
A New TypeSystemfor Secure Inf ormation Flow

Geoffrey Smith
Schoolof ComputerScience

FloridaInternationalUniversity
Miami, Florida33199,USA
smithg@cs.fiu.edu

Abstract

With the variables of a program classifiedas
�

(low,
public) or � (high, private), we wish to prevent the pro-
gram from leaking information about � variablesinto

�
variables. Given a multi-threadedimperative language
with probabilistic scheduling, the goal can be formalized
as a propertycalled probabilistic noninterference. Previ-
ous work identified a type systemsufficient to guarantee
probabilistic noninterference, but at the costof severe re-
strictions: to prevent timing leaks, � variableswere dis-
allowedfromtheguardsof while loops.Here wepresenta
new typesystemthatgiveseach commanda typeof theform��� cmd ��� ; this typesaysthat thecommandassignsonly to
variablesof level ��� (or higher)andhasrunning timethat
dependsonly on variablesof level ��� (or lower). Also we
usetypesof theform � cmd � for commandsthat terminate
in exactly � steps.With thesetypings,wecanpreventtim-
ing leaksbydemandingthatnoassignmentto an

�
variable

maysequentiallyfollow a commandwhoserunningtimede-
pendson � variables.Asa result,wecanuse � variables
more flexibly; for example, underthe new systema thread
that involvesonly � variablesis alwayswell typed. The
soundnessof the typesystemis provedusingthe notion of
probabilisticbisimulation.

1 Intr oduction

In this paper, asin [10] and[13], we considera simple
multi-threadedimperativeprogramminglanguagein which
eachvariable is classifiedeither as

�
(low, public) or �

(high,private).Our goal is to developa staticanalysisthat
ensuresthata programcannot“leak” thevaluesof � vari-
ables.Of course,thepossiblewaysof leakinginformation
dependonwhatis observable.If wecanobservetherunning
programfrom theoutside, seeingrunningtimeor theusage
of varioussystemresources,thencontrolling leaksis very
difficult, becauseleakscanbebasedon very low-level im-

plementationdetails,suchascachingbehavior. Henceour
focus,asin previouswork, is on controlling internal leaks,
in which informationabout � variablesis somehow trans-
mitted to

�
variables.This makesthe taskmoretractable,

becausewe cancontrol what is observableby the running
program—forexample,wecandeny it accessto areal-time
clock.

More precisely, we wish to achieve noninterference
properties,which assertthat changingthe initial valuesof
� variablescannotaffect the final valuesof

�
variables.

Giventhenondeterminismassociatedwith multi-threading,
andour assumptionthat threadschedulingis probabilistic,
werequiremorepreciselythatchangingtheinitial valuesof
� variablescannotaffect the joint probability distribution
of the possiblefinal valuesof

�
variables;this propertyis

calledprobabilisticnoninterference.
A typesystemthatguaranteesa weaker property, called

possibilisticnoninterference, wasgivenin [10]. Building on
that work, a type systemfor probabilisticnoninterference
wasgivenin [13]. Therestrictionsimposedby thatsystem
canbesummarizedasfollows:

1. An expression� is � if it containsany � variables;
otherwiseit is

�
.

2. Only
�

expressionscanbeassignedto
�

variables.

3. A guardedcommandwith � guardcannotassignto
�

variables.

4. Theguardof a while loopmustbe
�

.

5. An if with � guardmustbe protected, so that it ex-
ecutesatomically, and can contain no while loops
within its branches.

Restrictions2 and 3 prevent what Denning [3] long ago
calleddirectandindirectflows, respectively. In a language
without concurrency, restrictions2 and3 are sufficient to
guaranteenoninterference—seefor example[15]. Restric-
tions4 and5 wereintroducedto preventtiming-basedflows

1

in multi-threadedprograms;unfortunately, they restrictthe
setof allowableprogramsquiteseverely.

A recentpaperby Honda,Vasconcelos,andYoshida[6]
exploressecureinformationflow in the 	 -calculus,showing
in particularthat the systemof [10] canbe embeddedinto
theirsystem.Most interestingly, they proposeenriching the
setof commandtypesof [10] from

 � cmd, for commandsthatassignonly to � variables
andareguaranteedto terminate;and

 � cmd, for commandsthat assignto
�

variablesor
mightnot terminate,

to

 � cmd � , for commandsthat assignonly to variables
of type � (or higher)andareguaranteedto terminate;
and

 � cmd � , for commandsthat assignonly to variables
of type � (or higher)andmight not terminate.

They thenarguethatin somecases� variablescanbeused
in theguardsof while loopswithoutsacrificingpossibilistic
noninterference.

Inspiredby thissuggestion,wecanobservethatthecom-
mandtypingsusedin [10] and[13] conflatetwo distinctis-
sues:whatdoesacommandassignto, andwhatis thecom-
mand’s running time. This leadsus to proposecommand
typeswith twoparametersto addressthesetwo issuessepa-
rately. Moreprecisely, ournew systemwill makeuseof the
following commandtypes:

 � � cmd � � , for commandsthatassignonly to variables
of type � � (or higher)andwhoserunningtimedepends
only on variablesof type � � (or lower);and

 � cmd � , for commandsthat assignonly to variables
of type � (or higher)andwhich areguaranteedto ter-
minatein exactly � steps.

With thesetypings,we can imposemoreaccuraterestric-
tionsto preventflowsbasedontiming. In particular, wecan
replacerestrictions4 and5 abovewith thefollowing rule:

A commandwhoserunning time dependson �
variablescannotbe followed sequentiallyby a
commandthatassignsto

�
variables.

Let’s now considersomeexamplesinformally, assuming
that ���� and ��� � .

1. ���������� cmd �
2. ��������� � cmd �
3. if ���� then ����� elseskip �!� cmd "

4. while �#��� do skip �!� cmd
�

5. while �#��� do �����$�&%'�(� � cmd
�

6. if ���� then
while �)��� do skip

else
skip �!� cmd �

7. ������ +* while),�� do skip � � cmd �
8. - while .�/� do skip 01*2������ 3� illegal

Example3 shows thatan if canhave a � guardandnever-
thelesshaveaknown runningtime;suchacommandcanbe
sequentiallyfollowedby a

�
assignmentwithout any prob-

lem.
Example8, on theotherhand,is illegalbecausetherun-

ningtimeof thewhile loopdependsonthe � variable , so
we can’t follow it sequentiallywith anassignmentto the

�
variable � . This examplewould bedangerous,becausean-
otherthreadcouldreliably determinewhether is 0 or not,
simply by waiting for a while (to give thethreadscheduler
achanceto runall threads)andthenseeingwhether� is 5.

