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Abstract
We present a preliminary report on typing systems for polyadic
µABC, aspect oriented programming—pointcuts and advice—and
nothing else. Tuples of uninterpreted names are used to trigger ad-
vice. The resulting language is remarkably unstructured: the least
common denominator of the pi-calculus and Linda. As such, devel-
oping meaningful type systems is a substantial challenge.

Our work is guided by the translation of richly typed languages
into µABC, specifically function- and class-based languages aug-
mented with advice. The “impedance mismatch” between source
and target is severe, and this leads us to a novel treatment of types
in µABC.

1. Introduction
Research on the foundations of aspect-orientation has followed sev-
eral directions. Much work has found inspiration in functional lan-
guages (for example [4, 9]), whereas others have looked to objects
(for example [3]). These works follow the view that aspects trans-
form code from some underlying paradigm. In line with our prior
work, this paper follows a different route, attempting to understand
aspects, in so far as possible, in isolation.

By removing the underlying computational mechanisms, how-
ever, it is not clear what aspects are meant to advise. In µABC,
which we study here, aspects advise tuples of names, drawing in-
spiration from the pi calculus and coordination languages, such as
Linda. A surprisingly expressive computational model emerges, but
it is not without difficulties. In particular, the language is almost
shockingly unstructured, making any form of analysis seem rather
hopeless. Here we make a first attempt at redressing this situation.

µABC was introduced in [2] to study as aspects “as primitive
computational entities on par with objects, functions and horn-
clauses”. In that paper, we sketched an encoding of core minAML
[11, 9] into µABC, but did not provide a full translation. Indeed,
we observed that

µABC was deliberately designed to be a small calculus that
embodies the essential features of aspects. However, this
criterion makes µABC an inconvenient candidate to serve in
the role of a meta-language that is the target of translations
from “full-scale” aspect languages.
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Echoing this sentiment, Ligatti, Walker and Zdancewic [9] note that
“it is unclear what sort of type theory would be needed to establish
that [. . . ] translations [into µABC] are type-preserving.” Here, we
take the first steps at providing such a theory, in an attempt to bridge
the gap between the chaos of pure aspects and the relatively well-
behaved worlds of functions and objects.

As our point of departure, we use the polyadic version of µABC
introduced in [5]. In this variant, the events upon which advice
triggers are otherwise uninterpreted tuples of ordered names. When
modeling a functional language, the elements of the tuple may
represent the function and its arguments. When modeling an object
language, the elements instead may represent the source and target
of a message, along with the message name and arguments. µABC
itself imposes no interpretation.

When defining a pointcut in µABC, one must specify the arity
of the events (ie, the length of the tuples) upon which it will trig-
ger. One may treat all of the elements of the tuple as arguments—in
which case the pointcut will trigger on any event of that arity—or
one may fix some names in the pointcut so that the pointcut will
only trigger on events that include the same name in the corre-
sponding position. In addition, one may specify bounded match-
ing, so that any name ordered below the one specified will serve
to satisfy the pointcut. In this way µABC advice resembles tuple
matching Linda.

The chief insight of our work is that the ordering on names
suffices to encode simple type systems for function and object
languages, as long as one may impose some structure on names. By
systematically selecting bounds, and relating the bounds between
elements of a tuple, one may specify constraints on the tuple shapes
which are allowable. For example, one might require that if the first
element of a triple is a subname of int�int, then the second must
be a subname of int, and the third a subname of int-1. Here int,
int�int and int-1 are simply names, albeit with some structure.
One may view this as a protocol that imposes an interpretation on
subnames of int, int�int and int-1. Tuples that use such subnames
must satisfy requirements such as that stated above.

One would expect that the protocol used by a functional lan-
guage would be different than that of an object language, and again
from a logic language. µABC may be adapted to any system by
specifying both a structure on certain names (ie, those that corre-
spond to types) and a protocol for tuples that “match” them.

We are interested in discovering a general theory of such pro-
tocols and establishing its validity in µABC. As of yet, we have
not reached this ideal, but we have discovered some intermediate
results that may be of interest to the FOAL community.

As a first step toward full typing, we have specified a sorting
for µABC, in the flavor of sorting systems for the pi calculus. The
sorting is sufficient to guarantee that computation never terminates.
We believe that the sorting system is an important first step toward
developing a proper typing system; however, in terms of semantic



equivalence, sorting itself is clearly inadequate: all well-sorted
programs are indistinguishable! Being a continuation calculus, like
pi, there is no clear notion of value at which one might terminate.
Our vision of typing is that well-typed terms either nonterminate or
terminate on a tuple of a particular shape, allowing a richer notion
of equivalence based on barbed congruence [10]. However, we have
not yet developed the technical machinery to specify this.

Further, we have defined translations from function and class
based languages into well-sorted µABC and, to a certain extent,
established their correctness. We hesitate to say that we have proved
the correctness of these because the results are stated with respect
to a “structural congruence”. This is a problem for two reasons.

First, as noted above, we have not yet developed techniques to
specify that any structural congruence is “reasonable”. To establish
this requires a meaningful notion of semantic equivalence.

Second, the structural congruence presented here is defined, in
part, using the translation itself. This is clearly inadequate. As we
discuss in Section 4, the standard semantics of aspect-functional
languages [9, 8] specify that proceed substitutions are performed
early, at the time of advice lookup; whereas µABC performs them
late, on demand. This creates technical difficulties relating the two
languages, which we believe are best solved by slowing down
proceed substitutions in the function language, for example by
using explicit substitutions [1]. We do not do this here, however,
and therefore introduce a questionable structural rule to solve the
problem.

The remainder of the paper proceeds as follows. In the next
section we review the syntax and operational semantics of µABC.
Section 3 presents the sorting system. In Section 4, we present
a λ -calculus with advice and its translation into µABC. Given
the caveats stated above, we demonstrate the correctness of the
translation. The following section does the same for a small object
language.

2. µABC
In this section we present the syntax and evaluation semantics
of polyadic µABC. We give some examples of evaluation here;
further examples can be found in Section 4.3.

We assume disjoint sets of names, ranged over by a–y and pro-
ceed names, ranged over by z. Names include int, self, Object as
well as the structured names used in Sections 4 and 5. Integers and
integer-valued expressions are also names, each a proper subname
of int. This treatment of integer-valued expressions simplifies ex-
amples. The syntax of µABC is as follows.

SYNTAX

U,V,S,T ::= Events· |U, â |U,a
P,Q ::= Pointcut Atoms· | P, â | P,x:s
A,B ::= Advice{z.P � M}

D,E ::= Declarations· | D;new a:s | D;adv A
M,N ::= Termscall〈U〉 | z〈U〉 | ~A〈U〉 | D;M

An event, U , is sequence event atoms, where “ · ” is the empty
sequence. Event atoms are either exact names, decorated with a
circumflex, or inexact names, which have no decoration.

A pointcut, P, is a sequence of pointcut atoms. Pointcut atoms
are either exact or inexact. The exact pointcut atom â matches only
the exact event atom â. The inexact pointcut atom x:s matches any
inexact event atoms whose name is a proper subname of name s. At
runtime x is bound to the matching name; for this reason we call it
a pointcut variable.

Advice has the form {z.P � M}, where z is a proceed variable,
P is a pointcut, and M is the body of the advice. The proceed
variable z and the pointcut variables in P are bound in M. We elide

the proceed variable when it does not occur free in the advice body,
writing simply {P � M}.

A declaration sequence, D, is a sequence of declarations. The
declaration new a:s declares name a as a fresh subname of s (s may
also be fresh, in which case a may only be matched exactly). The
declaration adv A declares advice A.

A term M may be prefixed with a declaration sequence D;M.
The new names declared in D are bound in M. We identify (D;E);
M with D;(E;M) and ·;M with M.

Each term has exactly one “current” event. A term consists of a
sequence of declarations, followed by the current event. Events are
marked either with a call, a proceed variable, or an advice sequence.
In ~A〈U〉, U is the current event and ~A is a sequence of pending
advice. Advice is executed right-to-left.

Example 1. Consider the advice

{z. f̂ ,x:int,y:int︸ ︷︷ ︸
Pointcut

� z〈f̂ ,y,x〉︸ ︷︷ ︸
Body

}.

