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Abstract

It is essential for security to be able to isolate mistrusting
programs from one another, and to protect the host platform
from programs. Isolation is difficult in object-oriented sys-
tems because objects can easily become aliased. Aliases that
cross program boundaries can allow programs to exchange
information without using a system provided interface that
could control information exchange. In Java, mistrusting
programs are placed in distinct loader spaces but uncon-
trolled sharing of system classes can still lead to aliases be-
tween programs. This paper presents the object spaces pro-
tection model for an object-oriented system. The model de-
composes an application into a set of spaces, and each object
is assigned to one space. All method calls between objects
in different spaces are mediated by a security policy. An
implementation of the model in Java is presented.
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1 Introduction

In the age of Internet programming, the importance of sound
security mechanisms for systems was never greater. A host
can execute programs from unknown network sources, so it
needs to be able to run each program in a distinct protec-
tion domain. A program running in a protection domain is
prevented from accessing code and data in another domain,
or can only do so under the control of a security policy. Do-
mains protect mistrusting programs from each other, and
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also protect the host environment. There are several aspects
to protection domains: access control, resource allocation
and control, and safe termination. This paper concentrates
on access control.

There are several ways to implement protection domains
for programs. Operating systems traditionally implement
domains using hardware-enforced address spaces. The trend
towards portable programs and mobile code has led nonethe-
less to virtual machines that enforce protection in software.
One example in the object-oriented context is a guarded ob-
ject [10]. In this approach, a guard object maintains a ref-
erence to a guarded object; a request to gain access to the
guarded object is mediated upon by the guard. Another ex-
ample of software enforced protection is found in Java [2],
where each protection domain possesses its own name space
(set of classes and objects) [17]; domains only share basic
system classes. Isolation between Java protection domains
is enforced by run-time controls: each assignment of an ob-
ject reference to a variable in another domain is signaled as
a type error (ClassCastException).

The difficulty in implementing protection domains in an
object-oriented context is the ease with which object aliases
can be created [12]. An object is aliased if there is at least
two other objects that hold a reference to it. Aliasing is dif-
ficult to detect, and unexpected aliasing across domains can
constitute a storage channel since information that was not
intended for external access can be leaked or modified [15].
Aliasing between domains can be avoided by making their
object sets disjoint. Any data that needs to be shared be-
tween domains is exchanged by value instead of by reference.

Partitioning protection domains into disjoint object
graphs is cumbersome when an object needs to be acces-
sible to several domains simultaneously. This is especially
true if the object is mutable e.g., application environment
objects, as this necessitates continuous copies of the object
being made and transmitted. A more serious problem is that
some system objects must be directly shared by domains,
e.g., system-provided communication objects, and even this
limited sharing can be enough to create aliases that lead to
storage channels. For instance, there is nothing to prevent
an error in the code of a guard object from leaking a refer-
ence to the guarded object to the outside world.

Techniques that control object aliasing are often cited as a
means to enforce security by controlling the spread of object
references in programs [12]. These techniques are fundamen-
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tally software engineering techniques; their goal is to enforce
stronger object encapsulation. Security requires more than
this for two main reasons. First, aliasing control techniques
are often class-based: they aim to prevent all objects of a
class from being referenced, though cannot protect selected
instances of that class. Second, security constraints are dy-
namic in nature and aliasing constraints are not. One ex-
ample is server containment [7], where the goal is to allow a
server to process a client request, but after this request, the
server must “forget” the references that it holds for objects
transmitted by the client. The goal of server containment is
to reduce the server’s ability to act as a covert channel [15].

The crux of the problem is that once a reference is ob-
tained, it can be used to name an object and to invoke meth-
ods of that object. We believe that naming and invocation
must be separated, thus introducing access control into the
language. Least privilege [23] is one example of a system
security property that requires access control for its imple-
mentation. Least privilege means that a program should be
assigned only the minimum rights needed to accomplish its
task. Using an example of file system security, least privi-
lege insists that a directory object not be able to gain access
to the files it stores [7] in order to minimize the effects of
erroneous directory objects. Thus, a directory can name file
objects, but can neither modify nor extract their contents.