Our typingsalsosatisfyinterestingsubtypingrules. As
usual,we have

�54 � . Furthermore,commandtypesare
contravariant in their first position, and covariant in their
secondposition. Also, � cmd � 4 � cmd

�
, becauseif

a commandalwayshalts in � steps,then its running time
doesn’t dependonthevaluesof � variables.Thissubtyping
rule impliesthatexample3 abovealsohastype � cmd

�
.

The rest of the paper is organizedas follows. Sec-
tion 2 reviewsthedefinitionof ourmulti-threadedlanguage,
whichis thesameasthelanguageof [13], andSection3 de-
finesour typesystemprecisely. Thesoundnessof the type
systemis thenproved in Section4, which arguesthat ev-
ery well-typedmulti-threadedprogramsatisfiesprobabilis-
tic noninterference.Finally, Section5 concludesandmen-
tionssomefuturedirections.

2 The Multi-Thr eadedLanguage

Threadsarewritten in thesimpleimperative language:

(phrases) 6 �7��� ��8:9
(expressions) � �7��� ;8<�=8<� � ,>� � 8

� �@? � � 8<� � ��� � 8&ABA�A
(commands) 9 �7��� �������8

skip 8
if � then 9 � else 9 � 8
while � do 9(8
9 � *C9 � 8
protect 9

2

In our syntax,metavariable rangesover identifiersand �
over integer literals. Integersaretheonly values;we use0
for falseandnonzerofor true. We assumethatexpressions
arefreeof sideeffectsandaretotal. Thecommandprotect 9
causes9 to be executedatomically; this is importantonly
whenconcurrency is considered.

Programsare executedwith respectto a memory D ,
which is a mappingfrom identifiersto integers. Also, we
assumefor simplicity thatexpressionsareevaluatedatom-
ically; thuswe simply extenda memory D in the obvious
way to mapexpressionsto integers,writing DE-F�G0 to denote
thevalueof expression� in memoryD .

We definethe semanticsof commandsvia a sequential
transitionrelation %IH on configurations.A configurationJ

is eithera pair -F9GK2DL0 or simply a memory D . In thefirst
case,9 is the commandyet to be executed;in the second
case,the commandhasterminated,yielding final memory
D . The sequentialtransitionrelationis definedby the fol-
lowing (completelystandard)structuraloperationalseman-
tics:

(UPDATE) �M dom-NDL0
-F������OKPDL01%QHRDES ����$DE-F�G0UT

(NO-OP) - skip K2DL01%VHWD
(BRANCH) DE-X�Y0:Z���

- if � then 9 � else 9 � KPDL0[%VH�-X9 � K2DL0
DE-X�Y0E���
- if � then 9 � else 9 � KPDL0[%VH�-X9 � K2DL0

(LOOP) DE-X�Y0E���
- while � do 9GK2DL01%VHWD
DE-X�Y0:Z���
- while � do 9GK2DL01%VH�-F9* while � do 9GKPDL0

(SEQUENCE) -X9 � K2DL01%VHWD^]
-X9 � *C9 � K2DL01%IH�-F9 � KPD^]_0
-X9 � K2DL01%VH�-F9[]� KPD^]_0
-X9 � *C9 � K2DL01%IH�-F9[]� *29 � KPD^]_0

(ATOMICITY) -X9GKPDL0[%VH'`[D^]
- protect 9GK2DL01%VHWD^]

In rule (ATOMICITY), notethat(asusual) %VHa` denotesthe
reflexivetransitiveclosureof %VH .

Notethatour sequentialtransitionrelation %VH is deter-
ministicandtotal (if someobviousrestrictionsaremet):

Lemma 2.1 If everyidentifierin 9 is in dom-NDL0 andnosub-
commandinvolvingwhile is protectedin 9 , thenthere is a
uniqueconfiguration

J
such that -F9GK2DL01%VH J .

Also, the behavior of sequentialcompositionis charac-
terizedby thefollowing two lemmas:

Lemma 2.2 If -F9 � KPDL0b%VHWcdD^] and -F9 � KPD^]_0�%VHfe&D^]] , then
-F9 � *29 � KPDL0g%IH>cihVejD^]] .
Lemma 2.3 If -F9 � *29 � KPDL01%QHke�D^] , thenthere exist l and D^]]
such that �#malEmfn , -X9 � KPDL01%QHWcFD^]] , and -F9 � KPD^]]o01%VHfe[pVcXD^] .

Themulti-threadedprogramsthatwe considerherecon-
sistsimplyof asetof commands(thethreads)runningcon-
currentlyundera sharedmemoryD . We modelthis setasa
threadpool q , which is a finite functionfrom threadiden-
tifiers (r , s , . . .) to commands.A pair -tq)KPDL0 , consisting
of a threadpool and a sharedmemory, is called a global
configuration.

A multi-threadedprogramis executedin aninterleaving
manner, by repeatedlychoosinga threadto run for a step.
We assumethat the choiceis madeprobabilistically, with
eachthreadhaving anequalprobabilityof beingchosenat
eachstep—thatis, we assumea uniform threadscheduler.
We formalize this by defining a global transitionrelationu�^v on globalconfigurations:

(GLOBAL) q#-Frw0x��9
-F9GK2DL01%VHWD^]
6y�z�G{+8 q|8
-Xq)K2DL0 u�^v}-Xq}%frxK2D^]o0
q#-Frw0x��9
-F9GK2DL01%VH�-F9�]FK2D^]_0
6y�z�G{+8 q|8
-Xq)K2DL0 u�^v}-Xq#S rW����9[]�T~KPD^]_0
-��!��K2DL0

�
�^v�-U����K2DL0

The judgment -Xq)K2DL0 u�^v}-tq�]XK2D^]i0 assertsthat the probabil-
ity of going from globalconfiguration-tq)KPDL0 to -Xq�]tK2D^]_0 is
6 . Notethat q(%Rr denotesthethreadpool obtainedby re-
moving threadr from q , and q#S r>���/9�]�T denotesthethread
pool obtainedby updatingthecommandassociatedwith r
to 9[] . Thethird rule (GLOBAL), which dealswith anempty
threadpool,allows usto view a multi-threadedprogramas
adiscreteMarkov chain[4]. Thestatesof theMarkov chain
areglobal configurationsandthe transitionmatrix is gov-
ernedby

u�^v .