This advice is triggered when the current event is a triple whose
first atom is exactly f̂ , and whose second and third atoms are both
inexact atoms whose names are subnames of int. When it executes,
it switches its second and third names, and proceeds on the new
event. Supposing that this is the most recently declared advice, the
term

call〈f̂ ,10,20︸ ︷︷ ︸
Current Event

〉

evaluates to
~B,{z.f̂ ,x:int,y:int � z〈f̂ ,y,x〉}〈f̂ ,10,20〉

where ~B is previously declared advice that triggers on the same
event. At this point the term evaluates to

~B〈f̂ ,20,10〉. 2

Example 2. Consider the following declaration:

D M= adv A;adv B

A M= {z.f̂ ,x:int � M}

B M= {z.f̂ ,x:int � z〈f̂ ,42〉}
D declares two pieces of advice. Both triggered when the first name
of the current event is exactly f̂ , and the second name is a subname
of int.

Evaluation of D;call〈f̂ ,10〉 proceeds as follows. The call trig-
gers advice lookup. Since both pieces of advice match the current
event, they are both enqueued. B executes first.

D;call〈f̂ ,10〉 → D;A,B〈f̂ ,10〉

B changes the second atom of the event to 42, and proceeds on the
next advice

→ D;A〈f̂ ,42〉

and then the body of A is executed.

→ D;M[x := 42] 2

We now present the operational semantics of the language.
Declarations, D, are used in several definitions. We disallow alpha
conversion on the new names in a declaration when the declaration
is treated as independent syntax—while a and b are bound in the
term “new a;new b;call〈a,b〉,” they are free in the declaration
sequence “new a;new b.”

We begin by defining some auxiliary relations. We write D.a:s
to indicate that a is properly below s in the order defined by D. Thus



if D = new s:t;new a:s then D . a:t and D . a:s. The relation is
irreflexive; thus D.a:a never holds.

The match relation takes a pointcut P, an event U , and returns
an appropriate substitution σ , if one exists. A substitution is a fi-
nite mapping on names. For instance, if D contains new a:int, then
D.match(x:int, b̂)(a, b̂) = (a := x). If D contained new a:bool in-
stead, then D.match(x:int, b̂)(a, b̂) would be undefined. Matching
is sensitive to exactness; thus D . match(x:int, b̂)(a,b) is always
undefined, since b is exact in the pattern but inexact in the event.

AUXILIARY RELATIONS (D.a:s) (D.match(P)(U) = σ)
σ ::= · | σ ,x := a Name Substitutions

D.a:s if D 3 new a:s
D.a:s if D. t:s and D 3 new a:t

D.match( · )( · ) = ·
D.match(P, â)(U, â) = σ if D.match(P)(U) = σ

D.match(P,x:s)(U,a) = (σ ,x := a) if D.match(P)(U) = σ

and D.a:s and x /∈ dom(σ)

Write “D . match(P)(U)” if D . match(P)(U) = σ for some σ .
Write “D.match(A)(U)” if A = {_.P � _} and D.match(P)(U).

There are two evaluation rules, shown below:

EVALUATION (M → N)

D;call〈U〉 → D;~A〈U〉 if ~A =
(
A

∣∣ D.match(A)(U) and A ∈ D
)

D;(~A,{z.P � M})〈U〉 → D;M[z := ~A,σ ] if D.match(P)(U) = σ

The first rule states that call is executed by searching D for any
advice triggered by the current event. All matching advice then
advises the event. The second rule states that if there is advice
advising the current event, then the current state is replaced by the
body of the advice, with the appropriate substitutions. If the advice
list is empty, or if the pointcut P does not match the event U , then
evaluation is stuck. The sorting system of the next section rules out
stuck terms.

3. Sorting
To avoid getting stuck, two invariants must be preserved by evalu-
ation:

1. if a piece of advice proceeds, there must be at least one piece of
advice in the advice queue, and

2. if a piece of advice proceeds and it modifies the current event,
it must be certain to do so in such a way that it still satisfies the
pointcuts of any remaining advice in the advice queue.

Example 3. In the absence of any other advice declarations, the
following µABC program violates condition (1) above:

adv{z.f̂ , ĝ � z〈f̂ , ĝ〉};call〈f̂ , ĝ〉

The term evaluates to ·〈f̂ , ĝ〉, which is stuck. Since there is no
additional advice, the use of the proceed variable in the advice is
malformed. 2

Example 4. The following µABC program violates condition (2)
above:

adv{z.f̂ ,x:int � z〈f̂ ,42〉};
adv{z.f̂ ,x:int � new g;z〈ĝ〉};
call〈f̂ ,10〉.

In this example, the current event is 〈f̂ ,10〉, and after evaluation,
there will be two pieces of advice queued up advising it. Since
advice is queued in LIFO order, the second piece of advice will
trigger first. It declares a new name g , changes the current event to

the tuple 〈ĝ〉, and proceeds on the new event. The result is that the
first piece of advice now advises the new event 〈ĝ〉, but its pointcut
is no longer satisfied by the current event. 2

In this section, we present a sorting system that guarantees
progress and preservation.

The sort of an event is itself is given using the same syntax as
events. To distinguish the two uses, we use S, T for sorts and U , V
for events.

The sort of an event computes the bounds on inexact atoms in
the expected way. For instance, if we have declared new a:s and
new b:t, then the event 〈a,b, ĉ〉 has sort 〈s, t, ĉ〉.

We sort advice based on its pointcut. For instance, the advice
{f ,x:a,y:b � M} has sort 〈f ,a,b〉.

If an advice uses its proceed variable, we say that it is non-
final; if it does not use its proceed variable, we say that it is fi-
nal. Nonfinal advice of sort S also has sort S final. For example,
{z.f̂ ,x:int,y:int � call〈ĝ ,y,x〉} can be given sorts 〈f̂ , int, int〉 and
〈f̂ , int, int〉 finalized; it ignores its proceed variable and hence any
advice declared before. The advice {z.f̂ ,x:int,y:int � z〈ĝ ,y,x〉},
instead, can be given only sort 〈f̂ , int, int〉; this advice is nonfinal.
If advice of sort S final has been declared, we say that sort S has
been finalized.

We sort with respect to the environment, Γ, that keeps records
the sorts of names and advice, as well as the sorts that have been
finalized. These concepts are formalized below:

ENVIRONMENTS

Γ,∆ ::= · | Γ,(a:s) | Γ,(z:S) | Γ,(S finalized)

We require that all environments be well formed, in the sense
that each name a occur at most once on the lefthand side of a
declaration a:s. Formally, the environment “Γ,∆” consisting of the
union of Γ and ∆ is undefined if any name occurs in the domain of
both Γ and ∆.

The sorting rules for pointcuts and events are as follows. Point-
cuts produce an environment ∆ which includes all the names bound
by the pointcut.

SORTING (` P : S . ∆) (Γ `U : S)
` (·) : (·) . (·)
` (P, â) : (T, â) . (∆) if ` P : T . ∆

` (P,x:s) : (T,s) . (∆,x:s) if ` P : T . ∆

Γ ` (·) : (·)
Γ ` (U, â) : (S, â) if Γ `U : S
Γ ` (U,a) : (S,s) if Γ `U : S and Γ 3 a:s
Γ ` (U,a) : (S,s) if Γ `U : S and Γ 3 a:t and Γ ` t : s

Similarly to pointcuts, the sorting of declarations extracts the
sorts of the names declared in D, as well as the sorts have been
finalized as a result of the advice declared in D. The judgement
takes the form Γ ` D . ∆.

SORTING (Γ ` A : S) (Γ ` A : S final) (Γ ` D . ∆) (Γ ` M ok)
Γ `{z.P � M} : S if ` P : S . ∆ and Γ,z:S,∆ ` M ok
Γ `{z.P � M} : S final if ` P : S . ∆ and Γ,∆ ` M ok

Γ ` · . ·
Γ ` D;new a:s . ∆,a:s if Γ ` D . ∆ and a /∈ Γ,∆
Γ ` D;adv A . ∆,S finalized if Γ ` D . ∆ and Γ,∆ ` A : S final
Γ ` D;adv A . ∆ if Γ ` D . ∆ and Γ,∆ ` A : S

and Γ 3 S finalized



Γ ` call〈U〉 ok if Γ `U : S and Γ 3 S finalized
Γ ` z〈U〉 ok if Γ `U : S and Γ 3 z:S
Γ ` ~A〈U〉 ok if Γ `U : S and ∀i. Γ ` Ai : S and ∃i. Γ ` Ai : S final
Γ ` D;M ok if Γ ` D . ∆ and Γ,∆ ` M ok

To see what it means for D to be consistent with Γ, observe that
in order to avoid error condition (1) above, the first declared advice
for any given sort S must be final— that is, it cannot proceed. If
it were to proceed, it would be guaranteed that there would be no
remaining advice, and a runtime error would result. Once a sort has
been finalized, nonfinal advice of that sort may then be declared.

