,env(N),x :T,x=N′;Σ ,heap(N) )b M :T ρ ,
and, right(N) = N′.

By the type rule, Δ ;Σ )b (ν p:C)N : T ′ ρ .
From the def. right((ν p:C)N) = N′.
By the type rule, Δ ;Σ )b let x= ((ν p:C)N);M :T ρ .
(ii) Assume Δ , p :C;Σ )b let x=N;M :T ρ by the second rule.
By the type rule, Δ , p :C;Σ )b N : T ′ ρ ,
and, ) T ′ <: T ,
and, Δ , p :C,env(N),x :T ;Σ ,heap(N) )b M :T ρ .

By the type rule, Δ ;Σ )b (ν p:C)N : T ′ ρ .
By the type rule, Δ ;Σ )b let x= ((ν p:C)N);M :T ρ .

Case a[V]≡V
(−→)
Assume Δ ;Σ )b a[V] :T ρ .
By the type rule, Δ ) a : Prin ,
and, Δ ;Σ )a V :T ρ .

By the type rule, Δ )V :T .
By the type rule, Δ )V :T Pure.
By the type rule, Δ ;Σ )b V :T ρ .
(←−)
Immediate from type rule.

Case a[N ||
-M]≡ a[N]||-a[M]

(−→)
Assume Σ ;Δ )b a[N ||

-M] :T ρ .
By the type rule, Δ ) a : Prin ,
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and, Δ ;Σ )a N ||
-M :T ρ .

By the type rule, Δ ,env(M);Σ ,heap(M) )a N :T ′ ρ ,
and, Δ ,env(N);Σ ,heap(N) )a M :T ρ .

By the type rule, Δ ,env(M);Σ ,heap(M) )b a[N] :T ′ ρ ,
and, Δ ,env(N);Σ ,heap(N) )b a[M] :T ρ .

By the type rule, Δ ;Σ )b a[N]||-a[M] :T ρ .
(←−)
Same argument in reverse.

Case a[(ν p:C)N]≡ (ν p:C)a[N]
(−→)
Assume Δ ;Σ )b a[(ν p:C)N] :T ρ .
By the type rule, Δ ) a : Prin ,
and, Δ ;Σ )a (ν p:C)N :T ρ .

By the type rule, Δ , p:C;Σ )a N :T ρ .
By the type rule, Δ , p:C;Σ )b a[N] :T ρ .
By the type rule, Δ ;Σ )b (ν p:C)a[N] :T ρ .
(←−)
Same argument in reverse.

Case a[let x=N;M]≡ let x=a[N];a[M]

(−→)
Assume Δ ;Σ )b a[let x=N;M] :T ρ .
By the type rule, Δ ) a : Prin , and, Δ ;Σ )a let x=N;M :T Pure.
For the latter, there are two type rules that match.
If the first, then Δ ;Σ )b N : T ′ ρ ,
and, Δ ,env(N);Σ ,heap(N) )b N′ : T ′ Pure,
and, ) T ′ <: T ,
and, Δ ,x :T,x=N′;Σ )a M :T ρ , where N′ = right(N).

By the type rule, Δ ;Σ )b a[N] : T ′ ρ ,
and, Δ ,x :T,x=N;Σ )b a[M] :T ρ .

By the type rule, Δ ;Σ )b let x=a[N];a[M] :T ρ .
If the second, then Δ ;Σ )a N : T ′ ρ ,
and, ) T ′ <: T ,
and, Δ ,env(N),x :T ;Σ ,heap(M) )a M :T ρ .

By the type rule, Δ ;Σ )b a[N] : T ρ ,
and, Δ ,env(N)x :T ;Σ ,heap(M) )b a[M] :T ρ .

By the type rule, Δ ;Σ )b let x=a[N];a[M] :T ρ .
(←−)
Essentially the same argument in reverse.

Case a1[a2[M]]≡ a2[M]

(−→)
Assume Δ ;Σ )b a1[a2[M]] :T ρ .
By the type rule, Δ ) a1 : Prin ,
and, Δ ;Σ )a1 a2[M] :T ρ .