3 The Type System

Our typesystemis baseduponthefollowing types:

(datatypes) � �7��� � 8<�
(phrasetypes) � �7��� � 8 � var 8 � � cmd � � 8� cmd �

3

(R-VAL) �w-FV0x� � var
�.���� �

(INT) �����k� �

(SUM) �.�y� � � � K����y� � � �
�.�y� � ,>� � � �

(ASSIGN) �w-FV0x� � var K������b� �
�.���������� � cmd �

(SKIP) ��� skip ��� cmd �
(IF) �.�y�!� �

�.�y9 � � � cmd �
�.�y9 � � � cmd �
�.� if � then 9 � else 9 � � � cmd ��,/�
�.�y�!� ���� � 4 � �
�.�y9 � � � � cmd ���
�.�y9 � � � � cmd ���
�.� if � then 9 � else 9 � � �B� cmd �Y�@�y� �

(WHILE) �.�y�!� ������ 4 �B�
� � 4 �B�
�.�y9:� ��� cmd � �
�.� while � do 9<� � � cmd � � �����

(COMPOSE) �.�y9 � � � cmd �
�.�y9 � � � cmd �
�.�y9 � *C9 � � � cmd ��,W�
�.�y9 � � � � cmd � �� � 4 �B�
�.�y9 � � ��� cmd �[�
�.�y9 � *C9 � � ���E��� � cmd �B�x�y� �

(PROTECT) �.�y9:� ��� cmd ���
9 containsno while loops
�.� protect 9<� � � cmd �

Figure 1. Typing rules

4

(BASE)
�a4 �

(CMD) �]� 4 ��� K ��� 4 �]�� � cmd � � 4 �]� cmd �]�
�] 4 �� cmd � 4 �] cmd �
� cmd � 4 � cmd

�

(REFLEX) � 4 �
(TRANS) � � 4 � � K�� � 4 � �

� � 4 � �

(SUBSUMP) �.�b6��\� � K�� � 4 � �
�.�b6��\� �

Figure 2. Subtyping rules

The rulesof the type systemaregiven in Figures1 and2.
In therules(IF), (WHILE), and(COMPOSE), � denotesjoin
(least upper bound) and � denotesmeet(greatestlower
bound). The rulesallow us to prove typing judgmentsof
the form �/�f6���� aswell assubtypingjudgmentsof the
form � � 4 � � . Here � denotesanidentifiertyping, mapping
identifiersto phrasetypesof the form � var. As usual,we
saythatphrase6 is well typedunder� if ���b6��\� for some
� . Similarly, threadpool q is well typedunder � if each
threadin q is well typedunder� .

As anexample,let’sshow thederivationof thetypingof
example7 from theIntroduction:

���������� +* while),�� do skip � � cmd �fK
assumingthat �@-NQ0x��� var and �@-N�+0E� � var. We have

�.�� �� � (1)

by rule (INT). Thenwe get

�.�������� 3� � cmd � (2)

by rule (ASSIGN) on (1), and

�����y���} �� � cmd
�

(3)

by rule (SUBSUMP) on (2) usingthethird rule (CMD). Next
wehave

�.��;�!� (4)

from rule (R-VAL) and

�.����� � (5)

by rule (INT), which gives

�.���}�!� (6)

by rule (SUBSUMP) on (5) usingrule (BASE), and

�.��),����!� (7)

by rule (SUM) on (4) and(6). Next

��� skip �!� cmd � (8)

by rule (SKIP), andhence

�.� skip ��� cmd
�

(9)

by rule (SUBSUMP) on (8) using the third rule (CMD).
Henceweget

��� while),�� do skip ��� cmd � (10)

by rule (WHILE) on (7) and (9), since � 4 � (by rule
(REFLEX)) and

�a4 � (by rule(BASE)), andsince� � � �
� . And finally, we get

�.�������} �* while),/� do skip � � cmd � (11)

by thesecondrule (COMPOSE) on (3) and(10), since
�34

� ,
� � ��� � , and

� � ���/� .
We now givesomediscussionof thetyping rules.
The first (IF) rule saysthat an if statementtakes ��,��

stepsif bothits branchestake � steps.This rule cansome-
times be usedto “pad” a commandto eliminate timing
leaks,asin thetransformationapproachproposedby Johan
Agat [1]. For example,if ���� and ��� � , thenthethread

if ���� then
����/ ? �*@����$?

else
����/),�� ;

�����/�

5

is dangerous,becausethetime at which � is assigned0 de-
pendson thevalueof . And thisprogramis notwell typed
underourrules—thethenbranchof theif hastype � cmd "
and the elsebranchhastype � cmd � , which meansthat
the first (IF) rule doesnot apply. Insteadwe mustcoerce
thetwo branchesto type � cmd

�
andusethesecond(IF)

rule, which givesthe if type � cmd � . But this makesit
illegal (underthe secondrule (COMPOSE)) to sequentially
composethe if with theassignment�.���(� , which hastype�

cmd � , and ��Z4$� . To maketheprogramwell typed,we
canpadtheelsebranchto ����/b,a��* skip, whichhastype
� cmd " . Now we cantype the if usingthe first (IF) rule,
giving it type � cmd � , and then we can give the thread
type

�
cmd � , using the first rule (COMPOSE). It should

be noted,however, that Agat’s transformationapproachis
moregeneralthatwhatwe canachievehere.

Thesecondrule (IF) is rathercomplex. Onemight hope
thatwecouldexploit subtypingto simplify therule,but this
is not possiblehere.We would not wantto coercethetype
of � upto �B� , becausethenit wouldappearthattheexecution
time of the if dependson � � variables.Nor would we want
to coercethetypesof 9 � and 9 � to � � cmd ��� , becausethen
it wouldappearthatthe if canassignto � � variables.

Wecan,however, specializethesecondrule(IF) to apair
of rules in the casewhere

�
and � are the only security

levels;thesamespecializationcanbedoneto rule (WHILE)
and the secondrule (COMPOSE). The specializedtyping
rulesareshown in Figure3.

