
Access Control Based on Code Identity for Open
Distributed Systems

Andrew Cirillo and James Riely?

CTI, DePaul University {acirillo,jriely}@cs.depaul.edu

Abstract. In computing systems, trust is an expectation on the dynamic behavior
of an agent; static analysis is a collection of techniques for establishing static
bounds on the dynamic behavior of an agent. We study the relationship between
code identity, static analysis and trust in open distributed systems. Our primary
result is a robust safety theorem expressed in terms of a distributed higher-order
pi-calculus with code identity and a primitive for remote attestation; types in the
language make use of a rich specification language for access control policies.
Keywords. Trusted Computing, Remote Attestation, Access Control, Authoriza-
tion Logic, Compound Principals, Higher-Order Pi Calculus, Typing

1 Introduction

Trust is an important concept in computer security. One may think of trust as an expec-
tation on the behavior of some agent. We say that an agent is trusted if the achievement
of a security goal is dependent on the agent behaving in the expected way. An agent is
trustworthy if it behaves in the expected way in all circumstances.

An effective way to determine that an agent is trustworthy is to establish bounds
on its behavior through static analysis of its software components. Many important
security-related behavioral properties can be usefully established statically, including
memory and type safety, non-interference, compliance with mandatory and discre-
tionary access control policies and adherence to an ad-hoc logical policy specification.

An open system is one in which software components are under the control of mul-
tiple parties whose interests do not necessarily coincide. The use of static analysis in
these systems is more complicated than in closed systems, where all components are
under the control of a single party.

To discuss the issues involved, we find it useful to distinguish software components
according to their relative roles. Given a particular unit of code and a statically derivable
property, we distinguish four primary roles: the producer is the original author of the
code; a host is a system that executes, or is considering executing, the code; a certifier
is a third party capable of performing an analysis directly on the code that determines
whether the property holds; and a relying party is the entity whose safe operation de-
pends on the property holding for the code.

When code is distributed in a compiled format, it may be the case that only the
producer, who has the original source, is able to tractably certify many important prop-
erties. A host for the compiled code, if it is a relying party, may not able to establish the
properties it needs.
? This work was supported by the National Science Foundation under Grant No. 0347542.

This problem is well studied, and at least two solutions have been developed. By
distributing the executable as intermediate-level bytecode, the analysis may be made
tractable; in this case many useful analyses may remain intractable, or at least imprac-
tical. With proof-carrying code [1] the producer uses a certifying compiler to generate
a proof of the desired property that can be checked efficiently by the host; this allows a
greater range of analyses, but with the limitation that properties have to be agreed upon
in advance.

A second issue arises when the relying party and host systems are physically dis-
tinct. For example, a server may hold sensitive data that it is only willing to release
to remote clients that are known to be running certifiably safe code. The certification
could be done by the client, but on what grounds can the server trust the results? The
certification can instead be done by the server, but only if it can authenticate the code
running on the client.

In conventional authentication protocols, remote parties authenticate themselves by
demonstrating knowledge of a secret. When executables are distributed over public
channels, however, embedded secrets are vulnerable to extraction and misuse by at-
tackers so code cannot in general be relied upon to authenticate itself. This problem is
addressed in part by trusted computing, where a trusted host authenticates the code it is
running, and when necessary attests to the identity of the code to remote parties.

Remote code authentication, or attestation, is based on measurements of static ex-
ecutables. Therefore, trusted computing platforms only attest to initial states of pro-
cesses. This makes static analysis particularly important for reasoning in systems using
attestation. Code identity is a degenerate example of a static property; more abstract
properties can be defined as sets of executables that satisfy the property. Knowing that
the executable running on a host satisfies a certain property may allow a relying party
to determine something about the dynamic state of the host.

Even weak static properties may be useful in validating trust. For example, knowing
that a server has the latest patches applied may ease the mind of an e-commerce client.
Similarly, a bounded model checker or test suite may give some assurance of memory
safety without proving absolute trustworthiness.

For concreteness, we concentrate here on access control properties established via
a type system, leaving the general case to future work. This focus allows us to establish
absolute guarantees of trustworthiness and thus to prove a robust safety theorem. We
do so in the context of a higher-order π-calculus enhanced with process identity and
primitive operations for remote attestation.

The contributions of this paper are twofold. First, we illustrate how the trusted com-
puting paradigm can be used to enforce an access control model based on static prop-
erties of code. Second, we demonstrate the importance of higher-order languages in
studying policies and protocols that make use of remote attestation.

Organization. In the remainder of this introduction, we provide some intuitions about
our formalism and results. In Section 2 we present the syntax and operational semantics
of our language. Detailed examples follow in Section 3. Section 4 summarizes the type
system and the main safety theorem; details are elided here for lack of space. Related
work is discussed in Section 5.

Background: Remote Attestation. Remote attestation is a technique that allows pro-
cesses to prove their identity to remote systems through the use of a trusted third party
that is physically collocated with the process. In the Trusted Computing Group (TCG)
specification [2] this comes in the form of a Trusted Platform Module (TPM) – an em-
bedded co-processor that has the ability to measure the integrity of the boot sequence
and securely store cryptographic keys. Each TPM is created with a unique keypair and
a certificate from a trusted certificate authority.

The TPM serves as the root of trust for a Trusted Software Stack (TSS) [3], which
in turn serves a trusted operating system which hosts user programs. As the software
stack progresses, a measurement (cryptographic hash) of the next item to be loaded is
placed in a secure register before it executes. Upon request, the TPM will produce a
signature for the contents of the secure register bank using a private key. An attestation
is a list of measurements plus a payload, signed by a TPM key.

Measurements of program executables, in this case, serve as a form of code identity.
Modifying an executable changes its measurement, so attestation effectively identifies
the remote process, and also demonstrates that the software running on the remote sys-
tem has not been compromised.