The proof of progress relies on the following properties:

• If ` D . Γ and Γ ` a : s, then D.a:s.
• If ` D . Γ and Γ `U : S and ` P : S . _, then D.match(P)(U).
• If ` D . Γ and Γ 3 S finalized and Γ ` U : S, then D 3

adv{_.P � _} such that D.match(P)(U).

Theorem 5 (Progress). For any term M, if ` M ok, then M → M′

for some M′.

The proof of preservation relies on a substitution lemma, which
in turn relies on compatibility between substitutions and typing
environments.

Definition 6 (Compatibility). Γ ` σ ∼ ∆ if and only if dom(σ) =
dom(∆) and ∀ a ∈ dom(σ). Γ ` σ(a) : ∆(a). 2

For example, if σ = [x := a,y := b] then a:s,b:t ` σ ∼ x:s,y:t.

Lemma 7 (Compatibility). If `D . Γ and Γ`U : S and `P : S . ∆

and D.match(P)(U) = σ , then D ` σ ∼ ∆.

Lemma 8 (Substitution). If Γ,∆,z:S ` D;M ok and Γ ` σ ∼ ∆

and ∀ A ∈ ~A. Γ ` A : S, then Γ ` D;M[σ ,z := ~A] ok.

Theorem 9 (Preservation). If Γ ` M ok and M → M′ then
Γ ` M′ ok.

4. A functional language with advice
In this section, we present an extension of the λ -calculus in which
functions can be named and advised, in the style of [9, 8], and
describe its translation into µABC.

4.1 The source language
Due to space constraints, our presentation is necessarily brief. We
give some examples of evaluation of the source language in Sec-
tion 4.3; for further examples and narrative, see [8], which we fol-
low closely. The language is very expressive. Although declara-
tions are sequential, one can write mutually recursive functions us-
ing advice. As shown in [8], this language is also powerful enough
to capture imperative features. For example, one can create a ref-
erence cell as function which accepts unit and returns the value of
the cell; getting the stored value is achieved by calling the function;
setting the value is achived by placing advice so that the function
returns a different value in future calls.

We annotate each abstraction with its type to facilitate the trans-
lation presented in the following subsection. We often elide these
annotations.

SYNTAX

A,B ::= λx.MT Abstractions
D,E ::= Declarationsfun f =A | adv{z.f̂ � A}

V,U ::= Valuesn | unit | A
M,N ::= TermsV | V U | z U | D;M | let x:T=M;N
T,S ::= TypesUnit | T�S

Γ,∆ ::= Environments· | Γ,x:T

The language is simply typed; nevertheless non-termination is
possible due to the imperative quality of aspects. The typing system
need not be concerned with finality of advice, since only function
names can be advised and functions themselves cannot proceed.

TYPING (Γ � A : T) (Γ � D . ∆) (Γ � M : T)
Γ � λx.MT�S : T�S if Γ,x:T � M : S

Γ � fun f =A . f:T if Γ, f:T � A : T
Γ � adv{z.f̂ � A} . · if Γ � f : T and Γ,z:T � A : T

Γ � unit : Unit
Γ � n : T if Γ 3 n:T
Γ � V U : S if Γ � V : T�S and Γ � U : T
Γ � z U : S if Γ � z : T�S and Γ � U : T
Γ � D;M : T if Γ � D . ∆ and Γ,∆ � M : T
Γ � let x:T=M;N : S if Γ � M : T and Γ,x:T � U : S

Evaluation is defined using lookup, notated ~D(f) = A. Lookup
resolves proceed variables, producing a single abstraction which
includes the advice on the function in addition to the function body
itself. Lookup is defined using the partial function body and total
function advise with forms body(~D)(f)= A and advise(~D)(f)(A)=
B.

EVALUATION (M ⇒ N)
body( · )(f) = undefined

body(D;~E)(f) = A if D = fun f =A
body(D;~E)(f) = body(~E)(f) otherwise

advise( · )(f)(A) = A
advise(D;~E)(f)(A) = advise(~E)(f)(B[z := A]) if D = adv{z.f̂ � B}
advise(D;~E)(f)(A) = advise(~E)(f)(A) otherwise

~D(f) = advise(~D)(f)(body(~D)(f))

~D; f V ⇒ ~D;A V if ~D(f) = A
~D;(λx.N) V ⇒ ~D;N[x := V]

~D; let x=V;N ⇒ ~D;N[x := V]
~D; let x=M;N ⇒ ~D; let x=M′;N if ~D;M ⇒ ~D;M′

4.2 The translation
Our translation of lambda into µABC is based on the translation
of lambda into pi, and thus is parameterized with respect to a
continuation k. Proceed names must be handled specially, and thus
the translation is also parameterized by a list of proceed names,
paired with their pointcuts.

ϑ ::= · | ϑ ,z : f

In the translation, the value unit and both the names and types of
the source language are treated as µABC names. We also assume a
name T-1 for every lambda type T, which is used for continuations.
By convention, we use the names k, j, i to stand for continuations.

TRANSLATION (LVMϑ = (D)(n)) (JDKϑ = D) (JMKϑ
k = M)

LnMϑ M= ( · )(n)
LunitMϑ M= ( · )(unit)
Lλx.MT�SMϑ M= (new f:T�S;adv{f̂ ,x:T,k:S-1 � JMKϑ

k })(f)
where f /∈ fn(M)

Jfun f =λx.MT�SKϑ M= new f:T�S;adv{f̂ ,x:T,k:S-1 � JMKϑ
k }

Jadv{z.f̂ � λx.MT�S}Kϑ M= adv{z.f̂ ,x:T,k:S-1 � JMKϑ ,z:f
k }

JVKϑ
k

M= D;call〈k̂,n〉 where LVMϑ = (D)(n)



JV UKϑ
k

M= D;E;call〈ĝ ,n,k〉 where g /∈ dom(ϑ)
and LVMϑ = (D)(g) and LUMϑ = (E)(n)

Jz UKϑ
k

M= E;z〈f̂ ,n,k〉 where ϑ(z) = f and LUMϑ = (E)(n)
Jlet x:T=M;NKϑ

k
M= new j:T-1;adv{ ĵ,x:T � JNKϑ

k };JMKϑ
j

where j /∈ fn(M)
JD;MKϑ

k
M= JDKϑ;JMKϑ

k

4.3 Examples
Example 10. Consider the λ -calculus term (λx.x2) 5. It evaluates
as: (λx.x2) 5 ⇒ 25. The translation of the λ -calculus term into
µABC with continuation k is shown below; we show how it evalu-
ates to call〈k̂,25〉.

J(λx.x2) 5Kk =new f;
adv{f̂ ,x, j � call〈 ĵ,x2〉};
call〈f̂ ,5,k〉

The name f represents the function λx.x2. The function is imple-
mented using by the advice declaration adv{f̂ ,x, j � call〈 ĵ,x2〉}.
The function is applied to the argument 5 by calling function f on
argument 5 with continuation k.

First, call〈f̂ ,5,k〉 looks up the advice, which gets enqueued on
the current event:

→ {f̂ ,x, j � call〈 ĵ,x2〉}〈f ,5,k〉

The body of the advice executes with 5 bound to x, and k bound to
j:

→ call〈k̂,52〉 2

Example 11. Consider the λ -calculus term let x = 5;(λy.y2)x. It
evaluates as: let x=5;(λy.y2)x ⇒ (λy.y2)5 ⇒ 25. The translation
of the λ -calculus term into µABC with continuation k is shown
below; we show how it evaluates to call〈k̂,25〉.