The constraint� � 4 ��� in rule (WHILE) is perhapssur-
prising,1 but the typing rulesareunsoundwithout it. The
problemis that while � do 9 implicitly involvessequential
compositionof 9 andthe entireloop, asshown in the sec-
ond rule (LOOP). As a result, if 9 ’s runningtime depends
on � variables,then 9 mustnot assignto

�
variables.For

example,if is � and � is
�

, thenwithout the constraint� � 4 ��� in rule (WHILE), the following programwould be
well typed:

while � do
(�y������,�� ; while do skip)

Notethat �������E,�� hastype
�

cmd
�

andwhile do skip
hastype � cmd � , so the loop body hastype

�
cmd � .

Hence,without the constraint��� 4 � � , the while loop can
begiventype

�
cmd � . But theloop is dangerous—if��

� , then � is incrementedonly once,andif �Z��� , then � is
incrementedrepeatedly.

Finally, we notethatprotect 9 takesa commandthat is
guaranteedto terminateandmakesit appearto run in just
onestep.This givesanotherway of dealingwith theexam-
ple programdiscussedabove; ratherthanpaddingthe else
branch,we canjust protect the if (or just its then branch),

1Indeed,I did not originally noticetheneedfor it.

therebymaskingany timing differencesresultingfrom dif-
ferentvaluesof .

4 Propertiesof the TypeSystem

In this section,we formally establishthe propertiesof
thetypesystem.Webegin with a lemmathatshowsthatthe
typesystemdoesnotrestricta threadatall unlessthethread
involvesboth

�
and � variables:

Lemma 4.1 Anycommandinvolvingonly
�

variableshas
type

�
cmd

�
. Any commandinvolving only � variables

hastype � cmd � .

Note this is certainly not the casefor the type systemof
[13], since(for example)thatsystemdisallows � variables
in theguardsof while loops.

Now weestablishthesoundnessof thetypesystem.

Lemma 4.2(Simple Security) If �R����� � , thencontains
only

�
variables.

Proof. By inductionon thestructureof � .
Lemma 4.3(Confinement) If ����9��<� cmd � , then 9
doesnot assignto any

�
variables.

Proof. By inductionon thestructureof 9 .
Lemma 4.4(SubjectReduction) Supposethat -X9GKPDL0[%QH
-F9[]XKPD^]o0 . If ����9R� � � cmd � � , then �3�z9[])� � � cmd � � .
Andif �.�y9<� � cmd � then ���y9[]^� � cmd -F�y%a��0 .
Proof. By inductionon thestructureof 9 .

The resultholdsvacuouslyif 9 is of the form ����=� ,
skip, or protect 9[] .

If 9 is of theform if � then 9 � else9 � , then 9[] is either 9 �
or 9 � . Now, if 9 hastype � cmd � , then it mustbe typed
by thefirst rule (IF), which impliesthatboth 9 � and 9 � have
type � cmd -N��%'�Y0 . And if 9 hastype � � cmd � � , then it
is typed either with the first rule (IF) (using the fact that� � cmd � 4 � � cmd � �), or with the secondrule (IF). In
thefirst case,9 � and 9 � have type � � cmd � , which implies
that they alsohave type �Y� cmd �B� . In the secondcase,9 �
and 9 � have type ��� cmd � � , for some� � with � � 4 ��� . So
they have type ��� cmd ��� aswell, by rule (SUBSUMP).

If 9 is of the form while � do 9 � , then 9�] is of the form
9 � *C9 . In this case, 9 cannothave type � cmd � ; it must
have type ��� cmd ��� by rule (WHILE). Hence 9 � hastype��� cmd � � for some� � with � � 4 ��� and� � 4 ��� . Therefore,
by thesecondrule (COMPOSE), 9 � *29 hastype �Y� cmd �B� .2

Finally, if 9 is of the form 9 � *C9 � , then 9[] is either 9 � (if
-F9 � KPDL0[%VHRD^]) or 9[] � *29 � (if -F9 � K2DL01%VH�-F9[]� KPD^]_0). If 9 hastype

2Notethatthis laststepwould fail without theconstraint�P�d���1� .

6

(IF) ���y��� �
���y9 � � ��� cmd ���
���y9 � � ��� cmd ���
��� if � then 9 � else 9 � � � � cmd � �
���y�����
���y9 � ��� cmd �
���y9 � ��� cmd �
��� if � then 9 � else 9 � ��� cmd �

(WHILE) ���y��� �� � 4 � �
���y9:� � � cmd � �
��� while � do 9<� ��� cmd ���

���y�����
���y9:��� cmd �
��� while � do 9<��� cmd �

(COMPOSE) ���y9 � � � � cmd
�

���y9 � � � � cmd � �
���y9 � *C9 � � �Y� cmd �B�

���y9 � � � cmd �
���y9 � ��� cmd �
���y9 � *C9 � � � cmd �

Figure 3. Typing rules specialized to
�

and �

� cmd � , thenit mustbetypedby thefirst rule (COMPOSE)
which meansthat 9 � has type � cmd � and 9 � has type� cmd � for some � and � with �),$�g�5� . If 9[] is 9 � , then
we musthave �W��� , so 9 � hastype � cmd -F�.%'�Y0 . If 9]
is 9�] � *29 � , thenby induction 9�] � hastype � cmd -X�&%'�Y0 , and
therefore9[] hastype � cmd -X�)%a�d,>�X0!� � cmd -N�.%'�Y0 .
And if 9 has type ��� cmd ��� , then it must be typed by
the secondrule (COMPOSE) which meansthat 9 � hastype� � cmd � � and 9 � has type ��� cmd ��� , for some � � , � � ,��� , and ��� satisfying the subtypingconstraints� � 4 �B� ,� � 4 �B� , �B� 4 ��� , ��� 4 � � , and ��� 4 �B� . Now, if 9�]
is 9 � , thenby rule (SUBSUMP) it alsohastype �Y� cmd �B� ,
since ��� cmd ��� 4 ��� cmd ��� . And if 9[] is 9[] � *29 � , thenby
induction 9[] � hastype � � cmd � � , andtherefore9[] hastype��� cmd ��� .
Lemma 4.5 If ���(9R� � cmd � and dom-FDL0y� dom-o�^0 ,
then -X9GKPDL0[%VH>D] for someD] .
Proof. Theonly commandswith type � cmd � are W���3� ,
skip, andprotect 9 � . The result is immediatein the first
two cases;in the caseof protect 9 � we note that if 9 � is
well typedandfreeof while loops,then 9 � is guaranteedto
terminate.