By the type rule, Δ ) a2 : Prin ,
and, Δ ;Σ )a2 M :T ρ .

By the type rule, Δ ;Σ )b a2[M] :T ρ .
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(←−)
Direct from type rule. !

Lemma 15 (Type Preservation by Substitution into Values). Suppose Δ ,x:T ,Δ ′ )
W : T , and Δ ) V : T ′ , and ) T ′ <: T . Then Δ ,Δ ′[x :=V ] )W [x :=V ] : T ′ where
)T ′ <:T [x :=V ].

Proof. By induction on the derivation of Δ ,x:T ,Δ ′ )W : T . All cases are easy, we
show one as an example.

Case φ(#W):
Assume Δ ,x :T,Δ ′ ) φ(#W) :T .
By the type rule, Δ ,x :T,Δ ′ ) φ : Pred( #T ) ,
and, Δ ,x :T,Δ ′ ) #W : #T .

By IH, Δ ,Δ ′[x :=V ] ) φ [x :=V ] : Pred( #T )[x :=V ] ,
and, Δ ,Δ ′[x :=V ] ) #W [x :=V ] : #T [x :=V ] .

By the type rule, Δ ,Δ ′[x :=V ] ) φ [x :=V ](#W [x :=V ]) : Pred .

Lemma 16 (Pure Type Preservation by Substitution). Suppose Δ ,x:T ,Δ ′;Σ )a M :
T Pure, and Δ ) V : T ′ , and ) T ′ <: T . Then Δ ,Δ ′[x :=V ];Σ )a M[x :=V ] : T ′ Pure
where )T ′ <:T [x :=V ].

Proof. By induction on the derivation of Δ ,x:T ,Δ ′;Σ )a M : T Pure. All cases are
easy, we show one as an example.

Case p:c{#f = #W}:
Assume Δ ,x:T ,Δ ′;Σ )a p:c{#f = #W} : Proc Pure, and Δ )V : T ′ , and ) T ′ <: T .
By the type rule, Δ ,x:T ,Δ ′ ) p : c<#φ> ,
and, fields(c) =#µ #S#f ,
and, Δ ,x:T ,Δ ′ ) #W :#S′ ,
and, )#S′ <:#S.

By lemma 15, Δ ,Δ ′[x :=V ] ) p : S′′ where ) S′′ <: c<#φ>.
By the type rules and def. of well formed env, S′′ = c<#φ>.
By lemma 15, Δ ,Δ ′[x :=V ] ) #W [x :=V ] : #S′′ where )#S′′ <: #S′.
By the transitivity of subtyping, )#S′′ <:#S.
By the type rule, Δ ,Δ ′[x :=V ] ) p:c{#f = #W [x :=V ]} : Proc Pure. !

Lemma 17 (Pure Type Preservation by Evaluation). Suppose Δ ;Σ )b M : T Pure
and M→M′. Then Δ ;Σ )b M′ :T ′ Pure where )T ′ <:T .

Proof. By induction on the derivation of M→M′.

Case
(

a[p:c{#f =#V}]||-
p.f i

)

→

(

a[p:c{#f =#V}]||-
Vi

)

:

Assume Δ ;Σ )b a[p:c{#f =#V}]||- p.f i :T Pure.
By the type rule, T is of the form T ,
and, Δ ;Σ )b a[p:c{#f =#V}] :T ′ Pure,
and, Δ ;Σ ,a[p:c{#f =#V}] )b p.f i :T Pure,
and, fn(a[p:c{#f =#V}]||- p.f i)⊆ dom(Δ).
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By the type rule, Δ ) p:c{#f =#V} :T ′ Pure.
By the type rule, Δ ) p : c<#φ> ,
and, fields(c) =#µ #T#f ,
and, Δ )Vi : T ′i ,
and, ) T ′i <: Ti.

By the type rule, Δ )Vi : T ′i Pure.
By the type rule, Δ ) p :C ,
and, fields(C) =#µ ′′ #T ′′#f ′′,
and, µ ′i = final.

It is easy to see that C = c<#φ>,
therefore µi = final and T = T ′i .