Jlet x=5;(λy.y2)xKk =new j;
adv{ ĵ,x � new f;

adv{f̂ ,y, i � call〈î,y2〉};
call〈f̂ ,x,k〉};

call〈 ĵ,5〉

First, call〈 ĵ,5〉 looks up the advice, which gets enqueued on the
current event:

→ { ĵ,x � new f;adv{f̂ ,y, i � call〈î,y2〉};call〈f̂ ,x,k〉}〈 ĵ,5〉

The advice body then gets executed with 5 bound to x:

→ new f;adv{f̂ ,y, i � call〈î,y2〉};call〈f̂ ,5,k〉

call〈f̂ ,5,k〉 looks up the advice, which gets enqueued on the current
event:

→ {f̂ ,y, i � call〈î,y2〉}〈f̂ ,5,k〉
The advice body then gets executed with 5 bound to y and k bound
to i:

→ call〈k̂,52〉 2

Example 12. Consider the λ -calculus term fun f = λy.y2; let x =
5; f x. It evaluates as: fun f = λy.y2; let x = 5; f x ⇒ let x = 5;
(λy.y2)x⇒ (λy.y2)5⇒ 25. The translation of the λ -calculus term
into µABC with continuation k is shown below; we show how it

evaluates to call〈k̂,25〉.

Jfun f =λy.y2; let x=5; f xKk =new f
adv{f̂ ,y, j � call〈 ĵ,y2〉}
new i;
adv{î,x � call〈f̂ ,x,k〉};
call〈î,5〉

First, call〈î,5〉 looks up the advice, which gets enqueued on the
current event:

→ {î,x � call〈f̂ ,x,k〉}〈î,5〉
The advice body is executed with 5 bound to x:

→ call〈f̂ ,5,k〉

call〈f̂ ,5,k〉 looks up advice, which gets enqueued on the current
event:

→ {f̂ ,y, j � call〈 ĵ,y2〉}〈f̂ ,5,k〉
The advice body is executed with 5 bound to y and k bound to j:

→ call〈k̂,52〉 2

Example 13. Consider the λ -calculus term

M =fun f =λy.y2;

adv{z.f̂ � λx.z(x+1)};
f 5

It evaluates as: M⇒ (λx.(λy.y2)(x+1))5⇒ (λy.y2)(5+1)⇒
(5 + 1)2. The translation of the λ -calculus term into µABC with
continuation k is shown below; we show how it evaluates to
call〈k̂,(5+1)2〉.

JMKk = new f;
adv{f̂ ,y,k � call〈k̂,y2〉};
adv{z.f̂ ,x,k � z〈f̂ ,x+1,k〉};
call〈f̂ ,5,k〉

First, call〈f̂ ,5,k〉 looks up the two pieces of advice and enqueues
them on the current event:

→ {f̂ ,y,k � call〈k̂,y2〉},{z.f̂ ,x,k � z〈f̂ ,x+1,k〉}〈f̂ ,5,k〉
The body of the newest advice executes, with 5 bound to x, k bound
to k, and the remaining advice bound to z:

→ {f̂ ,y,k � call〈k̂,y2〉}〈f̂ ,5+1,k〉
The body of the advice now executes, with 5 + 1 bound to y and k
bound to k:

→ call〈k̂,36〉 2

Example 14. Consider the λ -calculus term

M =fun f =λy.y2;

adv{z.f̂ � λy1.z(y1 +1)};
adv{z.f̂ � λy2.let x= z(y2);z(x)};
f 5

Let A = (λy1.(λy.y2)(y1 +1)). It evaluates as:

M⇒ (λy2.let x=A y2;A x) 5
⇒ let x=A 5;A x
⇒∗ let x= (5+1)2;A x
⇒ A(5+1)2

⇒∗ ((5+1)2 +1)2

The translation of the λ -calculus term into µABC with continua-
tion k is shown below; we show how it evaluates to call〈k̂,((5 +



1)2 +1)2〉.
JMKk = D;call〈f̂ ,5,k〉

D = new f;adv A;adv B;adv C;
A = {f̂ ,y,k � call〈k̂,y2〉}
B = {z.f̂ ,y1,k � z〈f̂ ,y1 +1,k〉}
C = {z.f̂ ,y2,k � new j;adv{ ĵ,x � z〈f̂ ,x,k〉};z〈f̂ ,y2, j〉}

The call〈f̂ ,5,k〉 triggers advice lookup, and enqueues the three
matching pieces of advice onto the current event:

JMKk → D;(A,B,C)〈f̂ ,5,k〉
The newest advice body is executed with 5 bound to y2, k bound to
j, and the remaining advice bound to z:

→ E;(A,B)〈f̂ ,5, j〉
where

E = D;new j;adv{ ĵ,x � (A,B)〈f̂ ,x,k〉}
The newest advice body is executed with 5 bound to y1, j bound to
k, and the remaining advice bound to z:

→ E;A〈f̂ ,5+1, j〉
The remaining advice body is executed with 5+1 bound to y and j
bound to k:

→ E;call〈 ĵ,(5+1)2〉
The call〈 ĵ,(5 + 1)2〉 triggers another advice lookup, and enqueues
the matching advice onto the current event:

→ E;{ ĵ,x � (A,B)〈f ,x,k〉}〈 ĵ,(5+1)2〉
The advice body is executed with (5+1)2 bound to x:

→ E;(A,B)〈f̂ ,(5+1)2,k〉
The newest advice body is executed with (5+1)2 bound to y1 and
k bound to k:

→ E;(A)〈f̂ ,(5+1)2 +1,k〉
The remaining advice body is executed with (5+1)2 +1 bound to
y and k bound to k:

→ E;call〈k̂,((5+1)2 +1)2〉 2

4.4 Correctness
Our correctness proof is stated modulo a “structural congruence”
on µABC terms. Most of the axioms defining this congruence
are innocuous, but the last, unrolling, is stated in terms of the
translation defined above. As stated in the introduction, there is a
further problem in this approach: the congruence is not justified
by any semantic reasoning. Nonetheless, our intention is to define
this relation such that two structurally equivalent terms in effect
“behave the same way”.

We provide short examples demonstrating each of the structural
equivalence rules, followed by a formal statement of the rules.

Example 15 (Hoisting). Hoisting enables us to move declarations
out of the body of an advice declaration, provided that none of
the variables in the declarations are bound in the advice body. For
instance, the µABC term

new f;
adv{f̂ ,y,k � new g;adv{ĝ ,x, j � call〈ĝ ,y+1,k〉};call〈ĝ ,y,k〉}
call〈f̂ ,10,k〉
is structurally equivalent to

new g;adv{ĝ ,x, j � call〈ĝ ,y+1,k〉};
new f;adv{f̂ ,y,k � call〈ĝ ,y,k〉}
call〈f̂ ,10,k〉

“Hoisting” g ’s name and advice declaration out of f ’s advice dec-
laration should have no effect on how the term evaluates. 2

Example 16 (Reordering). Reordering says that two declarations
D and E can be swapped, so long as fn(E) 6∈ bn(D), and vice versa.
For instance:

new f;
adv{f̂ ,x,k � call〈k̂,x〉};
new g;
adv{ĝ ,x,k � call〈k̂,x〉};
call〈f̂ ,10,k〉

≡

new g;
adv{ĝ ,x,k � call〈k̂,x〉};
new f;
adv{f̂ ,x,k � call〈k̂,x〉};
call〈f̂ ,10,k〉

Whether f ’s name and advice is declared before or after g ’s is
irrelevant to how the term evaluates. The following, however, is
not allowed, however, since new f must be declared before f can
appear in an advice declaration:

new f;
adv{f̂ ,x,k � call〈k̂,x〉};
call〈f̂ ,10,k〉

6≡
adv{f̂ ,x,k � call〈k̂,x〉};
new f;
call〈f̂ ,10,k〉 2

Example 17 (Garbage Collection). Garbage collection allows us
to eliminate “dead” declarations. For instance, in the following
term:

new f;adv{f̂ ,x,k � call〈k̂,x2〉};
new g;adv{ĝ ,x,k � call〈k̂,x+1〉};
call〈f̂ ,10,k〉