We do not, in this paper, attempt to model the underlying protocol of remote at-
testation using explicit cryptographic primitives [4] nor do we attempt to translate our
calculus into a lower level calculus with cryptographic primitives [5]. Instead, we take
it for granted that the following capabilities are available and treat attestation as a prim-
itive operation. We assume that executables can be measured in a globally consistent
fashion (e.g., using an SHA-1 hash), and that the keys embedded in each TPM are is-
sued by a globally trusted (and trustworthy) certificate authority. We also assume that,
when multitasking, trustworthy operating systems enforce strong memory isolation be-
tween processes. Attestation protocols [6] are designed to be anonymous, so we do not
assume any capability for distinguishing between different instances of a program nor
do we assume that any information is available regarding the physical location of a
process.1

Access Control with Remote Attestation. Remote attestation enables a model of access
control in which executables, as identified by their cryptographic hashes, assume the
role of principal. In its most basic form, it allows an attesting system to demonstrate to
remote parties exactly what executables it has loaded. The remote party may exercise
a simple form of access control by choosing to continue interacting with the attesting
system only if all of its loaded executables are known and trusted. For example, an on-
line media server may refuse access to clients not running its digital rights management
(DRM) software.

While this simple approach may be sufficient in a limited context where only a
small number of well-known executables need be trusted, such as in the proprietary
DRM example above, it is low-level, inefficient and inflexible. A common criticism

1 While attestations are anonymous in the sense that an individual user or machine cannot be
identified, the recipient does get precise information about the software and hardware running
on the attesting system that could be considered sensitive. Sadeghi and Stüble [7] cite this as a
shortcoming of the TCG specification in their argument for property-based attestation.

[8] of trusted computing cautions that this lack of flexibility could be used by industry
leaders to lock out open-source software and products from smaller competitors.

A more robust design is necessary to broaden the applicability of trusted comput-
ing, and indeed a number of extensions to the existing specification have already been
proposed [7, 9, 10].

Overview of Our Solution. Modeling systems that operate on static units of executable
code is a suitable task for a higher-order π-calculus [11–13], where processes can be
abstracted and treated as data. Thus, we develop a higher-order π-calculus, dubbed
HOπ-rat, enhanced with process identity and primitives for creating and using attes-
tations. Process identity is implemented in the form of configurations, which are lo-
cated processes where location is a representation of the identity (measurement) of the
software stack that spawned the process.

Access control in HOπ-rat is based on a notion of principal that is tied to code iden-
tity. Static properties of code also play a role. We model these qualities as membership
in a security class. Security classes are the basis for our access control policies, and a
single executable may belong to multiple security classes. Complex principals are spec-
ified by a language of compound principals that includes both primitive identities and
security classes.

There are two aspects to access control policy. First, read and write authorizations
are specified explicitly in type annotations on channels in the form of expressions in
the language of compound principals. Second, the sort of trust that a process places in
particular identities is represented as a mapping of identities to security classes.

Our security classes are flexible, and can accommodate a wide range of security
expectations, however one expectation is distinguished: each participant in a trusted
software stack must maintain the expectations of the trusted system as a whole. In par-
ticular, they must not do anything to compromise the integrity of an attestation, and
they must not leak secret data on insecure channels. We designate this behavior with
the security class cert. We also develop a notion of robust safety and present a sketch
of a type system that ensures robust safety in the presence of arbitrary attackers. We
discriminate between typechecked and non-typechecked identities via membership in
cert, and refer to typechecked processes as certified.

2 The Language

In this section we describe the syntax and operational semantics of the HOπ-rat calcu-
lus. We first define a sub-calculus of compound principals that will serve as the basis
for access control in our system. We then define the syntax of terms, types, processes
and configurations, followed by the operational semantics.

2.1 A Calculus of Compound Principals

To support the creation of sophisticated access control policies, we develop a calculus
of compound principals in the style of Abadi et al. [14]. Primitive principals include
identities and classes (including the distinguished class cert) drawn from an infinite set

(N) of atomic principal names. The principal constant 0 represents the inert process –
always trustworthy by virtue of its inertness – and any represents an arbitrary process.

Compound principals are constructed using conjunction (∧), disjunction (∨) and
quoting (|) operators. Of these, quoting is essential because it is used to represent one
process running in the context of another. For example, the principal tss|myos|widget
might represent a user application running on an operating system running on a trusted
software stack. The other combinators are provided only to add expressiveness to the
policy language.

A policy environment (Σ) maps identities to classes. For example, Σ(a,α) indicates
that a is a member of α. Class membership is many-to-many; an identity may be a
member of multiple classes, and a class may have multiple members. We write a⇒α

for a policy environment consisting of a single pair.

PRINCIPALS AND POLICY ENVIRONMENTS

a,b,c ∈Nid α−ω ∈Ncls (including cert) identities/classes
A,B,C ::= any

∣∣ 0
∣∣ a

∣∣ α
∣∣ A∧B

∣∣ A∨B
∣∣ A|B principals

Σ,Φ⊆Nid ×Ncls policy environment

We define a partial order (⇒), ranking principals in terms of trustedness. When
A⇒B, A is trusted at least as much as B. Derivations are defined in terms of a policy
environment so that Σ ` A⇒B if Σ(A,B), or A = 0, or B = any, so that ∧,∨ are com-
mutative, associative, idempotent, absorptive and distribute over each other, so that |
is monotone and idempotent, and so that⇒ is reflexive, transitive and antisymmetric.
Thus defined,⇒ forms a distributive lattice with ∧,∨ as meet and join operators, and
any,0 as top and bottom elements. If Σ and Φ are policy environments, we write Σ `Φ

if for every a,α such that Φ(a,α), we have that Σ ` a⇒α.
Our treatment of compound principals builds on existing work [14, 15]. In the in-

terest of minimality, we use only a calculus of principals and do not incorporate a full
modal authorization logic, which would include a “says” construct. Existing techniques
[16–18] for using authorization logics in π-calculi could be applied here as well.