This paper introduces the Object Spaces model for an
object-oriented system; Java [2] is chosen as the implemen-
tation platform. A space is a lightweight protection domain
that houses a set of objects. All method calls between ob-
jects of different spaces are mediated by a security policy,
though no attempt is made to control the propagation of
object references between spaces. The model allows for safe
and efficient object sharing. Its efficiency stems from the fact
that copy-by-value of object parameters between domains is
no longer needed. The model is safe in the sense that if
ever an object reference is leaked to a program in another
space, invocation of a method using that reference is always
mediated by a security policy. In addition, access between
objects of different spaces is prohibited by default; a space
must be explicitly granted an access right for a space to in-
voke an object in it, and the owner of this space may at any
time revoke that right.

The implementation of the model is made over Java and
thus no modifications to the Java VM or language are
needed. Each application object is implicitly assigned a
space object. An object can create an object in another
space, though receives an indirect reference to this object:
A bridge object is returned that references the new object.
Our implementation assures the basic property that access
to an object in another space always goes through a bridge
object. Bridges contain a security policy that mediate each
cross-space method call.

A space is a lightweight protection domain as it only mod-
els the access control element of a domain; thread manage-
ment and resource control issues are not treated since these
require modifications to the Java virtual machine.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the object space model and explains its design
choices. Section 3 presents a Java API for the model and ex-
amples of its use. Section 4 describes the implementation of
the model over Java 2 and gives performance results. Sec-
tion 5 reviews related work and Section 6 concludes.
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2 The Object Space Model

The basis of the object space model is to separate the ability
to name an object from the ability to invoke methods of that
object. This is done by partitioning an application’s set of
objects into several object spaces. A space contains a set of
objects, and possibly some children spaces. Every object of
an application is inside of exactly one space. An object may
invoke any method of any object that resides in the same
space. Method invocation between objects of different spaces
is mediated by an application-provided security policy.

We start in Section 2.1 with an overview of the object
space model. A formal definition of the model is given in
Section 2.2, and we present some examples of how the model
addresses well-known protection problems in Section 2.3.

2.1 Model Overview

The set of spaces of an application is created dynami-
cally. On application startup, the initial objects occupy a
RootSpace. Objects of this space may then create further
spaces; these new spaces are owned by the RootSpace. These
children spaces may in turn create further spaces. For each
space created by an object, the enclosing space of the cre-
ator object becomes the owner space of the new space. The
space graph is thus a tree under the ownership relation.

(@

Figure 1 Ownership and authorization relations on spaces.

An object in a space may invoke methods of an object
in another space if the second space is owned by the calling
object’s space. When the calling object is not in the owner
space of the called object, then the calling space must have
been explicitly granted the right to invoke methods of objects
in the second space by the owner of the second space.

The set of spaces is organized hierarchically because this
models well the control structure of many applications [22].
Typically, a system separates programs into a set of protec-
tion domains since they must be protected from each other.
A program’s components may also need to be isolated from
one another, since for example it may use code from different
libraries. In the object space model, a program in a space
can map its components to distinct spaces.

We decided not to include space destruction within the
space model, because of the difficultly of implementing this
safely and efficiently. A space, like an object, can be re-
moved by the system when other spaces no longer possess a
reference to it (or to the objects inside of it).

An object may create other objects in its space without
any prohibition. A space may also create objects in its chil-
dren spaces — this is how a space’s initial objects are created.



A space s; may not create objects in another space s if s is
not the parent of space sz. The goal of this restriction is to
prevent s; from inserting a Trojan Horse object into space
s2 that tricks sz into granting s; a right for ss.

Figure 1 gives an example of how the space graph of an
application develops, and how access rights are introduced.
Ownership is represented by arrows and access rights are
represented by dashed line arrows. When the system starts,
RootSpace (represented by space so in the figure) is created.
In this example, space so creates two children spaces, s1 and
s2, and permits objects of space s1 to invoke objects of space
s2. Objects of space so can invoke objects of spaces s1 and
s2 by default since space sg is the owning space of s; and s».

In Figure 1b, space s; creates a child space s3, and grants
it a copy of its access right for s3. Only space s; possesses
a right on S3 though. In Figure lc, s3 has created a child
space s4, and granted space sz an access right for s4. This
means that objects of spaces s2 and s3 can call objects in
space s4.

The access control model could be seen as introducing
programming complexity because an object that possesses a
reference is no longer assured that a method call on the ref-
erenced object will succeed. This is also the case for applets
in Java where calls issued by applets to system objects are
mediated by SecurityManager objects that can reject the
call.