The two declarations new g and adv{ĝ ,x,k � call〈k̂,x + 1〉} are
never used, and as such, can be eliminated without affecting how
the term evaluates. Thus the above term is structurally equivalent
to

new f;adv{f̂ ,x,k � call〈k̂,x2〉};call〈f̂ ,10,k〉 2

Example 18 (Unrolling). Translating function applications from
λ -calculus into µABC is extremely intricate. For instance, consider
the λ -calculus term

fun f =λx.x;
adv{z1.f̂ � λy.z1〈y2〉};
adv{z2.f̂ � λw.z2〈w+1〉};
f 5

The translation of this term, with continuation k, is

D;call〈f̂ ,5,k〉
where

D = new f;adv A;adv B;adv C
A = {f̂ ,x,k � call〈k̂,x〉}
B = {z1.f̂ ,y,k � z1〈f ,y2,k〉}
C = {z2.f̂ ,w,k � z2〈f ,w+1,k〉}

The λ -calculus term evaluates to

(λw.(λy.(λx.x) y2) (w+1)) 5

the translation of which is

new h;
adv{ĥ ,w, i � new f;

adv{f̂ ,y,k � new g;
adv{ĝ ,x, j � call〈 ĵ,x〉};
call〈ĝ ,y2,k〉};

call〈f̂ ,w+1, i〉};
call〈ĥ ,5,k〉

The fundamental difficulty arises from the fact that the translation
of the original λ -calculus term yields a string of corresponding



advice declarations, while the translation of the λ -calculus term
after one step yields a single nested advice declaration. In this vein,
unrolling allows us to expand the rolled form into the following
structurally equivalent term:

D;(A,B,C)〈f̂ ,5,k〉 2

STRUCTURAL EQUIVALENCE (M ≡ N)
Hoisting:
D;adv{z.P � E;M}≡ D;E;adv{z.P � M} if z,bn(P) 6∈ fn(E)

Reordering:
D;E;M ≡ E;D;M if fn(E) 6∈ bn(D) and fn(D) 6∈ bn(E)

Garbage Collection:
D;new f;adv{z.P, f̂ ,Q � M};N ≡ D;N if f 6∈ fn(N)

Unrolling:
D;call〈f̂ ,v,k〉 ≡ D;({z0.f̂ ,x0,k0 � JL0Kk0

},
...

{zm.f̂ ,xm,km � JLmKkm
})〈f̂ ,v,k)〉

where D = new f;
adv{zm.f̂ ,xm,k � JLmσmKk};

and σ0 = [] and σn = [zn := λyn−1.Ln−1σn−1]

The following theorem states that our translation from λ -
calculus into µABC is correct up to structural congruence.

Lemma 19 (Substitution).

JM[x := V]Kϑ
k ≡ D;JMKϑ

k [x := v]

LU[x := V]Mϑ ≡ (D;E[x := v])(u)

where LVMϑ = (D)(v) and LUMϑ = (E)(u) 2

Proposition 20. If M ⇒ N, then JMKc →∗≡ JNKc.

5. A Small Object Language
We give a translation into µABC of a small, object-oriented lan-
guage with advice.

The source language is based roughly on that of [3, 7], but
there are a few differences. First, the evaluation strategy is based
on the evaluation strategy for lambda calculus presented in the last
section; in particular the definition of lookup. Secondly, we ignore
fields for simplicity.

As before, z ranges over proceed names. In addition, we use the
following conventions for names.

• k, j, i range over continuations,
• `, m, n range over method names,
• a, b, e range over class names,
• p, q, x, y, v, u range over object names,

p, q range over proper object names,
x, y range over variable names,
v, u range over variables or proper object names,

OBJECT CALCULUS

A,B ::= λ~x.MT Abstractions
C ::= cls a:b{ ¯̀= Ā} Class Declarations
D,E ::= obj p:a | advc{z.a. ˆ̀� A}

M,N ::= v | v.`(~u) | z(~u) | A(~u) | D;M | let x:a=M;N
T,S ::= Method Types~a�b
Γ,∆ ::= Environments· | Γ,x:a

As usual [6], we fix a class table C̄; we assume that Object
is not declared and that the induced subclass relation is antisym-
metric, with greatest element Object. (The subclass relation is the
smallest preorder on class names induced by the rule: a ≤ b if
C̄ 3 cls a:b{ · · ·}.) We also assume that every declaration in the
class table is well typed (ie, ∀C ∈ C̄.  C ok).

The function body is used in both evaluation and typing. We
leave out irrelevant bits.

(body(a.`) = A:T)

body(a.`i) = Ai:Ti if C̄(a) = cls a:b{ ¯̀= Ā} and Ai = λ~x.MTi

body(a.`) = A:T if C̄(a) = cls a:b{m̄= B̄} and ` /∈ m̄
and body(b.`) = A:T

TYPING (Γ  A : T) ( C ok) (Γ  D . Γ′) (Γ  M : a)

Γ  λ~x.M~a�b :~a�b if Γ,~x:~a  M : b′ and b′ ≤ b

 cls a:b{ ¯̀= Ā} ok if ∀i. self:a  Ai : Ti
and ∀i. body(b.`i) = S implies Ti = S

Γ  obj p:a . p:a if C̄(a) defined
Γ  advc{z.a. ˆ̀� A} . · if body(a.`) = T = _

c�_

and Γ,self:a,z:T  A : T
Γ  v : a if Γ 3 v:a
Γ  v.`(~u) : b if Γ  v : e and body(e.`) =~a′�b

and ∀i. Γ  ui : ai and ai ≤ a′i
Γ  z(~u) : b if Γ  z :~a′�b

and ∀i. Γ  ui : ai and ai ≤ a′i
Γ  A(~u) : b if Γ  A :~a′�b

and ∀i. Γ  ui : ai and ai ≤ a′i
Γ  D;M : a if Γ  D . ∆ and Γ,∆  M : a
Γ  let x:a=M;N : S if Γ  M : a′ and a′ ≤ a

and Γ,x:T  N : S

The functions for advising and lookup now have have the form
advise(~D)(p:a.`)(A) = B and ~D(p.`) = A.

EVALUATION (~D;M ⇒~E;N)
advise( · )(p:a.`)(A) = A

advise(D;~E)(p:a.`)(A)

=

{
advise(~E)(p:a.`)(B[z := A]) if D = advc{z.a′. ˆ̀� B} and a ≤ a′

advise(~E)(p:a.`)(A) otherwise

~D(p.`) = advise(~D)(p:a.`)(body(a.`)) if ~D 3 p:a

~D; p.`(~q)⇒ ~D;(A[self := p])(~q) if ~D(p.`) = A
~D;(λx.N)(~q)⇒ ~D;N[x :=~q]
~D; let x= p;N ⇒ ~D;N[x := p]

~D; let x=M;N ⇒ ~D; let x=M′;N if ~D;M ⇒ ~D;M′

As before, the translation of terms is parameterized with respect
to continuations and bound proceed names. In this case proceed
names are bound to pointcuts of a different shape than in the
functional case.

ϑ ::= · | ϑ ,z : 〈p, `〉

TRANSLATION (JCK = D) (J`=AKa = D)

Jcls a:b{ ¯̀= Ā}K M= new a:b;new ~m;J ¯̀= ĀKa

where ~m = (`i | body(b.`i) undefined)

J`=λ~x.M~a�bKe M= adv{self:e, ˆ̀,~x:~a,k:b-1 � JMKϑ
k }



TRANSLATION (LAMϑ = (D)(f)) (JDKϑ = D) (JMKϑ
k = M)

Lλ~x.M~a�bMϑ M= (new f:~a�b;adv{f̂ ,~x:~a,k:b-1 � JMKϑ
k })(f)

where f /∈ fn(M)

Jobj p:aKϑ M= new p:a

Jadvc{z.e. ˆ̀� λ~x.M~a�b}Kϑ M= adv{z.self:e, ˆ̀,~x:~a,k:b-1 � JMKϑ ,z:〈self,`〉
k }

JvKϑ
k

M= call〈k̂,v〉
Jv.`(~u)Kϑ

k
M= call〈v, ˆ̀,~u,k〉

Jz(~u)Kϑ
k

M= z〈p, ˆ̀,~u,k〉 where ϑ(z) = 〈p, `〉
JA(~u)Kϑ

k
M= D;call〈ĝ ,~u,k〉 where LAMϑ = (D)(g)

JD;MKϑ
k

M= JD;MKϑ
k

M= JDKϑ;JMKϑ
k

Jlet x:a=M;NKϑ
k

M= new j:a-1;adv{ ĵ,x:a � JNKϑ
k };JMKϑ

j

We begin with a simple example.