2.2 Syntax

In addition to principals, the main syntactic categories of HOπ-rat are terms, types,
processes and configurations. As usual in π, we assume an infinite set (N) of names,
but we distinguish channels (n,m) from variables (x,y,z). We use a local syntax [19–
21] in the sense that only output capabilities may be communicated as it is syntactically
disallowed to read from a variable.

TERMS

n,m ∈Nch x,y,z ∈Nvar channels/variables
M,N ::= n

∣∣ x
∣∣ unit ∣∣ (x : T)P

∣∣ (M,N)
∣∣ [M : T]

∣∣ {M : T @ A}∗ terms

Terms include channel names, variables, a unit term and process abstractions from
higher-order π, pairs, and two novel constructs. The term [M : T], where M is a pro-
cess abstraction and T is an abstraction type, represents an executable. We assume that

the identity of an executable can be taken directly using a well-known measurement
algorithm, which we represent as a function (#) taking executable terms to primitive
identities. Since otherwise trustworthy programs can sometimes be coerced to misbe-
have if they are initialized incorrectly, executables include a type annotation to ensure
that the identity function takes the type of the program arguments into account.

The term {M : T @ A}∗ represents an attestation – the payload M tagged with type
T and the principal A, where A stands for a list of the measurements of the executables
that were running when the attestation was requested.

TYPES

S,T ::= Ch〈A,B〉(T)
∣∣ Wr〈A,B〉(T)

∣∣ Unit ∣∣ T → 〈A〉Proc
∣∣ S×T

∣∣ Tnt ∣∣ Un ∣∣ Prv ∣∣ Pub
Types include constructs for read/write and write-only channels, unit, abstractions, pairs
and four top types. The unit and pair types are standard; we discuss the others below.

Channel types include annotations for specifying policy. For example, the type
Ch〈A,B〉(T) is given to channels that communicate values of type T , and may be used
for input by processes authorized at principal B with the expectation that it will only
be used for output by processes authorized at principal A. As in Sangiorgi’s local-
ized pi [19], we syntactically restrict input to channels, disallowing input on variables.
Therefore, channel types may only be used with names. Write types are similar, but
only allow output and therefore may be used to type variables.

The security annotations allow for fine-grained specifications of access control pol-
icy. For example, a channel annotated with type Ch〈α∧β,B〉(T) can only be written on
by processes that are members of both α and β. Conversely, Ch〈α∨β,B〉(T) requires
membership in either α or β. Other policies can place restrictions on the software stack,
as in Ch〈myos|any,B〉(T), which permits any process running on the myos operating
system.

Types for abstractions take the form S→ 〈A〉Proc, where S is the type of the argu-
ment and A is a security annotation representing a principal that the process may expect
to run at (discussed in Section 4). We sometimes write S→ Proc when the security
annotation is not of interest.

Attestations and executables are typed at one of the four top types (Tnt,Un,Prv,Pub)
which are used to classify data by secrecy and integrity properties. The top types are
used in the kinding judgment mentioned in section 4.

PROCESSES AND CONFIGURATIONS

P,Q ::= 0
∣∣ n?N

∣∣ repeat n?N
∣∣ M!N

∣∣ M N
∣∣ new n : T ; P

∣∣ P | Q∣∣ split (x : S,y : T) = M; P
∣∣ let x = attest(M : T); P∣∣ check {x : T}= M; P

∣∣ load M as [T] N∣∣ Σ
∣∣ wr-scope n is A

∣∣ rd-scope M is A∣∣ spoof A;P
∣∣ let~x = fn(M); P

G,H ::= 0
∣∣ A

[
P
] ∣∣ G | H

∣∣ newA n : T ; G

Processes include the usual constructs for HOπ: the inert process; input and replicated
input; output; higher-order application, as in M N, which applies the argument N to the

abstraction M; restriction; and parallel composition. The form split (x : S,y : T) =
M; P is used to split a pair into its constituent parts.

The main security extensions are attest, check and load. The form let x =
attest(M : T); P represents a call to trusted hardware to create a new attested mes-
sage with payload M and attested type T . The form check {x : T} = M; P tests and
conditionally destructs an attestation. The form load M as [T] N dynamically tests the
identity and argument type of an executable prior to running it. The inclusion of Σ in
the process language allows processes to carry knowledge about other processes at run-
time. The expectations wr-scope n is A and rd-scope M is A are only used in the
definition of runtime error and are discussed further below.

The final two forms are reserved for attackers, and therefore cannot appear in any
well-typed term. The form spoof A;P allows the process to change its identity and the
form let~x = fn(M); P extracts the free names of a term.

Configurations (G,H) are composed of processes located at principals (e.g., A
[
P
]
).

Our treatment of configurations is mostly standard for located π-calculi [22, 23] with
one exception: our locations expand as new code is loaded. For example, we use the
compound principal (a|b|c) to represent the sequence of a having loaded b having
loaded c.

2.3 Operational Semantics

Evaluation is defined on configurations. We elide the structural equivalence rules which
are mostly standard for located calculi [22] (for example “A

[
P | Q

]
≡ A

[
P
]
| A

[
Q

]
”).

The one novelty is the rule, “Σ | Φ ≡ Σ,Φ”, which allows policy environments to be
combined.