2.2 Formal Definition

The state of the object space protection system is defined
by the triple

[S, O, R]

where S is the set of spaces, O is the ownership relation
and R represents the space access rights. Let N denote the
set from which space names are generated. S is a subset of
N (8 C N); names of newly created spaces are taken from
M\S. O is a relation on spaces (N x (N U {null})); we
use s1 O sz to mean that space si1 “is owned by” space s2.
The expression s1 O sz evaluates to true if (s1, s2) € O.
The null value in the definition of O denotes the owner of
RootSpace. Finally, R is a relation of type (M x N); s1 R s2
means that space s; possesses the right to invoke methods
in space sa.

A space always has the right to invoke (objects in) owned
spaces: s1 O s2 = sz R si1. Further, an object can al-
ways invoke methods on objects in the same space as itself:
Vs:S. s R s.

We now define the semantics of the object space opera-
tions. The grant(so, s1, s2) operation allows (an object of)
space so to give (objects of) space s1 the right to invoke ob-
jects of space s2. For this operation to succeed, so must be
the owning space of s2 or, so must already have an access
right for s2 and be the owner of s;. The logic behind this is
that a parent space decides who can have access to its chil-
dren, and a space may always copy a right that it possesses
to its children spaces.

grant(so, 81, 32)[8: Oa R] =
if (s2 O s0) V (so R s2As10 sp)
then [S, O, (R U {(s1, s2)})]
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else [S, O, R]
fi

Access rights between spaces can also be revoked. A space
s can revoke the right from any space that possesses a right
for a space owned by s. When a space loses a right, then all
of its descendant spaces in the space hierarchy implicitly lose
the right also. This is because a space might have acquired
a right, granted a copy of that right to a child space, and
have the child execute code on its behalf that exploits that
access right. The operation revoke(so, s1, s2) is used by
(an object of) space so to remove the right of (objects of)
space s1 to access objects of space s2. The operation is the
reverse of grant. D(s) denotes the set of descendant spaces
of s in the space tree; as said, these spaces also have their
right revoked. D(s) = { s’ | (£ Os)V (Is". " OsA S €
D(s”))}. This operation does not allow an owner to lose its
right to access a child space.

revoke(so, 1, $2)[S, O, R] =
if (s2 0 s0) V (51 O so A siR s2))
then [S, O, (R \ {(s1, s2), (sj, s2) | 85 € D(s1)})]
else [S, O, R]
fi

A space s may create a new space for which it becomes
the owner. The new space is given a fresh name s’ (s’ € S).

create(s)[S, O, R] =
[(SU{s}), (OU{s s }), (RUA{(s,87), (s 8)}) ]

On system startup, the RootSpace so is created. The
initial system state is thus [{so}, {(s0, null)}, {(so, s0)}]-

Finally, each time a method call is effected in the system,
an access control decision is made using the checkAccess
operation to determine if space so may invoke methods on
objects in space si:

checkAccess(sg, $1)[S, O, R] = so R s1

In Figure 1a, S is {so, s1, s2}, and O is {(s1, s0), (s2, S0),
(s0, null)}. R contains {(So, s1), (S0, S2), (s1, s2)} as well
as the pairs (s;, s;) for each s; in S.

In Figure 1b, the sets {s3z}, {(ss, s1)} and {(ss, s2), (s1,
sz} are included in the three elements of the system state.
In Figure 1lc, s3 has created a child space s4, and granted
space sz an access right for s4. Thus, s3 R s4, s2 R sa, and
s4 O s3.

2.3 Examples

We give some brief examples of how the model can be ex-
ploited. More detail is added in Section 3 after a Java API
for the model has been presented.

2.3.1 Program Isolation

Today’s computer users cannot realistically trust that the
programs they run are bug or virus free. It is crucial then
that the host be able to run a non-trusted program in isola-
tion from its services. This means that client programs not
be able to communicate with the services, or that they can



only do so under the control of a security policy that decides
whether each method call from a program to the servers is
permitted.

The basis to achieving isolation using the object space
model is shown in Figure 2a. The Root space creates a space
(Server) for the host service objects, and a client space
for each of the user programs. The host’s security policy is
placed in the Root space, and controls whether the user pro-
grams may access the services using the grant and revoke
operations. The code of this example is given in Section 3.2.