Definition 4.1 MemoriesD and are equivalentwith re-

spectto � , written D�¡:¢O , if D , , and � havethesamedo-
mainand D and agreeon all

�
variables.

We now explore thebehavior of a well-typedcommand
9 whenrun undertwo equivalentmemories.We begin with
aMutual Terminationlemmafor while-freeprograms:

Lemma 4.6(Mutual Termination) Let 9 be a command
containingnowhile loops.If 9 is well typedunder� , D�¡ ¢ ,
and -X9GKPDL0[%QHa`1D^] , thenthere is a �] such that -X9GKC £01%QHa`B �]
and D^]_¡ ¢ �] .
Proof. Similar to Lemma5.6of [13].

In thecontext of multi-threadedprograms,however, it is
notenoughto consideronly thefinal memoryresultingfrom
theexecutionof 9 (asin theMutualTerminationlemma);we
mustalsoconsidertiming. Thekey propertythatletsuses-
tablishprobabilisticnoninterferenceis this: if a well-typed
command9 is runundertwo equivalentmemories,it makes
exactly thesamesequenceof assignmentsto

�
variables,at

thesametimes. Hencethetwo memorieswill remainequiv-
alentafterevery executionstep. (Notehowever that 9 may
terminatefasterunderonememorythantheother;but then
the slower executionwill not make any moreassignments
to
�

variables.)

7

Here’sanexamplethatillustratessomeof theworkingof
the type system.Supposethat 9 is a well-typedcommand
of theform

- if � then 9 � else 9 � 01*29 � A
What happenswhen 9 is run undertwo equivalent mem-
ories D and ? If ��� � , then DE-X�G0W�¤ ¥-X�Y0 by Simple
Security, andhenceboth executionswill choosethe same
branch. If, instead, �/�:� , then the two executionsmay
choosedifferentbranches.But if the if is typedusingthe
first rule (IF), thenboth brancheshave type � cmd � for
some � . Thereforeneitherbranchassignsto

�
variables,

by Confinement,andbothbranchesterminateafter � steps,
by SubjectReduction.Hencebothexecutionswill reach9 �
at thesametime,andthememorieswill still beequivalent.
And if the if is typedusingthesecondrule (IF), thenit gets
type � cmd � , whichis alsothetypegivento eachbranch.
Again, neitherbranchassignsto

�
variables,by Confine-

ment.Now, in thiscasethetwo branchesmaynot terminate
at thesametime—indeed,onemayterminateandtheother
maynot. But theentirecommand- if � then 9 � else 9 � 01*C9 �
will haveto betypedby thesecondrule(COMPOSE), which
meansthat 9 � ��� cmd � . Hence9 � makesnoassignments
to
�

variables,which meansthat,asfar as
�

variablesare
concerned,it doesn’t matterwhen(or even whether) 9 � is
executed.

To formalizetheseideas,we needto definea notion of
equivalenceon configurations;thenwe canarguethat %IH
takesequivalentconfigurationsto equivalentconfigurations.
But first wemakesomeobservationsaboutsequentialcom-
position. Any command9 canbe written in the standard
form

-�ABA�AB-2-F9 � *29 � 01*C9 � 01*�ABA�A�01*C9�¦
for some �>§¨� , where 9 � is not a sequentialcomposition
(but 9 � through9�¦ mightbesequentialcompositions).If we
adopttheconventionthatsequentialcompositionassociates
to theleft, thenwe canwrite this moresimply as

9 � *C9 � *C9 � *BA�A�AB*29�¦�A
Now, if 9 is executed,it followsfrom the(SEQUENCE) rules
thatthefirst executionsteptouchesonly 9 � ; thatis, wehave
either

-X9 � *C9 � *C9 � *BA�A�AB*29 ¦ KPDL01%QH�-X9 � *C9 � *BA�A�AB*29 ¦ KPD] 01K
if -F9 � KPDL0[%IH>D^] , or else

-X9 � *C9 � *C9 � *BA�A�AB*29 ¦ KPDL01%QH�-X9] � *C9 � *C9 � *BA�A�AB*29 ¦ KPD] 01K
if -X9 � K2DL01%VH�-F9] � KPD] 0 . Now we defineour notionof equiva-
lenceoncommands:

Definition 4.2 We saythat commands9 and © are equiva-
lentwith respectto � , written 9B¡:¢�© , if 9 and © arebothwell
typedunder � andeither

 9j��© ,

 9 and © bothhavetype � cmd � , or

 9 hasstandard form 9 � *29 � *29 � *�ABA�A[*C9�¦ , © hasstandard
form © � *C9 � *C9 � *BA�ABA�*29B¦ , for some� , and 9 � and © � both
havetype � cmd � for some� .

We extend the notion of equivalenceto configurationsby
sayingthatconfigurations

J
and ª areequivalent,writtenJ ¡:¢�ª , if any of thefollowing four casesapplies:

 J is of theform -F9GK2DL0 , ª is of theform -X©£K« +0 , 9B¡:¢O© ,
and D�¡:¢¬ .

 J is of theform -F9GK2DL0 , ª is of theform , 9 hastype
� cmd � , and D�¡:¢O .

 J is of theform D , ª is of theform -X©£K« +0 , © hastype
� cmd � , and D�¡:¢O .

 J is of theform D , ª is of theform , and D�¡ ¢ .
(In effect, we aresayingthata commandof type � cmd �
is equivalentto a terminatedcommand.)

Theorem4.7(SequentialNoninterference) Supposethat
-F9GK2DL02¡ ¢ -F©IKC +0 , -X9GKPDL0[%VH J] , and -X©£K« +01%¥HWª�] . ThenJ] ¡ ¢ ª] .
Proof. Webeginbydealingwith thecasewhen 9 and © both
have type � cmd � , for some� . In this case,by the Con-
finementLemma,neither9 nor © assignsto any

�
variables.

Hencethememoriesof
J] and ª�] remainequivalent.Now,

if
J] is of the form -X9[]tKPD^]_0 and ª�] is of the form -F©O]tKC �]o0 ,

thenby theSubjectReductionLemma, 9[] and ©�] bothhave
type � cmd � , which gives 9�]_¡:¢O©�] . Thecaseswhen

J] is
of theform D^] and/or ª�] is of theform �] aresimilar.