Case
(

a[p:c{#f =#V}]||-
p.loc

)

→

(

a[p:c{#f =#V}]||-
a

)

:

Assume Δ ;Σ )b a[p:c{#f =#V}]||- p.loc :T Pure.
By def. of env, env(a[p:c{#f =#V}]) = ·,
and, env(p.loc) = ·.

By the type rule, T is of the form T ,
and, Δ ;Σ )b a[p:c{#f =#V}] :T ′ Pure,
and, Δ ;Σ ,a[p:c{#f =#V}] )b p.loc :T Pure,
and, fn(a[p:c{#f =#V}]||-a2[p.loc])⊆ dom(Δ).

By the type rule, T = Prin.
By the type rule, Δ ) a : Prin .
By the type rule, Δ ;Σ )a2 a :T Pure.
By the type rule, Δ ;Σ )b a[p:c{#f =#V}]||-a :T Pure.

Case if V =V thenM else N→M:
Assume Δ ;Σ )a if V =V thenM else N :T Pure.
By the type rule, Δ ,V =V ;Σ )a M :T Pure.
By lemma 12, Δ ;Σ )a M :T Pure.

Case if V =W thenM else N→ N:
By hypothesis, V '=W.
Assume Δ ;Σ )a if V =W thenM else N :T Pure.
By the type rule, Δ ;Σ )a N :T Pure.

Case let x=V;M→M[x :=V ]:
There are two matching type rules.
Assume Δ ;Σ )b let x=V;M :T Pure by the first rule.
By the type rule, Δ ;Σ )a V : T ′ Pure,
and, ) T ′ <: T ,
and, Δ ,x:T ,x=V ;Σ )a M :T Pure.
By Lemma 16, Δ ,V =V ;Σ )a M[x :=V ] :T ′ Pure, where )T ′ <:T .
By Lemma 12, Δ ;Σ )a M[x :=V ] :T ′ Pure.

Case b[M]→ b[M′]
By hypothesis, M→M′.
Assume Δ ;Σ )a b[M] :T Pure.
By the type rule, Δ ;Σ )b M :T Pure.
By the IH, Δ ;Σ )b M′ :T ′ Pure, where )T ′ <:T .
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By the type rule, Δ ;Σ )a b[M′] :T ′ Pure.
Case let x=N;M→ let x=N′;M

By hypothesis, N→ N′.
Assume Δ ;Σ )b let x=N;M :T Pure.
By the type rule, Δ ) N : T ′ Pure,
and, ) T ′ <: T ,
and, Δ ,x:T ,x= right(N);Σ )b M :T Pure.

By the IH, Δ ) N′ : T ′ Pure.
By Lemma 14, Δ ,x:T ,x= right(N′);Σ )b M :T Pure.
By type rule, Δ ;Σ )b let x=N′;M :T Pure.

CaseM→M′ (where M ≡ N→ N′ ≡M′)
Follows easily from induction hypothesis and Theorem 3.

CaseM ||
-N→M′ ||-N

By hypothesis, M→M′.
Assume that Δ ;Σ )a M ||

-N :T Pure.
By the type rule, Δ ,env(N);Σ ,heap(N) )a M :T ′ Pure,
and, Δ ,env(M);Σ ,heap(M) )a N :T Pure.

By IH, Δ ,env(N);Σ ,heap(N) )a M′ :T ′′ Pure, where )T ′′ <:T ′.
By Lemma 11, Δ ,env(M′);Σ ,heap(M′) )a N :T Pure.
By the type rule, Δ ;Σ )a M′ ||-N :T Pure.

CaseM ||
-N→M ||

-N′
By hypothesis, N→ N′.
Assume that Δ ;Σ )a M ||

-N :T Pure.
By the type rule, Δ ,env(N);Σ ,heap(N) )a M :T ′′ Pure,
and, Δ ,env(M);Σ ,heap(M) )a N :T Pure.

By IH, Δ ,env(M) ) N′ :T ′ Pure, where )T ′ <:T .
By Lemma 11, Δ ,env(N′) )M :T Pure.
By the type rule, Δ ;Σ )a M′ ||-N :T Pure.