Example 21 (Methods). Consider the following program frag-
ment in the class-based language.

cls a{`=λx.x2};obj p:a; p.`(5)

The class-based term evaluates as follows:

⇒cls a{`=λx.x2};obj p:a;(λx.x2) 5
⇒cls a{`=λx.x2};obj p:a;25

The translation of the original term into µABC yields:

new a;adv{self:a, ˆ̀,x,k � call〈k̂,x2〉};
new p:a;call〈p, ˆ̀,5,k〉;

Observe that the µABC term evaluates to call〈k̂,25〉:

→new a;adv{self:a, ˆ̀,x,k � call〈k̂,x2〉};
new p:a;{self:a, ˆ̀,x,k � call〈k̂,x2〉}〈p, ˆ̀,5,k〉

→new a;adv{self:a, ˆ̀,x,k � call〈k̂,x2〉};
new p:a;call〈k̂,52〉 2

Example 22 (Methods). Consider the following program frag-
ment in the class-based language.

cls a{`=λ.M;m=λ.N};

cls b:a{m=λ.P;n=λ.Q};

obj p:b;
let x= p.`(); let y= p.m(); let z= p.n();U

Its µABC translation is as follows:

new a;adv{self:a, ˆ̀,k � JMK};adv{self:a, m̂,k � JNK};
new b:a;adv{self:b, m̂,k � JPK};adv{self:b, n̂,k � JQK};
new p:b;
new k1;

adv{k̂1,x � new k2;adv{k̂2,y � new k3;adv{k̂3,z � JUK};
call〈p, n̂,k3〉};

call〈p, m̂,k2〉};
call〈p, ˆ̀,k1〉 2

Conjecture 23. If M ⇒ N, then JMKk →
∗≡ JNKk. 2

6. Conclusions
We have reported some preliminary steps toward attaining a useful
type system for µABC. Several challenges remain, all discussed
in the introduction. First, we face the niggling difference in sub-
stitution times for our source and target calculi. Second, and more
interestingly, we require a useful notion of semantic equivalence.
Third, and most importantly, we must parameterize the sorting sys-
tem given here with the type of protocols on names described in the

introduction. All these problems have solutions, and the solution to
the third promises to be very interesting.
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A. Proofs
The following lemmas are all used in the proofs of progress and
preservation. The first three are straightforward inductions.

Lemma 24 (Weakening). If Γ ` A : S, and dom(∆) 6∈ dom(Γ) then
Γ,∆ ` A : S.

PROOF. By induction on typing derivations. 2

Lemma 25. If ` D . Γ and Γ ` a : s, then D.a:s.

PROOF. By induction on derivation of ` D . Γ. 2

Lemma 26. If ` D . Γ and Γ ` U : S and ` P : S . _ then D .
match(P)(U)

PROOF. By induction on derivation of Γ `U : S. 2

Lemma 27. If ` D . Γ and Γ 3 S finalized and Γ ` U : S, then
D 3 adv{_.P � _} such that D.match(P)(U).

PROOF. We are given that ` D . Γ, and Γ 3 S finalized.

• Therefore, we know that there is some prefix E;adv{_.P �
M} of D such that ` E;adv{_.P � M} . ∆,S finalized

• Therefore, ` E . ∆′ and ∆′ ` adv{_.P � M} : S finalized
• By weakening (Lemma 24), we know that Γ ` adv{_.P � M} :

S finalized



• Therefore, ` P : S . _.
• We are also given that Γ `U : S. Our obligation is to show that

D.match(P)(U). Proof by induction on structure of S:
If S = â: then U = â and P = â. Therefore, D.match(P)(U)=
·
If S = t: then P = x:t, and U = a, where Γ ` a : t. Then by
Lemma 25, ` D . a:t. Therefore, D . match(P)(U) = (x :=
a).
If S = (T, t), where
− P = (Q,q), U = (V,v)
− Γ ` Q : T . _, and Γ `V : T , and
− D.match(Q)(V ) = σ :

· If t = â: then q = â and v = â, so D.match(P)(U) =
σ

· If t = s: then q = x:s, and v = a, where Γ ` a :
s. Then by Lemma 25, D . a:s. Therefore, D .
match(P)(U) = (σ ,x := a). 2

Theorem (5) (Progress). For any term M, if `M ok, then M →M′

for some M′.

PROOF. We prove that if ` M ok, then M → M′ for some M′. By
induction on derivation of ` M ok.

• If M is call〈U〉, z〈U〉, or ~A〈U〉, then M is not well sorted with
respect to the empty environment.

• If M is D;call〈U〉, then since ` D;call〈U〉 ok, we know that
D ` Γ . and Γ ` call〈U〉 ok
Therefore, Γ `U : S and Γ 3 S finalized
Then by Lemma 27, D contains at least one advice adv{_.P �
M} such that D.match(P)(U)
Therefore, M→D;~A〈U〉, where~A =

(
A

∣∣ D.match(A)(U) and A∈
D

)
• If M is D;z〈U〉, then it is not the case that ` M ok. This is

because it can never be the case that z∈ dom(Γ), where `D . Γ.
• If M is D;(~A,adv{z.P � N})〈U〉:

Then since ` M ok, we know that
− ` D . Γ, and
− Γ ` ~A,adv{z.P � N}〈U〉 ok.

Therefore, Γ `U : S, and ` P : S . _
Then, by Lemma 26, D . match(P)(U) = σ (i.e., σ is de-
fined), so M → N[z := ~A,σ ] 2

We now turn our attention to the substitution lemma. We lift the
notion of compatibility to declaration sequences as follows.

Definition 28. D ` σ ∼ ∆ if and only if ` D . Γ and Γ ` σ ∼ ∆. 2

Example 29. Let σ = [x := a,y := b], let D = new a:s;new b:t,
and let ∆ = x:s,y:t. Then D ` σ ∼ ∆. 2

The following lemmas, each of which are straightforward induc-
tions, are used in proving the substitution lemma.

Lemma 30. If

• ` D . Γ

• ` D[σ ,z := ~A] . Γσ

• Γ′ ` σ ∼ ∆

• ∆,Γ,Γ′ `U : S

then Γσ ,Γ′ `U [σ ] : S

PROOF. By induction on derivation of `U : S. 2

Lemma 31. If

• ` D . Γ

• ` D[σ ,z := ~A] . Γσ

• Γ′ ` σ ∼ ∆

• ∆,Γ,Γ′ ` B : S
• ∀ A ∈ ~A. Γ ` A : S, then

Γσ ,Γ′ ` B : S

PROOF. By induction on derivation of ` B : S. 2

Lemma (7) (Compatibility). If `D . Γ and Γ `U : S and ` P : S .
∆ and D.match(P)(U) = σ , then D ` σ ∼ ∆.

PROOF. By induction on derivation of `U : S. 2

Lemma 32. If

• ` D . Γ

• ` D[σ ,z := ~A] . Γσ

• Γ ` σ ∼ ∆

• ∆,Γ,Γ′ 3 S finalized

then Γ,Γ′σ 3 S finalized

PROOF. By induction on D and σ . 2

Lemma (8) (Substitution). If

• ∆,Γ,z:S ` D;M ok
• Γ ` σ ∼ ∆

• ∀ A ∈ ~A. Γ ` A : S

then Γ ` D;M[σ ,z := ~A] ok.

PROOF. By induction on derivation of ∆,Γ,z:S ` M ok.

• If M is D;call〈U〉:
Then we are given that
∆,Γ,z:S ` D;call〈U〉 ok. Therefore,
Γ′,∆,Γ,z:S ` call〈U〉 ok, where ` D . Γ′. Therefore, we
know that
− Γ′,∆,Γ,z:S `U : S
− Γ′,∆,Γ 3 S finalized.

Our obligation is to show that Γ ` D;call〈U〉[σ ,z := ~A] ok.
In other words, that Γ′σ ,Γ ` call〈U〉[σ ,z := ~A] ok, where
` D[σ ,z := ~A] . Γ′σ . i.e., we must show that
− Γ′σ ,Γ `U [σ ] : S

· This follows directly from Lemma 30.
− Γ′σ ,Γ 3 S finalized.