EVALUATION

(R-COMM) A
[
n?M

]
| B

[
n!N

]
−→ A

[
M N

]
(R-STRUC)

G≡ G′ H ′ ≡ H G′ −→ H ′

G−→ H

(R-APP) A
[
(x : T)P N

]
−→ A

[
P{x := N}

]
(R-RES)

G−→ G′

new n : T ; G−→ new n : T ; G′

(R-ATT) A
[
let x = attest(M : T); P

]
−→ A

[
P{x := {M : T @ A}∗}

]
(R-PAR)

G−→ G′

G | H −→ G′ | H
(R-SPLIT) A

[
split (x : S,y : T) = (M,N); P

]
−→ A

[
P{x := M}{y := N}

]
(R-CAST)

Σ ` S <: T Σ ` B⇒cert
A
[
Σ
]
| A

[
check {x : T}= {M : S @ B}∗; P

]
−→ A

[
Σ
]
| A

[
P{x := M}

]
(R-CASTUN) A

[
check {x : Tnt}= {M : S @ B}∗; P

]
−→ A

[
P{x := M}

]
(R-LOAD)

Σ ` S <: T → 〈B〉Proc Σ ` a⇒cert
A
[
Σ
]
| A

[
load [M : S] as [T → 〈B〉Proc] N

]
−→ A

[
Σ
]
| (A|a)

[
M N

] a = #([M : S])

(R-LOADUN)
` S <: T → 〈B〉Proc ` T <: Un b = #([M : S])

A
[
load [M : S] as [T → 〈B〉Proc] N

]
−→ (A|b)

[
M N

]
(R-SPOOF) A

[
spoof B;P

]
−→ (A|B)

[
P
]

(R-PEEK)
A
[
let~x = fn([M : T]); P

]
−→ A

[
P{~x := f n(M)}

] if |~x|= | f n(M)|

The rule for communication (R-COMM) passes a value along a channel in the standard
way. When a value is communicated from one identity to another, the resulting process
takes on the identity of the receiving process. The rule for splitting pairs (R-SPLIT) is
standard.

In the rule for the creation of attestations (R-ATT) a term is tagged with a type and
the pair is signed with the identity of the creating process. In the first rule for destruc-
tion (R-CAST), the identity of the generating process is recovered and tested against
the local policy of the receiving process. The receiver must believe that the generating
process is certified before it can trust the contents of the message. If the necessary facts
are not present the destructor blocks, so for example these two configurations in parallel
will reduce whereas the latter on its own would not.

A
[
b⇒cert

]
| A

[
check {x : T}= {N : T @ b}∗; P

]
−→ A

[
b⇒cert

]
| A

[
P{x := N}

]
In order to safely unpack {N : T @ B}∗ one must be able to establish that B is certified,
that is that B⇒cert holds in the lattice of principals derived from the receiver’s local
policy. Note that from the idempotency and monotonicity of | one can derive a|b⇒cert
if a⇒cert and b⇒cert. The principals used in attestations always have this form, so an
attestation will be trusted if each of its principal components are certified. The receiving
process need not know of all certified processes, only those with which it interacts,
however a process may be unable to unpack a perfectly safe message if any identity in
the sequence is unknown.

The second rule for destruction (R-CASTUN) allows a process to skip the dynamic
checks if there are no type requirements for the extracted data (the type Tnt is at the top
of the subtype hierarchy).

The rule for application (R-APP) converts an abstraction into a running process by
substituting the argument for the bound variable. R-LOAD allows parent processes to
run abstractions that they have received from untrusted sources after completing two
dynamic checks. First, it tests the hash of M for certification. If M is known to be
certified, then the type assertion can be trusted. Second, it tests that the asserted type
is a subtype of the expected type. If both tests are successful, it extracts the enclosed
abstraction and applies it to the argument.

As with attestations a second version (R-LOADUN) allows the dynamic checks to
be skipped, in this case if the argument is of a safe type (i.e., contains no secrets). For
example, suppose b = #([M : T]). The following process located at A loads M.

A
[
b⇒cert

]
| A

[
load [M : T] as [T] N

]
−→ A

[
b⇒cert

]
| (A|b)

[
M N

]
A’s local mapping (b⇒cert) indicates that [M : T] is known to be certified, which en-
ables the loading. Note that the residual is located at A|b.

The final two rules are reserved for uncertified systems and are necessary to model
realistic attacks on higher-order code. R-SPOOF allows a process to impersonate an
arbitrary principal as long as the root is preserved and R-PEEK allows a process to
extract the free names of a higher-order term. Spying on, or “debugging,” a child process
can be modeled using a combination of these operations as follows: the attacker first
extracts the free names of an executable, then builds a new executable identical to the
original except that all bound names are replaced with names in the attacker’s scope,
and finally loads the modified executable and spoofs the identity of the original process.

3 Examples

In this section we illustrate the use of HOπ-rat in two detailed examples. Throughout
this section we use the following notational conveniences: we elide trivial type anno-
tations, we abbreviate load M as [Un→ 〈0〉Proc] N as load M N, and we abbreviate
(x : Unit)P as ()P when x 6∈ f n(P).

3.1 Example: A Trusted Software Stack

Our first example shows how the integrity of the software stack can be preserved in
a trusted system, from the booting of the operating system to the execution of a user
application. We start with a simple computer system composed of a BIOS (BIOS),
disk drive (DSKDRV), user interface (UI) and operating system (OS). The first three
components are loaded by hardware, thus they are represented as pre-existing processes.
The operating system, however, must be booted from code stored on the disk drive.

We assume that the disk drive is untrusted. (Unencrypted storage devices are easily
tampered with while the computer is switched off, so anything loaded from the disk
drive must be treated as if it came from a public source.) The process representing the
drive listens for file requests on a series of channels, one for each file, and responds by
writing the file on the request channel. Some of these files will be executable programs;
in particular, a request on the distinguished channel mbr (for master boot record) will
return the operating system kernel code.

DSKDRV , repeat mbr?(x)x!OS | repeat fi?(x)x!FILEi | . . .

The BIOS is responsible for locating and loading the operating system, which it
does by sending a request on mbr and loading the returned executable. The BIOS does
not need to verify the safety or identity of the executable because the load command
stores the hash of the loaded program in the PCR, ensuring that it is reflected in the
identity of the resulting process.