Case (ν p)M→ (ν p)M′
Follows easily from induction hypothesis. !

Lemma 18. Suppose Δ ,x : T ;Σ )a M : Pred Pure and M → M′. Then M[x :=V ]→
M′[x :=V ] for any x,V.

Proof. By induction on the derivation of M→M′.

Case
(

b[p:c{f =V · · ·}]||-

p.f

)

→

(

b[p:c{f =V · · ·}]||-

V

)

:
Immediate.

Case let y=V;M→M[y :=V ]:
Immediate.

Case let y=N;M→ let y=N′;M
By hypothesis, N→ N′.
Assume Δ ,x :T ;Σ )b let y=N;M :T Pure, and Δ ;Σ )b V : T Pure.
By the type rule, Δ ,x :T ;Σ )b N : S′ Pure,
and, ) S′ <: S,
and, Δ ,x :T,y :S,y= right(N);Σ )b M :T Pure.
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By Lemma 16, Δ ;Σ )b N[x :=V ] : S′[x :=V ] Pure.
By Lemma 8, ) S′[x :=V ]<: S[x :=V ].
By IH, N[x :=V ]→ N′[x :=V ].
By the evaluation rule, let y=N[x :=V ];M[x :=V ]→ let y=N′[x :=V ];M[x :=V ].

CaseM→M′:
By hypothesis, M ≡ N→ N′ ≡M′.
Assume Δ ,x :T ;Σ )b M :T Pure, and Δ ;Σ )b V : T Pure.
By Theorem 4, Δ ;Σ )b N[x :=V ] :T Pure.
By IH, N[x :=V ]→ N′[x :=V ].
By Lemma 4, N′[x :=V ]≡M′[x :=V ].
By the evaluation rule, M[x :=V ]→M′[x :=V ].

CaseM ||
-N→M′ ||-N

By hypothesis, M→M′.
Assume that Δ ,x :T ;Σ )a M ||

-N :T Pure.
By the type rule, Δ ,x :T,env(N);Σ ,heap(N) )a M :T ′ Pure,
and, Δ ,x :T,env(M);Σ ,heap(M) )a N :T Pure.

By IH, M[x :=V ]→M′[x :=V ].
By the evaluation rule, M[x :=V ]||-N[x :=V ]→M′[x :=V ]||-N[x :=V ].

CaseM ||
-N→M ||

-N′
By hypothesis, N→ N′.
Assume that Δ ,x :T ;Σ )a M ||

-N :T Pure.
By the type rule, Δ ,x :T,env(N);Σ ,heap(N) )a M :T ′ Pure,
and, Δ ,env(M);Σ ,heap(M) )a N :T Pure.

By IH, N[x :=V ]→ N′[x :=V ].
By the evaluation rule, M[x :=V ]||-N[x :=V ]→M[x :=V ]||-N′[x :=V ].

Case (ν p)M→ (ν p)M′
Follows directly from induction hypothesis.

Lemma 19. Suppose effect(C) = θ and Σ ||
-θ ⇓ ψ . Then Σ ||

-θ [x :=V ] ⇓ ψ[x :=V ] for
any C,x,V.

Proof. A corollary of the previous lemma.

Theorem 4 (Type Preservation by Substitution). Suppose Δ ,x:T ,Δ ′;Σ )a M :
T Impure and Δ ) V : T . Then Δ ,Δ ′[x :=V ];Σ )a M[x :=V ] : T ′ Impure, where
)T ′ <:T [x :=V ].

Proof. By induction on the derivation of Δ ,x:T ,Δ ′;Σ )a M : T Impure. Cases in-
volving values and pure terms are by appeal to theorems 15 and 16. Cases involving
impure terms that have matching rules for pure terms follow the same logic, but with
the trivial addition of a store. The remaining cases for impure terms are shown here.