Now considerthe casewhere 9 and © do not both have
type � cmd � . Let 9 have standardform 9 � *29 � *C9 � *BA�A�A�*29�¦ .
We canseefrom thedefinitionof ¡ ¢ thateither 9:�}© or ©
hasstandardform © � *29 � *C9 � *BA�A�A�*29 ¦ , where 9 � and © � both
havetype � cmd � for some� .

In the latter case,we have by the ConfinementLemma
that neither 9 � nor © � assignsto any

�
variables. Hence

the memoriesof
J] and ª�] areequivalent. And if �}�� ,

thenby theSubjectReductionLemma,
J] and ª�] areof the

form -F9] � *29 � *29 � *�A�ABA�*C9�¦¬KPD] 0 and -X©] � *29 � *29 � *�ABA�AB*29�¦¬K«] 0 , re-
spectively, where9[] � and ©�] � bothhavetype � cmd -N�.%a��0 .
Thus

J]N¡:¢�ª�] . And if �®�¯� , then
J] and ª�] are of

theform -F9 � *29 � *�A�ABA�*C9�¦¬KPD^]_0 and -F9 � *29 � *�ABA�A[*C9�¦¬KC +]i0 , respec-
tively.3 Soagain

J]_¡:¢Oª�] .
We areleft, finally, with thecasewhere 9°��© . Let them

have standardform 9 � *C9 � *C9 � *BA�ABA�*29 ¦ and considerin turn
eachof thepossibleformsof 9 � :

3Actually, if ±y²�³ then ´¶µ and ·¸µ are just ¹�µ and º�µ here. We’ll
ignorethis point in therestof this proof.

8

Case������ . In this case,we havethat
J] is

-X9 � *C9 � *BA�ABA�*29B¦OKPDES �����DE-F�G0UTo0
and ª�] is

-F9 � *29 � *�ABA�A�*C9 ¦ K« ¥S ����} ¥-F�G0~TN01A
Now if is � , then DES ����®DE-F�G0UTN¡:¢¬ ¥S »���� ¥-F�G0~T .
And if is

�
, thenby rule (ASSIGN) �>� � . Hence

DE-F�G0E�} ¥-F�G0 by SimpleSecurity, soagain

DES ����$DE-X�G0~TF¡:¢¬ ¥S ����� ¥-X�G0~T~A
Therefore

J]o¡ ¢ ª�] .
Caseskip. In this case

J] is -X9 � *C9 � *BA�ABA[*29�¦�KPDL0 and ª] is
-F9 � *29 � *�ABA�A�*C9�¦OKC £0 . So

J]o¡:¢Oª�] .
Caseif � then 9 �2� else 9 �P� . If �y� � , thenby SimpleSecu-

rity DE-X�Y0)�; ¥-F�G0 . Hence
J] and ª�] both choosethe

samebranch.Thatis, either
J] �3-F9 �2� *29 � *29 � *�ABA�A[*C9�¦¬KPDL0

and
ª] ��-F9 �C� *C9 � *C9 � *BA�ABA�*29B¦OKC +0[K

or else J] �3-F9 ��� *29 � *29 � *�ABA�A[*C9�¦¬KPDL0
and

ª] ��-F9 �P� *C9 � *C9 � *BA�ABA�*29B¦OKC +0[A
So
J]N¡ ¢ ª�] .

If � doesn’t have type
�

, thenif 9 � is typedby thefirst
rule (IF), thenwe have that 9 �2� and 9 ��� bothhave type
� cmd � for some � . Therefore,whetheror not

J]
and ª] take thesamebranch,wehave

J] ¡ ¢ ª] .
And if 9 � is typedby thesecondrule (IF), thanit gets
type � cmd � . But, by rule (COMPOSE), this means
that 9 � *29 � alsohastype � cmd � . Thisin turnimplies
that 9 � *C9 � *C9 � hastype � cmd � , andsoon, until we
get that 9 hastype � cmd � . So, since 9��;© here,
thiscasehasalreadybeenhandled.

Casewhile � do 9 �2� . As in the caseof if , if �(� � , then
by Simple Security DE-F�G0z�¯ ¥-F�G0 . Hence the two
computationsstay together. That is, either

J]��
-F9 � *29 � *�ABA�A�*C9�¦OKPDL0 and ª�]V��-F9 � *29 � *�ABA�AB*29�¦OK« +0 , or else

J] �3-F9 �2� * while � do 9 �2� *29 � *29 � *�ABA�A�*C9�¦OKPDL0
and

ª] �3-F9 �C� * while � do 9 �C� *C9 � *C9 � *BA�ABA�*29B¦¬KC +0[A
So
J] ¡:¢Oª] .

If � doesn’t havetype
�

, thenby rule(WHILE) wehave
that 9 � �L� cmd � . As in the caseof if , this implies
that 9b�¬� cmd � , sothis casehasagainalreadybeen
handled.

Caseprotect 9 �2� . By rule (PROTECT), 9 �C� contains no
while loops.Hencethis casefollows from theMutual
Terminationlemma.

We remarkherethat if 9 is well typedand D�¡:¢¬ , then
-F9GK2DL02¡ ¢ -F9GK« +0 . Hence,by applying the SequentialNon-
interferenceTheoremrepeatedly, we see that, for all � ,
the configurationreachedfrom -X9GKPDL0 after � stepswill be
equivalentto the configurationreachedfrom -X9GKC £0 after �
steps. Hence,as we claimed above, the two executions
make exactly the sameassignmentsto

�
variables,at the

sametimes.
Now we changeour focusfrom the executionof an in-

dividual thread 9 , which is deterministic,to the execution
of a pool of threads q , which is a Markov chain. Our
first thought,given the SequentialNoninterferenceTheo-
rem,maybethat if q is well typedand D�¡:¢O , then -Xq)K2DL0
and -Xq)K« +0 give rise to the same(i.e. isomorphic)Markov
chains.But this isn’t quiteright. For example,supposethat
q is �Yr;�b-N¼���® ? V01K½s;��-N¼���®�,���01� . If is
� , thenmemories��/����� and �B��®�\� areequivalent.
But running q from �B��¾�+� givesa Markov chainwith
4 states: -Xq)K��B��¨���G0 , -U��s��¿-N(���À�,���01��K��B$�¨�+�Y0 ,
-U�Yr��g-F����; ? V01��K��B��®�\�G0 , and -U����K[��$�Á�\�Y0 ; and
running q from �BÀ�Â�\� gives a Markov chain with 5
states: -Xq)K[��3�Ã�\�G0 , -U��s¨��-F����Á�,5�Y0«�OK[�B��Ã���Y0 ,
-U�YrÃ�.-FÁ���Ä ? Q0«�OK[�B��Å"��Y0 , -U���OK[��;�Å"��Y0 , and
-U����K[��Æ�Â�+�G0 . Note however that the last two states,
-U����K[����Ã"��Y0 and -����OK[�B¼�Ç�+�G0 shouldbe considered
equivalent;thuswe might feel that the two Markov chains
arebasicallythesameafterall.