BIOS, new n; mbr!n | n?(y)load y unit

Let dskdrv = #([()DISKDRV]), bios = #([()BIOS]), and os = #([()OS]). At startup
the BIOS process will be located at bios and the disk process at dskdrv. The boot
sequence proceeds as follows.

BOOTING WITH INTEGRITY

bios
[
new n; mbr!n | n?(y)load y unit

]
| dskdrv

[
repeat mbr?(x)x![()OS] | . . .

]
−→4 bios

[
load [()OS] unit

]
| dskdrv

[
repeat mbr?(x)x![()OS] | . . .

]
−→2 (bios|os)

[
OS

]
| dskdrv

[
repeat mbr?(x)x![()OS] | . . .

]
By the end of the boot process, the operating system code is running at the identity

bios|os. The BIOS code has terminated, but its identity is reflected in the identity of the
operating system process. This ensures that a malicious BIOS cannot compromise or
impersonate a trusted operating system without detection.

Note that no access control checks are required for the boot process. We consider
it to be perfectly acceptable for a trusted system to load untrusted code as long as the
identity of that code is recorded. This distinguishes this boot sequence from a secure
boot, which only executes trusted code.

Once loaded, the operating system code enters a loop listening for requests to start
user programs. Requests come in the form of a channel name that corresponds to a file
on disk, and an argument term. The operating system fetches the corresponding file
from the disk drive and loads it, passing it the argument term.

OS, repeat req?(x)split (f ,arg) = x; new n; (f !n | n?(y)load y arg)

The type of the argument term is not checked. If the executable were initialized with an
argument of the wrong type it could cause the security of the resulting process to fail,
therefore the evaluation rule (R-LOADUN) requires that the executable be annotated
to accept arguments of type Un. Any certified executable with such an annotation will
have been proven to operate safely with arbitrary arguments.

Now we can consider how the system responds to a user request to run a program.
Let ui represent part of the user interface hardware (keyboard, mouse, etc.) for some
system, and assume that the user has indicated a request to load the program PROG by
keying in “prog args” to the interface.

LOADING A USER PROGRAM

dskdrv
[
. . . | repeat prog?(x)x![(z)PROG] | . . .

]
| (bios|os)

[
repeat req?(x)split (f ,arg) = x; new n; (f !n | n?(y)load y arg)

]
| ui

[
req!(prog,args)

]
−→4 dskdrv

[
. . . | repeat prog?(x)x![(z)PROG] | . . .

]
| (bios|os)

[
repeat req?(x)split (f ,arg) = x; new n; (f !n | n?(y)load y arg)

]
| (bios|os)

[
load [(z)PROG] args

]
−→2 dskdrv

[
. . . | repeat prog?(x)x![(z)PROG] | . . .

]
| (bios|os)

[
repeat req?(x)split (f ,arg) = x; new n; (f !n | n?(y)load y arg)

]
| (bios|os|prog)

[
PROG{z := args}

]
After several reduction steps, the user program (PROG) is running at the identity

bios|os|prog, and the operating system is back in its original state, awaiting a new com-
mand.

A user program can also load another user program through the operating system
functionality. The new identity of this program will be bios|os|newprog; it does not
reflect the identity of the calling program as they would if the calling program had
invoked the load command directly. The operating system loop only loads programs
that are expecting arbitrary arguments, so there is no chance that a malicious program
can use this functionality to misconfigure a trusted program while excluding its own
measurement from the identity sequence.

This illustrates an important difference between stand-alone executables started
through operating system functionality, as in the example above, and dynamically loaded
modules, such as shared libraries and browser plugins. In the former case the operating

system is solely responsible for the safe initialization of the code; in the latter, the call-
ing process is relied upon to initialize the new module correctly, therefore its identity is
reflected in the identity of the resulting process.

3.2 Example: Secure E-Commerce

In this example, remote attestation is used to facilitate secure communication between
a vendor and customer. Each party has different security requirements. In order to com-
plete the transaction the customer has to provide sensitive personal information – a
credit card number and delivery address – and therefore requires that the vendor be
secure and comply with an electronic privacy policy.

On the other side, because the vendor may have to cover the cost of fraudulent
charges, it has an interest in ensuring that the request is coming from an actual user, and
not a trojan horse or virus running on the customer’s machine. They can accomplish
this by requiring that the request come from an actual web browser (as opposed to a
script, or other program) and that the browser be free from security holes.

The two main parties are the customer (cust) and vendor (vend) executables; but
there are also the customer (c_host) and vendor (v_host) hosts. We represent the re-
quirements that the customer has of the vendor with the security class ok_vend, and
that the vendor has of the customer with ok_cust. These properties are established by
two independent certifiers, vendcc and custcc.

The code for the customer certifier (custcc) is shown below, the vendor certifier
is similar. It listens for requests on a well-known public channel (getCustIsOk), and
responds with a certificate mapping the cust identity to the ok_cust security class. Recall
that policy environments are part of the process language, so we communicate them as
thunked processes. A certificate therefore has the form of a thunked policy environment
wrapped in an attestation.

CUSTOMER CERTIFIER

(. . . |custcc)
[
repeat getCustIsOk?(c)
let msg = attest(()#(cust)⇒ok_cust : Unit→ 〈cert〉Proc); c!msg

]
The location of custcc is not important. It is the vendor process that requires the

customer certifier, so they could be running on the same host, however the use of an
attestation to sign the certificate means that the processes could just as easily be dis-
tributed. Trust is placed in the program doing the certification, not the physical node
running it, so any node equipped with a TPM running the correct software – even the
customer node itself – can host a certifier process.