Case Δ ,x:T ,Δ ′;Σ )a new c<#φ>(#W) : c<#φ> Impure:
Assume Δ )V : T .
By the type rule, Δ ,x :T,Δ ′;Σ ) .,
and, Δ ,x :T,Δ ′ ) c<#φ>,
and, fields(c<#φ>) =#µ #T#f ,
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and, Δ ,x :T,Δ ′;Σ )a #W : #T ′ Impure,
and, ) #T ′ <: #T ,
and, effect(c<#φ>) = θ ,
and, (Σ ||

-a[p:c<#φ>{#V}])||-θ [this := p] ⇓ ψ ,
and, clauses(Δ ,x :T,Δ ′) " a says ψ .

By def. wfe., Δ ,Δ ′[x :=V ];Σ ) ..
By IH, Δ ,Δ ′[x :=V ] ) c<#φ>[x :=V ].
By def. of fields, fields(c<#φ>[x :=V ]) =#µ #T#f [x :=V ],
By IH, Δ ,Δ ′[x :=V ];Σ )a #W [x :=V ] : #T ′[x :=V ] Impure.
By Lemma 8, ) #T ′[x :=V ]<: #T [x :=V ].
From def. of effect,
it is easy to see that effect(c<#φ>[x :=V ]) = θ [x :=V ].

By Lemma 19,
(Σ ||

-a[p:c<#φ>{#V}])||-θ [this := p][x :=V ] ⇓ ψ[x :=V ].
By def. of clauses,
clauses(Δ),x.loc says θ [this := x],Δ ′ " a says ψ .

By property 6 of the logic,
clauses(Δ),V.loc says θ [this :=V ],Δ ′[x :=V ]

" a says ψ[x :=V ].
By def. of clauses,
clauses(Δ ,Δ ′[x :=V ]) " a says ψ[x :=V ].

By the type rule,
Δ ,Δ ′[x :=V ];Σ )a new c<#φ>(#W)[x :=V ] : Proc Impure.

Case let y=W."<#φ>(#W ′);M:
Assume Δ ,x:T ,Δ ′;Σ )a let y=W."<#φ>(#W ′);M :T Impure,
and, Δ )V : T .

By the type rule, Δ ,x:T ,Δ ′;Σ ) .,
and, Δ ,x:T ,Δ ′ )W :C ,
and, body(C.") = <#β : #Q>S(#T),
and, Δ ,x:T ,Δ ′ ) #φ : #Q ,
and, Δ ,x:T ,Δ ′ ) #W ′ : #T ′ ,
and, ) #T ′ <: #T [#β := #φ ],
and, Δ ,x:T ,Δ ′,x :S[#β := #φ ],b :Prin,b=W.loc,Prov(x,b,a);Σ )a M :T ρ .

By IH, Δ ,Δ ′[x :=V ] )W [x :=V ] :C[x :=V ] ,
and, Δ ,Δ ′[x :=V ] ) #φ [x :=V ] : #Q[x :=V ] ,
and, Δ ,Δ ′[x :=V ] ) #W ′[x :=V ] : #T ′[x :=V ] .

By Lemma 9, body(C[x :=V ].") = (<#β : #Q>S(#T))[x :=V ].
By the type rule,
Δ ,Δ ′[x :=V ];Σ )a let y=W [x :=V ]."<#φ [x :=V ]>(#W ′[x :=V ]);M[x :=V ] :T [x :=V ] Impure.

CaseW.f i:
Assume Δ ,x:T ,Δ ′;Σ )a W.f i :T Impure and Δ )V : T .
By the type rule, Δ ,x :T,Δ ′ )W :C ,
and, fields(C) =#µ #T#f ,
where T = Ti.

By the Lemma 15, Δ ,Δ ′[x :=V ] )W [x :=V ] :C[x :=V ] .
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From the def., fields(C[x :=V ]) =#µ #T [x :=V ]#f .
By the type rule, Δ ,Δ ′[x :=V ] )W [x :=V ].f i : Ti[x :=V ] Impure.

CaseW.f i :=W ′:
Assume Δ ,x:T ,Δ ′;Σ )#a W.f i :=W :T Impure, and Δ )V : T .
By the type rule, T = Unit, and, Δ ,x :T,Δ ′ )W :C ,
and, fields(C) =#µ #T#f ,
and, µi =mutable ,
and, Δ ,x :T,Δ ′ )W ′ : T ′i ,
and, ) T ′i <: Ti.