In comparison, the ability to isolate programs in this fash-
ion is awkward in Java using loader spaces. In Java, each
program is allocated its own class loader [17], which is re-
sponsible for loading versions of the classes for the pro-
gram. An object instantiated from a class loaded by one
loader is considered as possessing a distinct type to ob-
jects of the same class loaded by another loader. This
means that the assignment of an object reference in one
domain to a variable in another domain constitutes a type
error (ClassCastException). This model is inconvenient for
client-server communication, since parameter objects must
be serialized (transferred by value).

(oo

(a)

Figure 2 Examples with spaces.

2.3.2 Guarded Objects

A common example of a mechanism for controlled sharing
is guarded objects. We consider two different versions of
the guarded object notion here: a Java 2 version [10] and a
second more traditional version [23].

In Java, a guard object contains a guarded object. On
application startup, only the guard object possesses a refer-
ence to the guarded object. This object contains a method
getObject () which executes a checkAccess method that en-
capsulates a security policy, and returns a reference to the
guarded object if checkAccess permits. This mechanism is
useful in contexts where a client must authenticate itself to
a server before gaining access to server objects, e.g., a file
server that authenticates an access (using checkAccess) be-
fore returning a reference to a file.

An implementation of the more traditional guarded object
notion would never return a reference to the guarded object.
Rather, each method call to the guarded object would be
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mediated by the guard, which would then transfer the call
if checkAccess permits, and then transfer back the result
object.

Both of these approaches have weaknesses however. In
the Java version, there is no way to revoke a reference to the
guarded object once this reference has been copied outside of
the guard object. Revocation is needed in practice to confine
the spread of access rights in a system. The problem with
the traditional notion of guarded object is that a method of
the guarded object may return an object that itself contains
a reference to the guarded object. This clearly undermines
the role of the guard.

Figure 2b illustrates how guarded objects are implemented
in the object space model. A guard object is placed in its own
space (Guard), and the guard creates a child space (G-0bj)
in which it instantiates the guarded object. Space Guard
controls what other spaces can access G-0bj. To implement
the traditional version of the guarded object paradigm, the
guard would never grant access to G-0bj to other spaces.
To implement the Java version, getObject() of the guard
grants the Client space access to G-0bj in the event of
checkAccess succeeding. The guard can at any time revoke
access, which is something that cannot be done in traditional
implementations, so even if a reference is leaked, a grant
operation must also be effected for access to the guarded
object to be possible. We give the code of this example in
Section 3.2.

Guards are required in all systems for stronger encapsula-
tion. The goal of encapsulation is be able to make an object
public - accessible to other programs - without making its
component objects directly accessible. This is often a re-
quirement for kernel interface objects, since a serious error
could occur if a user program gained hold of a reference to
an internal object. An example of this is the security bug
that allowed an applet to gain a reference to its list of code
signers in JDK1.1.1, which the applet could then modify [4].
By adding signer Identity objects to this list, the applet
could inherit the privileges associated with that signer.

private Vector /* of Identity object */ signers;

public Vector getSigners(){
return signers;

}

The JDK actually used an array to represent the sign-
ers [4]; arrays require special treatment in the object space
model, as will be seen in Section 4. This example also shows
that declaring a variable as private is not enough to control
access to the object bound to that variable. In the object
space model, stronger encapsulation of internal objects (e.g.,
signers) is achieved by having these objects instantiated in
a space (G-0bj) owned by the kernel interface objects’ space
(Guard).

2.3.3 Server Containment

Servers are shared by several client programs. In an environ-
ment where mistrusting programs execute, a server should
not be allowed to act as a covert channel by holding onto ref-
erences to objects passed as parameters in a service request
and then subvertly passing these references to a third party.



Security requires that a server be contained [7] - the server
can no longer gain access to any object after the request has
been serviced. A schema for this using spaces is shown in
Figure 2c. The packet space is for objects that are being
passed as parameter. The server is granted access to these
objects for the duration of the service call. This access is
revoked following the call. Server containment requires the
ability to isolate programs from one another, and the ability
to revoke rights on spaces. As such, it uses features also
present in the preceding two examples.

3 The Object Space API

This section describes the classes of the object space system
API, and then presents an example of its use.