· This follows directly from Lemma 32.
• If M is D;z〈U〉:

Then we are given that
∆,Γ,z:S ` D;z〈U〉 ok. Therefore,
Γ′,∆,Γ,z:S ` z〈U〉 ok, where `D . Γ′. Therefore, we know
that Γ′,∆,Γ,z:S `U : S
Our obligation is to show that Γ ` D;z〈U〉[σ ,z := ~A] ok. In
other words, that Γ′σ ,Γ ` ~A〈U〉[σ ] ok, where
` D[σ ,z := ~A] . Γ′σ . i.e., we must show that
− Γ′σ ,Γ `U [σ ] : S

· This follows directly from Lemma 30.
− ∀A ∈ ~A. Γ′σ ,Γ ` A : S

· This follows directly from weakening (Lemma 24)
and the given assumptions.

• If M is D;~B〈U〉:
Then we are given that
∆,Γ,z:S ` D;~B〈U〉 ok. Therefore,



Γ′,∆,Γ,z:S ` ~B〈U〉 ok, where `D . Γ′. Therefore, we know
that
− Γ′,∆,Γ,z:S `U : S
− Γ′,∆,Γ,z:S ` B : S

Our obligation is to show that Γ ` D;~B〈U〉[σ ,z := ~A] ok. In
other words, that Γ′σ ,Γ ` ~B〈U〉[σ ,z := ~A] ok, where
` D[σ ,z := ~A] . Γ′σ . i.e., we must show that
− Γ′σ ,Γ `U [σ ] : S

· This follows directly from Lemma 30.
− ∀B ∈ ~B. Γ′σ ,Γ ` B : S

· This follows directly from Lemma 31. 2

Lemma 33. If adv{z.P � M}∈D and `D . Γ, and Γ `U : S, and
D.match(P)(U), then Γ ` P : S . ∆ and Γ,∆ ` M ok.

PROOF. By induction on structure of D. 2

Lemma 34. If ` D . Γ, and Γ 3 S finalized, then D 3 A where
Γ ` A : S finalized

PROOF. By induction on structure of D. 2

Theorem (9) (Preservation). If Γ ` M ok and M → M′ then
Γ ` M′ ok.

PROOF. We show that if ` M ok and M → M′, then ` M′ ok. By
induction on →.

• If M = D;call〈U〉, and M → D;~A〈U〉:
Since ` M ok, we know that Γ `U : S, where ` D . Γ.
Our obligation is to show that ` D;~A〈U〉 ok. i.e., that
− ∀A ∈ ~A. Γ ` A : S

· Let Ai = adv{_.Pi � Ni}. Our obligation is to show
that ` P : S . ∆, and that Γ,∆ ` N ok.

· From the definition of →, we know that Ai ∈ D, and
D.match(Pi)(U).

· Since ` M ok, we know that Γ `U : S.
· Therefore, by Lemma 33, we know that

Γ ` Pi : S . ∆i, and Γ,∆i ` Ni ok, which fulfills this
obligation.

− ∃A ∈ ~A. Γ ` Ai : S finalized
· Since ` M ok, we know that Γ 3 S finalized, where

Γ `U : S and ` D . Γ

· Then by Lemma 34, we know that
D 3 adv{_.P � N} where
Γ ` {_.P � N} : S finalized.

· Therefore, ` P : S . _, so by Lemma 26, we know
that D.match(P)(U).

· Therefore, by definition of →, we know that
adv{_.P � N} ∈ ~A, which fulfills this obligation.

• If M = D;(~A,{z.P � N})〈U〉, and M → D;N[σ ,z := ~A],
where D.match(P)(U) = σ :

Our obligation is to show that ` D;N[σ ,z := ~A] ok
Let ` D . Γ. Since ` M ok, we know that
Γ ` ~A,{z.P � N}〈U〉 ok. Therefore, we also know that:
1. Γ `U : S
2. ∀ A ∈ ~A. Γ ` A : S
3. ` P : S . ∆

4. z:S,∆,Γ ` N ok
Therefore, by Lemma 7, we know that D ` σ ∼ ∆

By item (4) above, we know that z:S,∆ ` D;N ok
Therefore, by Lemma 8, we know that ` D;

N[σ ,z := ~A] ok, which fulfills our obligation. 2

A.1 Proofs for Lambda Calculus
A.1.1 Proof of Lemma 19
1. We prove first that JM[x := V]Kϑ

k ≡ E;JMKϑ
k [x := v]

Let LVM = (E)(u) and LUM = (D)(v). By induction on structure
of M.

• If M = U:

If M = n, where n 6= x:
Then our obligation is to show that

Jn[x := V]Kϑ
k ≡ E;JnKϑ

k [x := v]

Evaluating the left hand side: Jn[x := V]Kϑ
k = JnKϑ

k
= call〈k,n〉

Evaluating the right hand side:
E;JnKϑ

k [x := v]= E;call〈k,n〉[x := v]
= E;call〈k,n〉

Our obligation is met by garbage collection.

If M = unit: same as above, with n := unit.

If M = x:
Then our obligation is to show that

Jx[x := V]Kϑ
k ≡ E;JxKϑ

k [x := v]

Evaluating the left hand side: Jx[x := V]Kϑ
k = JVKϑ

k
= E;call〈k,v〉

Evaluating the right hand side:
E;JxKϑ

k [x := v]= E;call〈k,x〉[x := v]
= E;call〈k,v〉

which meets our obligation.

If M = λx.N: By induction on N. Assuming that

JN[x := V]Kϑ
k ≡ E;JNKϑ

k [x := v]

Our obligation is to show that

Jλx.N[x := V]Kϑ
k ≡ E;Jλx.NKϑ

k [x := v]

Evaluating the left hand side:
Jλx.N[x := V]Kϑ

k = new f;
adv{f ,x, j � JN[x := V]Kϑ

k };
call〈k, f〉

= E;
new f;
adv{f ,x, j � JNKϑ

k [x := v]};
call〈k, f〉

The last step is by congruence. Evaluating the right hand
side:
E;Jλx.NKϑ

k [x := v]= E;
new f;
adv{f ,x, j � JNKϑ

k [x := v]};
call〈k, f〉

which meets our obligation.
• If M = U W : By induction on W and U. Let

LWMϑ = (DW)(w)

and
LUMϑ = (DU)(u)

and assume that

LW[x := V]Mϑ = (E;DW[x := v])(w)

and
LU[x := V]Mϑ = (E;DU[x := v])(u)



Our obligation is to show that

J(U W)[x := V]Kϑ
k ≡ E;JU WKϑ

k [x := v]

Evaluating the left hand side:
J(U W)[x := V]Kϑ

k = J(U[x := V] W[x := V])Kϑ
k

= E;DW[x := v];
DU[x := v];
call〈u,w,k〉

Evaluating the right hand side:
E;JU WKϑ

k [x := v] =E;DW[x := v];
DU[x := v];
call〈u,w,k〉

which meets our obligation.
• If M = z U : By induction on U. Let ϑ(z) = f , and assume

that
LU[x := V]Mϑ = (E;DU[x := v])(u)

Our obligation is to show that

Jz U[x := V]Kϑ
k ≡ E;Jz UKϑ

k [x := v]

Evaluating the left hand side:
Jz U[x := V]Kϑ

k =E;
DU[x := v]
z〈f ,u,k〉

Evaluating the right hand side:
E;Jz UKϑ

k [x := v] =E;
DU[x := v]
z〈f ,u,k〉

which meets our obligation.
• If M = fun f =λy.L;N: By induction on N and L. Assuming

that
JN[x := V]Kϑ

k ≡ E;JNKϑ
k [x := v]

and
JL[x := V]Kϑ

k ≡ E;JLKϑ
k [x := v]

Our obligation is to show that

J(fun f =λy.L;N)[x := V]Kϑ
k ≡E;Jfun f =λy.L;NKϑ

k [x := v]

Evaluating the left hand side:
J(fun f =λy.L;N)[x := V]Kϑ

k =new f;
adv{f ,y, j � JL[x := V]K j};

JN[x := V]Kk
=E;

new f;
adv{f ,y, j � JLKϑ

k [x := v]};
JNKϑ

k [x := v]
The last step is by hoisting and congruence. Evaluating the
right hand side:
E;Jfun f =λy.L;NKϑ

k [x := v] =E;
new f;
adv{f ,y, j � JLKϑ

k [x := v]};
JNKϑ

k [x := v]
which meets our obligation.