Formally, whatweneedis toconstructaquotientMarkov
chain. That is, given a Markov chainwith stateset È and
an equivalencerelation ¡ on È , we’d like to form a new
Markov chain ÈL{B¡ whosestatesaretheequivalenceclasses
of È under ¡ . But when is this possible? Kemeny and
Snell,whoreferto theissueas“lumpability”, identifiedthe
neededconditionlongago[7, p. 124]:

If É � ¡�É � , thenfor eachequivalenceclassÊ , the
probabilityof goingfrom É � to a statein Ê is the
sameastheprobabilityof goingfrom É � to astate
in Ê : Ë

Ì�Í�Î 6QÏPÐ
Ì �

Ë
Ì�Í�Î 6VÏUÑ

Ì

(Here6VÏ2Ð Ì denotestheprobabilityof goingin onestepfrom
É � to Ò in theoriginal Markov chain.) In this case,we can
definethe transitionprobabilitiesfor È�{¥¡ asfollows: the
probability of going from equivalenceclass Ê to equiva-
lenceclassÓ , denoted6 Î¥Ô , is Õ�Ö Í�Ô 6 Ì Ö , whereÒ is any el-
ementof Ê ; theaboveconditionsaysexactlythatthechoice
of Ò makesno difference. Within computerscience,this

9

idealaterappearedin thework of LarsenandSkou[8], who
(noting the analogyto bisimulation) introducedthe name
probabilistic bisimulationfor suchan equivalencerelation
¡ . In morerecentwork, Hermanns[5] includesa lengthy
discussionof probabilisticbisimulation,andSabelfeldand
Sands[9] applyit to probabilisticnoninterference.

Thekey propertyof ÈL{�¡ is this [5, p. 49]:

Theorem4.8 Supposethat ¡ is a probabilistic bisimula-
tion. Thenfor each starting state É , equivalenceclass Ê ,
and integer � , the probability that È , starting from É , will
endup in a statein Ê after � stepsis equalto theprobabil-
ity that È�{�¡ , starting from S É�T (theequivalenceclassof É),
will endup in stateÊ after � steps.

Now, returningto our specificsystem,we want to de-
fine a probabilisticbisimulation,which we’ll still call ¡:¢ ,
on thesetof globalconfigurations-tq)KPDL0 . Underthe(more
restrictive) type systemof [13], it would suffice to define
-Xq � KPDL0C¡:¢V-tq � KC £0 if f q � �®q � and D�¡:¢¬ . But herewe
needa loosernotion, since(as discussedabove) the exe-
cutionsof a well-typed command9 undertwo equivalent
memoriesD and canbequitedifferent.Roughly, wewant
to have -tq � KPDL0C¡ ¢ -tq � KC £0 if D�¡ ¢ and q � -Frw02¡ ¢ q � -Frw0 for
all r . But actually q � and q � couldhavedifferentdomains,
sincechangingthevaluesof � variablescanaffect therun-
ningtimeof well-typedcommands.Sowe’d like to saythat
q � canhave extra threadsin it, so long asthey have type
� cmd � , (andsimilarly for q �). Unfortunately, this won’t
work within our framework of probabilisticbisimulation,
becausethe transitionprobabilitieswill not be thesamein
this case.For example,if q � �5�Yr$�L-N�����¼��01K�sa� skip �
and q � �(�YrR�£-N�����z��01� , where� is

�
, then -Xq � K[�B�#���+�Y0

goesto -�����K��B�)���\�G0 with probability1, but -Xq � K[�B�#���+�Y0
goesto theequivalentconfiguration-��Bs$� skip ��K[���y�����Y0
with probabilityonly �Y{�" .4

Soto getaprobabilisticbisimulation,weneedastronger
definitionthatrequiresequalityof domains:

Definition 4.3 -Xq � K2DL02¡:¢V-Xq � K« +0 if dom-tq � 0¸� dom-Xq � 0 ,
q � -Frw02¡:¢�q � -Frw0 for all rRM dom-tq � 0 , and D�¡:¢O .
And, regrettably, we have to changeour rule (GLOBAL) to
preventthethreadpool domainfrom everchanging:

(GLOBAL) q#-Frw0d��9
-F9GK2DL01%VHWD^]
6y���G{+8 q|8
-Xq)KPDL0 u�^v}-Xq#S r>��� skip T~KPD^]_0
q#-Frw0d��9
-F9GK2DL01%VH�-F9[]tK2D^]i0
6y���G{+8 q|8
-Xq)KPDL0 u�^v}-Xq#S r>���/9�]×T~KPD^]_0

4Note that intuitively thereis no information leakagehere; it’s just a
questionof oneprogramrunningmoreslowly thantheother, which is not
observableinternally.

Thenew semanticssays,in effect, thata completedthread
remainsalive, wastingprocessortime.5 With this change,
wecannow provewhatwe want:

Theorem4.9 ¡:¢ is a probabilisticbisimulationon theset
of global configurations.

Proof. Supposethat -Xq)K2DL02¡ ¢ -Xq�]tKC +0 and supposethat
dom-tq!0 anddom-Xq�]N0 are �Yr � K2r � K�ABA�ABK2r¶ØV� . Then -Xq)K2DL0
and -Xq�]tK« +0 can each go to � (not necessarilydistinct)
global configurations, -Xq � K2D � 0 , -Xq � KPD � 0 , . . . , -tq Ø K2D Ø 0 ,
and -Xq]� K« � 0 , -Xq]� K« � 0 , . . . , -tq]Ø KC Ø 0 , eachwith proba-
bility �G{Y� , where -Xq c K2D c 0 and -tq�]c KC c 0 denotethe global
configurationsreachedby choosingthreadr c . Now, since
q#-Fr c 02¡:¢Oq�]~-Xr c 0 , we have by the SequentialNoninterfer-
enceTheoremthat -Xq c KPD c 02¡:¢I-tq�]c KC c 0 for all l . This im-
pliesthattheprobabilitiesof reachingany equivalenceclass
from -tq)KPDL0 or from -tq�]XK« +0 arethesame.