3.1 Basic Java Classes

There are only three classes that an application requires
to use the object space model: I0SObject, Space and
RemoteSpace. We briefly describe the role of each, before
presenting an implementation over Java 2 in Section 4.

The class I0SObject! describes an object that possesses
an attribute Space. This attribute denotes the space that
houses the object. Not all objects of an application need
inherit from I0SObject; the only requirement is that the
first object instantiated within each space be a subclass of
I0SObject since in this way, there is at least one object from
which others may obtain a pointer to their enclosing Space
object. The API of I0S0bject is the following:

public class IO0SObject
{
protected Space mySpace;
public IO0SObject();
public final Space getSpace();
}

The getSpace method enables an object to get a handle
on its enclosing space from an I0SObject.

The Space class represents an object’s handle on its en-
closing space. Handles on other spaces are instances of the
RemoteSpace class. SpaceObject is an empty interface im-
plemented by both Space and RemoteSpace.

public final class Space implements Space(bject
{
public static RemoteSpace
createRootSpace(I0SObject iosObj);
protected Space();
public RemoteSpace createChildSpace();
public void grant( SpaceObject sourceSpace,
SpaceObject targetSpace );
void revoke( SpaceObject sourceSpace,
SpaceObject targetSpace );
Object newInstance( String className,
RemoteSpace target );
public RemoteSpace getParent();
protected void setParent(Space parent);
static boolean checkAccess( Space protectedObjSpace,

public

public

1«10S” comes from “Internet Operating System”, which
is the name of the project in which the space model was
developed.
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Space callerSpace )

Recall that spaces are organized in a hierarchy: the
root of the hierarchy is created with the static method
createRootSpace. This method returns a RemoteSpace ob-
ject, and the system ensures that this method is called only
once. The createChildSpace method creates a child space
of the invoking object’s space. The grant and revoke meth-
ods implement the access control commands of the model
(see Section 2.2). The space of the object that invokes either
operation is the grantor or revoker space of the operation.

The newInstance method creates an object within the
specified space. This is how objects are initially created
inside of a space. The implementation verifies that the class
specified extends I0SObject, so that subsequently created
objects have a means to obtain a reference to their Space.
Further, only a parent space may execute this method. The
goal is to prevent spaces injecting malicious code into a space
in the aim of forcing that space to execute a grant that would
allow the malicious object space gain an access right to the
attacked space. The setParent method is executed by the
system when initiating a space; the checkAccess method
that consults the security policy. These two methods are
only used by the object space model implementation.

The third of the classes in the object space API is
RemoteSpace:

public final class RemoteSpace implements SpaceObject
{

public RemoteSpace(Space sp);
}

This represents a handle on another space. The only user-
visible (public) operation is the constructor that allows an
object to generate a remote space pointer from the pointer
to its enclosing space. This enables a space to transfer a
pointer to itself to other spaces and thus allow other spaces
to grant it access rights.

It is important to note that an object can only possess
a Space reference to its enclosing space, and never to other
spaces. In this way, the system assures that an object in
one space does not force another space to grant it an access
right since the grant and revoke operations are only defined
in Space, meaning that the system can always identify the
space of the invoking object and thus authorize the call.
Note also that the Space and RemoteSpace classes are final,
meaning that a malicious program cannot introduce Trojan
Horse versions of these classes into the system.

3.2 Example code extracts

The first example continues the program isolation discus-
sion of Section 2.3.1, and is taken from a newspaper system
for the production and distribution of articles [19]. Here we
concentrate on a program that compiles an article. For se-
curity reasons, we wish to isolate this program from the rest
of the system - in particularly from the Storage and graph-
ical Editor objects. This requires being able to meditate all
method calls between the client program and the services.
These security requirements are summarized in Figure 3.
The is a typical example of the need to isolate user pro-
grams from the rest of the system. Section 4 gives a per-
formance comparison of an implementation of this example



using Java loader spaces with copy-by-value semantics, and
the object spaces implementation.

<D

Service Space

Client Space

Figure 3 The article packager example.