• If M = adv{z.f̂ � λy.L};N: By induction on N and L.
Assuming that

JN[x := V]Kϑ
k ≡ E;JNKϑ

k [x := v]

and
JL[x := V]Kϑ

k ≡ E;JLKϑ
k [x := v]

Our obligation is to show that
J(adv{z.f̂ � λy.L};N)[x := V]Kϑ

k
≡ E;Jadv{z.f̂ � λy.L};NKϑ

k [x := v]
Evaluating the left hand side:

J(adv{z.f̂ � λy.L};N)[x := V]Kϑ
k =adv{f ,y, j � JL[x := V]K j};

JN[x := V]Kk
=E;

adv{f ,y, j � JLKϑ
k [x := v]};

JNKϑ
k [x := v]

The last step is by hoisting and congruence. Evaluating the
right hand side:
E;Jadv{z.f̂ � λy.L};NKϑ

k [x := v] =E;
adv{f ,y, j � JLKϑ

k [x := v]};
JNKϑ

k [x := v]
which meets our obligation.

• If M = let y =N;L : By induction on N and L. Assuming
that

JN[x := V]Kϑ
k ≡ E;JNKϑ

k [x := v]
and

JL[x := V]Kϑ
k ≡ E;JLKϑ

k [x := v]
Our obligation is to show that

J(let y=N;L)[x := V]Kϑ
k ≡ E;Jlet y=N;LKϑ

k [x := v]

Evaluating the left hand side:
J(let y=N;L)[x := V]Kϑ

k =J(let y=N[x := V];L[x := V])Kϑ
k

=new j;
adv{ j,y � JN[x := V]Kk}

JL[x := V]Kϑ
k

=E;new j;
adv{ j,y � JNKϑ

k [x := v]}
JLKϑ

k [x := v]
The last step is by hoisting and congruence. Evaluating the
right hand side:
E;Jlet y=N;LKϑ

k [x := v] =E;new j;
adv{ j,y � JNKϑ

k [x := v]}
JLKϑ

k [x := v]
which meets our obligation.

2. Next, we show that if LUMϑ ≡ (D)(u) and LVMϑ = (E)(v), then
LU[x := V]Mϑ = (E;D[x := v])(u[x := v])

• If U = n, where n 6= x: Since LnMϑ = ( · )(n), our obligation
is to show that
Ln[x := V]Mϑ ≡(E; · [x := v])(n[x := v])

=(E)(n)
Evaluating the left hand side:
Ln[x := V]Mϑ =LnMϑ

=( · )(n)≡ (E)(n)
which meets our obligation. The last step follows from
garbage collection (actually, garbage introduction— since
E will always be of the form new f;adv{f ,P � M}, and
f is never subsequently used, we can introduce E while
maintaining structural equivalence).

• If U = x: Since LxMϑ = ( ·)(x), our obligation is to show that
Lx[x := V]Mϑ ≡(E; · [x := v])(x[x := v])

=(E)(v)
Evaluating the left hand side:
Lx[x := V]Mϑ =LVMϑ

=(E)(v)
which meets our obligation.

• if U = λx.M : Since
Lλx.MMϑ = (new f;adv{f ,x,k � JMKϑ

k })(f)
our obligation is to show that
Lλx.M[x := V]Mϑ =
(E;new f;adv{f ,x,k � JMKϑ

k [x := v]})(f [x := v]) =
(E;new f;adv{f ,x,k � JMKϑ

k [x := v]})(f)



By induction on M. Assuming that

JM[x := V]Kϑ
k ≡ E;JMKϑ

k [x := v]

Evaluating the left hand side:
Lλx.M[x := V]Mϑ =
(new f;adv{f ,x,k � JM[x := V]Kϑ

k })(f) =
(E;new f;adv{f ,x,k � JMKϑ

k [x := v]})(f)
which meets our obligation. The last step follows by hoist-
ing and congruence.

A.1.2 Proof of Theorem 20
We prove that if M ⇒ N, then JMKc →∗≡ JNKc. By induction on
⇒.

• If M = ~D; f V:

JMKk = J~DK;E;call〈f ,v,k〉
where LVM = (E)(v).

N = ~D;(λym.Lmσm)V
JMKk → N
where N = J~DK;E;({f ,y0,k � L0},

· · ·
{zm.f ,ym,k � Lm})〈f ,v,k〉;

JNKk = JDK;E;new f;adv{zm.f ,ym,k � Lmσm};call〈f ,v,k〉.
By definition of structural equivalence, N ≡ JNKk

• If M = (λx.N) V : By Lemma 19 and induction on structure of
N.

If N = U :

− Since λx.U V ⇒ U[x := V], our obligation is to show
that J(λx.U) VKk →

∗≡ E;JU[x := V]Kk.

− In other words, our obligation is to show that
new f;
adv{f ,x,k � D;call〈k,u〉};
E;
call〈f ,v,k〉
→∗≡ E;D[x := v];call〈k,u〉
which follows directly from the definition of →. Trans-
lation of the right hand side follows from Lemma 19.

If N = U W :
Let LUM = (D)(u), LVM = (E)(v), and LWM = (D)(w).

− Since (λx.U W) V ⇒ (U W)[x := V], our obligation is
to show that J(λx.U W) VKk →

∗≡E;J(U W)Kk[x := V].

− In other words, our obligation is to show that
new f;
adv{f ,x,k � D;F;call〈u,w,k〉};
E;
call〈f ,v,k〉
→∗≡ E;D[x := v];F [x := v];call〈u,w,k〉
which follows directly from the definition of →. Trans-
lation of the right hand side follows from Lemma 19.

If N = z U : Let LUM = (D)(u) and LVM = (E)(v).

− Since (λx.z U) V ⇒ (z U)[x := V], our obligation is to
show that J(λx.z U) VKϑ

k →∗≡ J(z U)[x := V]Kϑ
k , where

ϑ(z) = f .

− In other words, our obligation is to show that
new f;
adv{z.f ,x,k � D;z〈f ,u,k〉};
E;
call〈f ,v,k〉
→∗≡ E;D[x := v];z〈f ,u,k〉

which follows directly from the definition of →. Trans-
lation of the right hand side follows from Lemma 19.

If N = D;M : Let LVM = (E)(v).

− Since (λx.(D;M)) V ⇒ (D;M)[x := V], our obligation
is to show that J(λx.D;M) VKk →

∗≡ J(D;M)[x := V]Kk.

− In other words, our obligation is to show that
new f;
adv{f ,x,k � JD;MKk};
E;
call〈f ,v,k〉
→∗≡ E;JD;MKk[x := v]
which follows directly from the definition of →. Trans-
lation of the right hand side follows from Lemma 19.

If N = (let y=M;L) : Let LVM = (E)(v).

− Since (λx.(let y=M;L)) V⇒ (let y=M;L)[x := V], our
obligation is to show that J(λx.(let y=M;L)) VKk →

∗≡
J(let y=M;L)[x := V]Kk.

− In other words, our obligation is to show that
new f;
adv{f ,x,k � [new j;

adv{ j,y � JLKk};
JMK j]

}

E;call〈f ,v, j〉
→∗≡ E;new j;

adv{ j,y � JLKk}[x := v];
JMK j[x := v]

which follows directly from the definition of →. Trans-
lation of the right hand side follows from Lemma 19.

• If M = (let x=N;L), where N ⇒ N′:

Since (let x =N;L) ⇒ (let x =N′;L), our obligation is to
show that J(let x=N;L)Kk →

∗≡ J(let x=N′;L)Kk.

In other words, given that JNK j →∗≡ JN′K j, our obligation
is to show that

new j;
adv{ j,x � JLKk};
JNK j

→∗≡new j;
adv{ j,x � JLKk};
JN′K j

which follows by congruence.
• If M = (let x=V;M):

Since (let x=V;M)⇒ M[x := V], our obligation is to show
that J(let x=V;M)Kk →

∗≡ JM[x := V]Kk.

In other words, our obligation is to show that:
new j;
adv{ j,x � JMKk};
E;
call〈 j,v〉

→∗≡E;JMKk[x := v]
which follows directly from the definition of→. Translation
of the right hand side follows from Lemma 19.