By Lemma 15, Δ ,Δ ′[x :=V ] )W [x :=V ] :C[x :=V ] .
From the def., fields(C[x :=V ]) =#µ #T [x :=V ]#f .
By Lemma 15, Δ ,Δ ′[x :=V ] )W ′[x :=V ] : T ′i [x :=V ] .
By Lemma 8, ) T ′i [x :=V ]<: Ti[x :=V ].
By the type rule, Δ ,Δ ′[x :=V ];Σ )a W [x :=V ].f i :=W ′[x :=V ] : Unit Impure. !

Theorem 5 (Type Preservation by Evaluation). Suppose Δ ;Σ )b M : T Impure and
M→M′. Then Δ ;Σ )b M′ :T Impure.

Proof. By induction on the derivation of M→M′. The pure term cases follow directly
from lemma 17 and the cases for impure terms that have matching type rules use the
same proofs as in lemma 17 but with the trivial addition of a store. The cases for the
remaining impure terms are shown here.

Case a[new c(#V)]→ (ν p)(a[p:c{#f =#V}]||-a[p]):
By hypothesis, fields(c) =#f and |#f |= |#V |.
Assume Δ ;Σ )b a[new c(#V)] :T Impure.
By the type rule, T has the form c<#φ> for some #φ ,
and, Δ ;Σ )a new c(#V) :T Impure.

By the type rule, Δ ;Σ ) .,
and, Δ ) c<#φ>,
and, fields(c<#φ>) =#µ #T#f ,
and, Δ ;Σ )a #V : #T ′ Impure,
and, ) #T ′ <: #T ,
and, effect(c<#φ>) = θ ,
and, Σ ||

-a[this:c{#f =#V}]||-θ ⇓ ψ ,
and, clauses(Δ) " a says ψ .

By the type rule, Δ , p:c<#φ>;Σ )a a[p:c{#f =#V}] : Proc Impure.
By the type rule, Δ , p:c<#φ> ) p : c<#φ> .
By the type rule, Δ , p:c<#φ>;Σ )a p : c<#φ> Impure.
By the type rule, Δ , p:c<#φ>;Σ )b a[p] : c<#φ> Impure.
By def. of env, env(a[p:c{#f =#V}]) = ·,
and, env(a[p]) = ·.

By def. of heap, heap(a[p:c{#f =#V}]) = a[p:c{#f =#V}],
and, heap(a[p]) = ·.

By weakening,
Δ , p:c<#φ>;Σ ,a[p:c{#f =#V}] )b a[p] : c<#φ> Impure.

By type rule, Δ , p:c<#φ>;Σ )b a[p:c{#f =#V}]||-a[p] :T Impure.
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By tp. rl., Δ ;Σ )b (ν p:T )(a[p:c{#f =#V}]||-a[p]) :T Impure.

Case
(

a1[p:c{#f =#V}]||-

a2[let y= p."<#φ>(#W);L]

)

→

(

a1[p:c{#f =#V}]||-
a2[let y=a1[M′];L′]

)

:

By hypothesis, body(c.") = <#β : #Q>S(#x :#T){M} where |#x|= |#V |,
and, M′ = Prov(#W ,a2,a1)||-M[caller := a2][this := p][#β := #φ ][#x := #W ],
and, L′ = Prov(y,a1,a2)||-L.

By Lemma 10, caller :Prin, this : c<#ψ>,#β : #Q,#x :#T ;Σ )M : S Impure,
where #β may be free in S and #β ,#x,caller and this may be free in M.

Assume Δ ;Σ )b a1[p:c{#f =#V}]||-a2[let y= p."<#φ>(#W);L] :T Impure.
By the type rule, Δ ;Σ )b a1[p:c{#f =#V}] :T ′ Impure,
and, Δ ;Σ ,a1[p:c{#f =#V}] )b a2[let y= p."<#φ>(#W);L] :T Impure.

By the type rule, Δ ) a2 : Prin ,
and, Δ ;Σ ,a1[p:c{#f =#V}] )a2 let y= p."<#φ>(#W);L :T Impure,
and, T = S[#β := #Q].