At the start of the protocol, cust (1) trusts only the vendor certifier. It first consults
a trusted certifier (2-3) and obtains a certificate listing some trustworthy vendors. vend
(11-13) does the same but for trustworthy customers. The customer then initiates the
protocol by creating (5) a partially secure (only the customer can read, but anyone can
write) callback channel, wrapping it (6) in an attestation and forwarding it (7) to the
vendor on a well-known public channel. At this point the attested message will have
the form {cch : Wr〈any,ok_cust〉(Tnt) @ c_host|cust}∗. After receiving the message,
the vendor performs a dynamic check (15) to ensure that the message is from a trusted

source, and that the contents are of the expected type. Succeeding at that, it continues
by creating its own secure callback (16), wrapping it in an attestation (17) and sending
it back to the customer (18). At this point the parties have established bidirectional
secure communications, and the customer data can be sent (10) safely with all security
requirements met.

Note that in order for the dynamic checks (3,9,15,13) to pass, the process must
explicitly trust the attestors. The trust required to allow the first checks (3,13) to pass
is already hard-coded (1,11) in the executables. The trust required for the other checks
(9,15) are acquired at runtime from the trusted certifiers.

CUSTOMER AND VENDOR EXECUTABLES

(c_host|cust)
[

1 vendcc⇒cert | v_host⇒cert |
2 new c; getVendIsOk!c | c?(x : Un)
3 check {y : Unit→ 〈cert〉Proc}= x; x unit |
4 new address,credit_card : Ch〈cert,ok_cust〉(Prv);
5 new cch : Ch〈any,ok_cust〉(Tnt);
6 let amsg = attest(cch : Wr〈any,ok_cust〉(Tnt));
7 vpub!amsg |
8 cch?(x : Tnt)
9 check {y : Wr〈ok_cust,ok_vend〉(Prv)}= x;

10 y!(address,credit_card)
]

(v_host|vend)
[

11 custcc⇒cert | c_host⇒cert |
12 new c; getCustIsOk!c | c?(x : Un)
13 check {y : Unit→ 〈cert〉Proc}= x; x unit |
14 vpub?(x : Un)
15 check {y : Wr〈any,ok_cust〉(Tnt)}= x;
16 new vch : Ch〈ok_cust,ok_vend〉(Prv);
17 let vmsg = attest(vch : Wr〈ok_cust,ok_vend〉(Prv));
18 y!vmsg
19 vch?(data : Prv)(. . .continue processing transaction . . .)

]

4 A Type System for Certified Processes

We have developed a type system that ensures that typed processes meet the behavioral
requirements for certified processes, even in the presence of arbitrary attackers. For
space reasons, most of the details are elided.

We begin by formalizing the requirements as a definition of robust safety. Attackers
come in two forms: as any software stack running on a system without a TPM, and as
an untrusted process running on an otherwise trusted system. Our assumptions about
attackers are as liberal as possible. The only requirements are that they be located at an
uncertified identity, and that any attestations they possess must be acquired at runtime.
In addition, we allow attackers to do the following: (1) if they are of the latter form,
they may create attestations that extend the measurement sequence arbitrarily, provided

that the measurements up to and including the untrusted process are accurate, (2) they
may extract the contents of executables, including any embedded keys, and (3) they
may peek at the memory of (i.e., debug) running child processes.

DEFINITION 1 (INITIAL ATTACKER). Let H be a configuration and Σ a policy envi-
ronment. H is considered a Σ-initial attacker if it is of the form A1

[
P1

]
. . .An

[
Pn

]
where

(∀i)Σ 0 Ai⇒cert, and it has no subterms of the form {M : T @ B}∗

Robust Safety. Safety is defined in terms of runtime error. The full system includes
shape errors in addition to the access control errors presented here.

RUNTIME ERROR (PARTIAL)

(E-WRSCP)

Σ.A
[
wr-scope n isC

]
| B

[
n!N

] error−→
if Σ ` A⇒cert and Σ 0 B⇒C

(E-RDSCP)

Σ.A
[
rd-scope n isC

]
| B

[
n?N

] error−→
if Σ ` A⇒cert and Σ 0 B⇒C

A configuration is in error, for example, if a certified configuration is expecting the
write scope of a channel to be restricted to one principal, and the channel is written on
by a process located at another principal that does not carry that level of authorization
in the lattice of principals.

Robust safety requires that no certified process can lead to a runtime error even in
the presence of arbitrary attackers. It is defined relative to a policy environment, so it is
perfectly reasonable to have policies that disagree on the safety of a given process. Our
main result is that well-typed configurations are robustly safe.

DEFINITION 2 (ROBUST SAFETY). Let G be a configuration and G′ a Σ-initial at-
tacker. If G | G′ −→∗ H implies that Σ . H Yerror−→ for an arbitrary G′ then we say that
G is robustly Σ-safe.

THEOREM 3 (ROBUST SAFETY). Let G be a configuration, Σ a policy and Γ a global
environment. If all of the the type assignments in Γ are of the form Ch〈any,any〉(Un),
and Σ;Γ G, then G is robustly Σ-safe.

Typing Rules. Types are constrained by kinding rules which prevent secret data from
leaking to uncertified processes, or typed data from being read from an uncertified
source. Subtyping allows integrity guarantees to be relaxed and write authorization re-
quirements to be constrained. Our development of kinds and subtyping borrows heavily
from Jeffrey and Gordon [24] and Haack and Jeffrey [25], and is similar to the system
presented in [23].

The rules for terms and processes tag abstractions with the principal that it imper-
sonates. For example, a process that uses a channel reserved for α will type as 〈α〉Proc,
and one that uses both α and β channels will type as 〈α∧β〉Proc. If M is an abstraction
that takes an argument of type T and makes use of α and β channels, it will type as
T → 〈α∧β〉Proc. Our technique for typing processes and process abstractions is simi-
lar to that of Yoshida and Hennessy [26], although our types are less precise than theirs
in that we only record the authorizations required rather than the exact channels used.

Rules ensure that processes located at certified principals typecheck at a type com-
patible with that principal. For example, a process that types at 〈α〉Proc can be located
at a principal A only if Σ ` A⇒α. There are, on the other hand, no constraints on locat-
ing processes at uncertified principals.