Finally we can argue that well-typed programssatisfy
probabilisticnoninterference:if q is well typedand D�¡ ¢ ,
then -Xq)K2DL02¡ ¢ -Xq)KC £0 . Hence,by Theorem4.8, the proba-
bility thatthe

�
variableshavecertainvaluesafter � stepsis

the samewhenstartingfrom -Xq)K2DL0 aswhenstartingfrom
-Xq)K« +0 .

5 Conclusion

The new type systemallows probabilistic noninterfer-
enceto beguaranteedfor a muchlargerclassof programs
thanpreviously permitted. In particular, thereseemsto be
hopethatthesystemmightnotbetoohardto accommodate
in practice,sinceany threadsthat involve only � variables
or only

�
variablesareautomaticallywell typed.

As in previouswork, we haveassumedthatprogramex-
ecutionis observableonly internally; with externalobser-
vationsof running time, timing leaksare certainly possi-
ble, becauseprotected commandswon’t really executein
onetime step. However, if a programis well typedwith-
out theuseof protect, thenit seemspossiblein principleto
allow externalobservations,except that our simpletiming
model is unrealistic. For example,our semanticsspecifies
that ����/ ? andskip eachexecutein 1 step,whichseems
to requireanimplementationthatwastesa lot of time. Agat
[2] hasrecentlyattemptedto tackleexternaltiming leaksin
the realisticsettingof Java byte-codeprograms,which re-
quirestheconsiderationof a hostof delicatetiming issues,
suchascaching.

On theotherhand,if we areconcernedonly with inter-
nal timing leaks, then we don’t really needsuchprecise

5Also notethatwe actuallyhave to do somesummingin our Ù²OÚ re-
lation, sincenow it maybepossiblefor ÛoÜ¸ÝF¹¬Þ to reach Û_ÜwµFÝF¹�µoÞ in more
thanoneway; see[9, p. 202].

10

timings. In particular, if doesn’t matter to us how much
time »���Ç ? and skip actually take, so long as rule
(GLOBAL) is implementedfaithfully, which meanssimply
that the schedulerrandomlypicks a new threadafter each
computationstep. Of course,doing schedulingwith such
fine granularitywould appearto involve high overhead;it
remainsto be seenwhetheracceptableperformancecould
beachievedwith suchascheduler. This needsmorestudy.

In other future work, it would be desirableto find a
weaker notion of probabilisticbisimulationthat would al-
low our original rule (GLOBAL) to beused.Also, it would
be usefulto investigatetype inferencefor the new system,
presumablyusing the approachof [12]. Finally, it would
be valuableto integratecryptographyinto the framework
of this paperby usinga weaker notion of noninterference
basedoncomputationalcomplexity; somepreliminarysteps
in this directionhavebeenmade[14, 11].

6 Acknowledgments

This work waspartially supportedby the NationalSci-
enceFoundationundergrant CCR-9900951. I am grate-
ful to Andrei Sabelfeld,David Sands,DennisVolpano,and
theanonymousreviewersfor their usefulcommentson this
work.

References

[1] J. Agat. Transformingout timing leaks. In Proceedings
27thSymposiumon Principlesof ProgrammingLanguages,
pages40–53,Boston,MA, Jan.2000.

[2] J. Agat. TypeBasedTechniquesfor Covert ChannelElimi-
nationandRegisterAllocation. PhDthesis,ChalmersUni-
versityof Technology, Göteborg, Sweden,Dec.2000.

[3] D. DenningandP. Denning. Certificationof programsfor
secureinformation flow. Commun.ACM, 20(7):504–513,
1977.

[4] W. Feller. AnIntroductionto ProbabilityTheoryandIts Ap-
plications, volumeI. JohnWiley & Sons,Inc., third edition,
1968.

[5] H. Hermanns.InteractiveMarkov Chains. PhDthesis,Uni-
versityof Erlangen-N̈urnberg, July1998.

[6] K. Honda,V. Vasconcelos,andN. Yoshida.Secureinforma-
tion flow astypedprocessbehaviour. In Proceedings9thEu-
ropeanSymposiumon Programming, volume1782of Lec-
ture Notesin ComputerScience, pages180–199,Apr. 2000.

[7] J. Kemeny andJ. L. Snell. Finite Markov Chains. D. Van
Nostrand,1960.

[8] K. G. LarsenandA. Skou. Bisimulationthroughprobabilis-
tic testing.InformationandComputation, 94(1):1–28,1991.

[9] A. Sabelfeldand D. Sands. Probabilisticnoninterference
for multi-threadedprograms. In Proceedings13th IEEE
ComputerSecurityFoundationsWorkshop, pages200–214,
Cambridge,UK, July2000.

[10] G. Smith and D. Volpano. Secureinformation flow in
a multi-threadedimperative language. In Proceedings
25thSymposiumon Principlesof ProgrammingLanguages,
pages355–364,SanDiego,CA, Jan.1998.

[11] D. Volpano. Secureintroduction of one-way functions.
In Proceedings13th IEEE ComputerSecurityFoundations
Workshop, pages246–254,Cambridge,UK, June2000.

[12] D. VolpanoandG. Smith. A type-basedapproachto pro-
gram security. In Proc. Theoryand Practice of Software
Development, volume 1214of Lecture Notesin Computer
Science, pages607–621,Apr. 1997.

[13] D. Volpano and G. Smith. Probabilisticnoninterference
in a concurrentlanguage. Journal of ComputerSecurity,
7(2,3):231–253,1999.

[14] D. Volpanoand G. Smith. Verifying secretsand relative
secrecy. In Proceedings27th Symposiumon Principlesof
ProgrammingLanguages, pages268–276,Boston,MA, Jan.
2000.

[15] D. Volpano,G. Smith, and C. Irvine. A soundtype sys-
temfor secureflow analysis.Journalof ComputerSecurity,
4(2,3):167–187,1996.

11