By the type rule, Δ ;Σ ) .,
and, Δ ) p : c<#ψ> ,
and, body(c.") = <#β : #Q>S(#x :#T){M},
and, Δ ) #φ : #Q ,
and, Δ ) #W : #T ′ ,
and, ) #T ′ <: #T [#β := #φ ],
and, Δ ,y :_,b :Prin,b= p.loc,Prov(y,b,a2);Σ ,a1[p:c{#f =#V}] )a2 L :T Impure,
where b '∈ fn(L,T ).

By the type rule, Δ ) Prov(#W ,a2,a1) : _ .
By the type rule, Δ ,y :_,a1 = p.loc ) Prov(y,a1,a2) : _ .
By substitution,
Δ ,y :_,a1 = p.loc,Prov(y,a1,a2);Σ ,a1[p:c{#f =#V}] )a2 L :T Impure.

By the type rule, Δ ,y :_,a1 = p.loc;Σ ,a1[p:c{#f =#V}] )a2 L′ :T Impure.
By Lemma 2, Δ ,a1 = p.loc,y :_;Σ ,a1[p:c{#f =#V}] )a2 L′ :T Impure.
By Lemma 13, Δ ,a1 =a1,y :_;Σ ,a1[p:c{#f =#V}] )a2 L′ :T Impure.
By Lemma 12, Δ ,y :_;Σ ,a1[p:c{#f =#V}] )a2 L′ :T Impure.
By substitution,
Δ ;Σ ,a1[p:c{#f =#V}] )a2 M[caller := a2][this := p][#β := #φ ][#x := #W ] : _ Impure.

By the type rule, Δ ;Σ ,a1[p:c{#f =#V}] )a2 M′ : _ Impure.
By the type rule,
Δ ;Σ ,a1[p:c{#f =#V}] )a2 let y=a1[M′];L′ :T Impure.

By the type rule,
Δ ;Σ ,a1[p:c{#f =#V}] )b a2[let y=a1[M′];L′] :T Impure.

By the type rule,
Δ ;Σ )b a1[p:c{#f =#V}]||-a2[let y=a1[M′];L′] :T Impure.

Case
(

a1[p:c{#f =#V}]||-
a2[p.f i :=W]

)

→

(

a1[p:c{#f =#V [Vi :=W ]}]||-

a2[unit]

)

:

Assume Δ ;Σ )b a1[p:c{#f =#V}]||-a2[p.f i :=W] :T Impure.
By def. of env, env(a1[p:c{#f =#V}]) = ·,
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and, env(a2[p.f i :=W]) = env(p.f i :=W ) = ·.
By def. of heap,
heap(a1[p:c{#f =#V}]) = a1[p:c{#f =#V}],
and, heap(a2[p.f i :=W]) = heap(p.f i :=W ) = ·.

By the type rule, T is of the form T ,
and, Δ ;Σ )b a1[p:c{#f =#V}] :T ′ Impure,
and, Δ ;Σ ,a1[p:c{#f =#V}] )b a2[p.f i :=W] :T Impure,
and, fn(a1[p:c{#f =#V}]||-a2[p.f i :=W])⊆ dom(Δ).

By the type rule, Δ ) p : c<#φ> ,
and, fields(c) =#µ #T#f ,
and, Δ )#V : #T .

By the type rule, Δ - p : c<#φ>.
By the type rule, Δ ;Σ ,a1[p:c{#f =#V}] )a2 p.f :=W :T Impure.
By the type rule, T = Unit,
and, Δ ) p :C ,
and, fields(C) =#µ ′ #T ′#f ′,
and, µ ′i =mutable ,
and, Δ )W : T ′′i ,
and, ) T ′′i <: T ′i .

It is easy to see that C = c<#φ>,
therefore, µi =mutable ,
and, ) T ′′i <: Ti.