Consistency requirements for enforceable policies ensure that 1) only typechecked
executables are assigned to class cert, and 2) typechecked executables that are assigned
to cert are also assigned to other classes they require. For example, suppose M types
at T → 〈α∧β〉Proc. If a policy assigns #([M : T → 〈α∧β〉Proc]) to cert, then it must
also assign it to α and β to be considered enforceable.

5 Related Work

This paper expands on our prior work [23] in two ways. First, the use of a higher-order
calculus allows us to describe code distribution and loading. Second, the incorporation
of security classes and a calculus of principals allow for rich specification of policy.

Abadi [27] outlines a broad range of trusted hardware applications that use remote
attestation to convey trust assertions from one process to another. Our work can be seen
as a detailed formal study of a specific kind of trust assertion, namely information about
the type and access control policy for communicated code.

The NGSCB [28] remote attestation mechanism, and the TCG [29] hardware that
underpins it, are more complex than the HOπ-rat remote attestation mechanism. We
have omitted much of the complexity in order to focus on the core policy issues. For a
logical description of NGSCB’s mechanism, see [30]. For a concrete account of imple-
menting NGSCB-like remote attestation on top of TCG hardware see [31].

Haldar, Chandra, and Franz [32, 33] use a virtual machine to build a more flexible
remote attestation mechanism on top of the primitive remote attestation mechanism that
uses hashes of executables. Sadeghi and Stüble [7] observe that systems using remote
attestation may be fragile, and discuss a range of options for implementing more flexible
remote attestation mechanisms based upon system properties (left unspecified, as the
focus is upon implementation strategies). Sandhu and Zhang [9] consider the use of
remote attestation to protect disseminated information.

Our formal development builds upon existing work [34, 24] with symmetric-key
and asymmetric-key cryptographic primitives in pi-calculi. Notably, the kinding sys-
tem is heavily influenced by the pattern-matching spi-calculus [25]. Our setting is quite
different, however. In particular, processes establish their own secure channels and cor-
responding policies, as opposed to relying upon a mutually-trusted authority to dis-
tribute initial keys and policies. In addition, the access control policies used here are
not immediately expressible in spi, since processes do not have associated identity.
The techniques used to verify authenticity and other properties as in [35, 36] should be
applicable to HOπ-rat, though we make no attempt to address authenticity or replay
attacks here. Finally, our primitive for checking attestations includes an implicit notion
of authorization, which is made explicit in [25]. Scaling up to explicit authorizations
would allow the possibility of enforcing policies that require multiple authorizations for
certain actions.

Authorization based on code identity is also used by Wobber et al. in the context
of the Singularity operating system [37], as well as in stack inspection [38] and other
history-based access control policies [39]. Remote attestation can be used to implement
similar policies in a distributed environment, but we leave this for future work.

The HOπ-rat type system allows executables to be typechecked independently and
subsequently linked together. Separate compilation and linkability is not a new idea in
programming languages, see, for example, [40], but is uncommon in spi-like calculi
because there is usually a need to reliably distribute some shared secret or untainted
data between separate processes in accordance with a type (policy). Recently Bugliesi,
Focardi, and Maffei [41, 42] have considered separate typechecking in the context of a
spi-like calculus.

We assume that trusted hardware is trustworthy. For accounts of the difficulties
involved in creating such trusted hardware, see [43, 44] for an attacker’s perspective
and [45, 46] for a defender’s perspective. Irvine and Levin [47] provide a warning about
placing too much trust in the integrity of COTS.

6 Conclusions

We defined a new extension to the higher-order π-calculus for analyzing protocols that
rely on remote attestation. Our system extends our previous work [23] by incorporating
higher-order processes and using a logic of principals to specify policy. This develop-
ment allows parties to establish the identity and integrity of a remote process even if its
executable has been exposed to attackers, but also allows us to expand the access con-
trol model from one based only on specific executables to one that incorporates abstract
properties of code. This is an important advancement over existing capacities because
these properties can include static analyses that establish bounds on the dynamic state
of a remote host. We also provide a static analysis technique for ensuring robust safety
in the presence of arbitrary attackers.

For future work, we are interested in internalizing program analysis, such as trusted
compilers, typecheckers or code verifiers. This would allow us to model systems in
which analysis tools are applied to programs at an enterprise boundary, then freely
communicated and used within the enterprise without further analysis. We believe that
such systems are very desirable, in that an enterprise may require that all code to be
run in its systems must pass certain requirements. These requirements can be expressed
as membership in a HOπ-rat security class. Analysis may be performed once, leading
to a certificate (attestation) that the code belongs to the security class. The certificates
may be communicated with the code, or independently, and verified through an efficient
check of the hash of the code itself. We intend that these certificates be signed by the
analysis tool itself, running on trusted hardware, rather than by an entity (such as a cor-
poration) that vouches for the analysis. The use of hashes and rich policy specifications
brings us close to being able to reason about such systems; HOπ-rat, as presented here,
lacks only the ability to dynamically analyze abstractions.

References
1. Necula, G.C.: Proof-carrying code. In: POPL ’97. (1997)

2. Trusted Computing Group: TCG TPM Specification Version 1.2. (2006) http://www.
trustedcomputinggroup.org.

3. Trusted Computing Group: TCG Software Stack (TSS) Specification Version 1.2. (2006)
http://www.trustedcomputinggroup.org.

4. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Infor-
mation and Computation 148 (1999)

5. Abadi, M., Fournet, C., Gonthier, G.: Authentication primitives and their compilation. In:
POPL, New York, NY, USA, ACM Press (2000) 302–315

6. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS ’04: Proceed-
ings of the 11th ACM conference on Computer and communications security, New York,
NY, USA, ACM Press (2004) 132–145

7. Sadeghi, A.R., Stüble, C.: Property-based attestation for computing platforms: Caring about
properties, not mechanisms. In: New Security Paradigms Workshop. (2004)

8. Schoen, S.: Trusted Computing: Promise and Risk. Electronic Frontier Foundation. (2003)
http://www.eff.org/Infrastructure/trusted_computing/20031001_tc.pdf.