By the type rule, Δ ;Σ )b a1[p:c{#f =#V [Vi :=W ]}] :T ′ Impure.
By the type rule, Δ ) unit :T .
By the type rule, Δ ;Σ ,a1[p:c{#f =#V [Vi :=W ]}] )a2 unit :T Impure.
By the type rule, Δ ;Σ ,a1[p:c{#f =#V [Vi :=W ]}] )b a2[unit] :T Impure.
By the type rule, Δ ;Σ )b a1[p:c{#f =#V [Vi :=W ]}]||-a2[unit] :T Impure. !

Theorem 6 (Progress). Suppose )M : T Impure. Then either M→N orM≡ (ν#p:#C)(M1||-
. . .||-Mn ||

-V ) where for all i, Mi is either a value or an inert process.

Proof. By Proposition 1 all terms are equivalent to a term in normal for, so we assume
w.l.o.g that M is in normal form. Suppose ) (ν#p:#C)(N ||

-M′) : T Impure where N =
(W1 ||- · · ·||-W" ||

-
N1 ||

- · · ·||-Nm ||
-b1[L1]||- · · ·||-bn[Ln]) and M′ is of the form V or N

or a[L]. We use Ni to denote the ith component of N. By the type rule, #p :#C ) N ||
-M′ :

T Impure. By the type rule, #p :#C;heap(N) )M′ : T Impure. We first show that either M
can evaluate, or M′ is a value by induction on the structure of M′:

Case V :
A value.

Case N:
Subcase new c<#φ>(#V):

Term can evaluate.
Subcases let y=V."<#φ>(#W);M | V.f | V.loc | V.f :=W :

By the type rules for each of these terms, #p :#C;heap(N) ) .,
and, #p :#C )V :C ,
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By the type rule, #p :#C -V :C.
By the rule for w.f.e., (∃H)heap(N) - H and H =V:c{#f = #W}.
From the def of heap, this can only be if (∃i)Ni =V:c{#f = #W}.
But then M would be able to evaluate.

Subcase if V =W thenM else N:
Term can evaluate.

Subcase let x=N;L:
By the structural rule and Theorem 3,

#p :#C ) let x= (N ||
-
N);L : T Impure.

By the structural rule,
) let x=(ν#p:#C)(N ||

-
N);L : T Impure.

By the type rule,
) (ν#p:#C)(N ||

-
N) : T Impure.

By IH, either N is a value, in which case the term can evaluate directly,
or (N ||

-
N) can evaluate, in which case it can evaluate by the context rule.

Subcase let x=V;M:
Term can evaluate.

Subcase p:c{#f =#V}:
Not applicable; cannot type as T .

Case a[L]:
All subcases are the same as for N modulo an application of a structural rule or a
context rule.

Now consider each Ni. The structural rules can be used to rewrite M as (ν#p:#C)(Mi ||-

Ni ||-M′) where Mi = (N1 ||- . . . ||-Ni−1 ||-Ni+1 ||- . . . ||-Nn−1). By the type rule, #p : #C )
Mi ||-Ni ||-M′ : T Impure. By the type rule, noting that the structure of M′ implies that
env(M′) = heap(M′) = /0, #p : #C;heap(Mi) ) Ni : T Impure. We now show that either
each Ni is a value or an inert process, or M can evaluate by induction on the structure
of Ni. All cases are essentially identical to the previous inductive proof, except that
p:c{#f =#V} is allowed because it is an inert processes. !

Definition 5 (Safety). Define let-contexts E as

E ::= [] | let x=E;M

A term M is safe if whenever

M→∗≡ (ν#p:#C)a[E[new c<#φ>(#V)]]||-M′

or
M→∗≡ (ν#p:#C)M′ ||-a[E[new c<#φ>(#V)]],

and effect(c<#φ>) = θ and heap(M′) = Σ and (Σ ||
-a[p:c<#φ>{#V}])||-θ [this := p] ⇓ ψ

(where p /∈ fn(θ)) then either clauses(#p:#C,env(M′)) " ψ or a= 1.

Corollary 2 (Safety). Suppose that #p:#C;Σ )a M : T Impure. Then (ν#p:#C)1[N] ||-
Σ ||

-a[M] is safe for any N,T such that #p:#C;Σ )1 N :T Impure.

Proof. A corollary of Theorem 5.