9. Sandhu, R., Zhang, X.: Peer-to-peer access control architecture using trusted computing
technology. In: SACMAT ’05: Proceedings of the tenth ACM symposium on Access control
models and technologies, New York, NY, USA, ACM Press (2005) 147–158

10. Jaeger, T., Sailer, R., Shankar, U.: Prima: policy-reduced integrity measurement architecture.
In: SACMAT ’06: Proceedings of the eleventh ACM symposium on Access control models
and technologies, New York, NY, USA, ACM Press (2006) 19–28

11. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, University of Edinburgh (1993)

12. Thomsen, B.: Plain chocs: A second generation calculus for higher order processes. Acta
Informatica 30 (1993) 1–59

13. Milner, R.: Functions as processes. In: ICALP. (1990) 167–180
14. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in dis-

tributed systems. ACM Trans. Program. Lang. Syst. 15 (1993) 706–734
15. Abadi, M., Birrell, A., Wobber, T.: Access control in a world of software diversity. Tenth

Workshop on Hot Topics in Operating Systems (HotOS X) (2005)
16. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies. In:

ESOP. (2005) 141–156
17. Fournet, C., Gordon, A., Maffeis, S.: A type discipline for authorization in distributed sys-

tems. CSF 00 (2007) 31–48
18. Cirillo, A., Jagadeesan, R., Pitcher, C., Riely, J.: Do As I SaY! Programmatic Access Control

with Explicit Identities. CSF 0 (2007) 16–30
19. Sangiorgi, D.: Asynchronous process calculi: the first-order and higher-order paradigms

(tutorial). Theoretical Computer Science 253 (2001) 311–350
20. Yoshida, N.: Minimality and separation results on asynchronous mobile processes. In: CON-

CUR, Springer-Verlag (1998) 131
21. Merro, M.: Locality in the pi-calculus and applications to distributed objects. PhD thesis,

Ecole des Mines de Paris (2000)
22. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Inf. Comput.

173 (2002) 82–120
23. Pitcher, C., Riely, J.: Dynamic policy discovery with remote attestation. In: FOSSACS 2006.

(2006)
24. Gordon, A.D., Jeffrey, A.S.A.: Types and effects for asymmetric cryptographic protocols. J.

Computer Security 12 (2004)
25. Haack, C., Jeffrey, A.S.A.: Pattern-matching spi-calculus. In: Proc. IFIP WG 1.7 Workshop

on Formal Aspects in Security and Trust. (2004)

26. Yoshida, N., Hennessy, M.: Assigning types to processes. LICS 00 (2000) 334
27. Abadi, M.: Trusted computing, trusted third parties, and verified communications. In:

SEC2004: 19th IFIP International Information Security Conference. (2004)
28. Peinado, M., Chen, Y., England, P., Manferdelli, J.: NGSCB: A Trusted Open System. In-

formation Security and Privacy 3108/2004 (2004) 86–97
29. Pearson, S., ed.: Trusted Computing Platforms: TCPA Technology in Context. Prentice Hall

(2002)
30. Abadi, M., Wobber, T.: A logical account of NGSCB. In: FORTE ’04. (2004)
31. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a TCG-based

integrity measurement architecture. In: 13th USENIX Security Symposium. (2004)
32. Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation: A virtual machine directed

approach to trusted computing. In: USENIX VM. (2004)
33. Haldar, V., Franz, M.: Symmetric behavior-based trust: A new paradigm for internet com-

puting. In: New Security Paradigms Workshop. (2004)
34. Abadi, M., Blanchet, B.: Secrecy types for asymmetric communication. Theoretical Com-

puter Science 298 (2003)
35. Gordon, A.D., Jeffrey, A.S.A.: Authenticity by typing for security protocols. J. Computer

Security 11 (2003)
36. Fournet, C., Gordon, A., Maffeis, S.: A type discipline for authorization policies. In: ESOP

’05. (2005)
37. Wobber, T., Yumerefendi, A., Abadi, M., Birrell, A., Simon, D.R.: Authorizing applica-

tions in Singularity. In: EuroSys ’07: Proceedings of the ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, New York, NY, USA, ACM (2007) 355–368

38. Wallach, D.S., Appel, A.W., Felten, E.W.: SAFKASI: a security mechanism for language-
based systems. ACM Trans. Softw. Eng. Methodol. 9 (2000)

39. Abadi, M., Fournet, C.: Access control based on execution history. In: Proceedings of the
10th Annual Network and Distributed System Security Symposium. (2003)

40. Cardelli, L.: Program fragments, linking, and modularization. In: POPL ’97. (1997)
41. Bugliesi, M., Focardi, R., Maffei, M.: Compositional analysis of authentication protocols.

In: ESOP. (2004)
42. Bugliesi, M., Focardi, R., Maffei, M.: Analysis of typed analyses of authentication protocols.

In: CSFW. (2005)
43. Anderson, R., Kuhn, M.: Tamper resistance - a cautionary note. In: Second USENIX Work-

shop on Electronic Commerce Proceedings. (1996)
44. Huang, A.: Hacking the Xbox. Xenatera Press (2003)
45. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap architecture. In:

IEEE Symposium on Security and Privacy. (1997)
46. Smith, S., Weingart, S.: Building a high-performance, programmable secure coprocessor.

Computer Networks 31 (1999) Special Issue on Computer Network Security.
47. Irvine, C., Levin, T.: A cautionary note regarding the data integrity capacity of certain secure

systems. In: Integrity, Internal Control and Security in Information Systems. (2002)