In the code below, Root is the application start-up pro-
gram that creates two object spaces, and instantiates the ob-
jects in each domain. This is the only class of the application
that uses the object space model API methods. The Editor
class uses several Swing components to offer a front-end user
interface; this exchanges request messages and events with
the client program.

public class Root extends I0SObject{

public void start(){
// Create the client and server Spaces
RemoteSpace childl = mySpace.createChildSpace();
RemoteSpace child2 = mySpace.createChildSpace();

// Allocate access rights;
mySpace.grant(childi,child2);
mySpace.grant(child2,childl);

// Create the services ....
Editor E = (Editor)mySpace.

newInstance ("GUI.Editor", childl);
Storage A = (Storage)mySpace.

newInstance("Kernel.Storage", childil)
// .... and create the client
client ¢ = (client)mySpace.

newInstance("Kernel.client", child2);

// Start things running
Editor ed = E.init(c); A.init();c.init(ed, A);
}

public static void main( String[] args ){
Root R = new Root();
RemoteSpace spacel = Space.createRootSpace(R);
R.start();
}
}

In this example, the application main starts an instance
of Root. This creates two child spaces, childl and child?2,
grants a right to each space to invoke object methods in the
other. An Editor object and a Storage object are created in
space childl and the client program is installed in child2.
The editor is given a reference to the client object (so that
it can forward events from the GUI interface) and the client
is given a reference to the two service objects.

The Root class here is almost identical to that used in an
implementation of the guarded object model of Figure 2b.
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A Guard object and client are created in distinct spaces. In
the extract of this example below, the guard has a string (of
class I10SString) as guarded object. The class I0SString is
our own version of String; the motivation for this class is
given in Section 4.

import Internet0S.*;

import Internet0S.lang.*;

public class Guard extends I0SObject{
I0SString guardedObject;

RemoteSpace guardedSpace;

public void init() {

guardedSpace = mySpace.createChildSpace();
guardedObject = (I0SString)mySpace.
newInstance ("Internet0S. lang.I0SString",
guardedSpace) ;
guardedObject.

set(new I0SObject("The secret text."));
}

public Object getObject(I0SString password,
RemoteSpace caller){
// if checkAccess(password) {...}
mySpace.grant(caller, guardedSpace);
return guardedObject;
}
}

The Guard object has an init method that is called by
the Root. This method creates a child space (guardedSpace),
instantiates the guarded object in this space, and initializes
it using its set method (defined in I0SString). The role
of the guard is to mediate access requests on getObject. A
client must furnish a password string and the guard verifies
the password using the guard object’s checkAccess method.
If the check succeeds, the guard grant’s access to the client
space and returns the object reference.

public class client extends I0SObject{
Guard G;

public void init(Guard G){
this.G = G;
I0SString password =
new I0SString("This is my password");

I0SString s
(I0SString)G.getObject (password,
new RemoteSpace (mySpace)) ;
System.out.println("String is "); s.print();
}
}

The client is a program that requests access from the
guard by supplying the password and a pointer to its space
to getObject.



4 The Object Space Implementation

In this section we describe the implementation of our model.
We first describe the notion of bridge, which is the mecha-
nism that separates spaces at the implementation level.

For portability and prototyping reasons, the current im-
plementation is made over the Java 2 platform, so no mod-
ifications to the virtual machine or language were made. A
future implementation could integrate the model into the
JVM; in this way other aspects of protection domains such
as resource control and safe termination can also be treated.

We begin in Section 4.1 by describing the basic role of
bridge objects. Section 4.2 describes how they are interposed
on method calls between spaces, and Section 4.3 explains
how bridge classes are generated. Section 4.4 describes in
more detail how the object space model interacts and in some
cases conflicts with features of the Java language. Section 4.5
presents a performance evaluation of the implementation.

4.1 Bridge Objects

So far, we have seen that objects belong to spaces and that
they interact either locally inside the same space or issue
method calls across space boundaries. Interactions between
objects of different spaces are allowed only if the security
policy permits.

To implement the object space model, a bridge object is
interposed between a caller and a callee object when these
are located in different spaces. If the caller has the autho-
rization to issue the call, then the bridge forwards the call to
the callee, otherwise a security violation exception is raised.
We call the callee the protected object, since it is protected
from external accesses by the bridge, and we use the term
possessor to refer to the caller. This is illustrated in Figure 4,
where real references are denoted by arrows; the dashed line
arrow denotes a protected reference whose use is meditated
by a security policy. The security policy is represented by
an access matrix accessible to all bridges; this encodes the
authorization relation R defined in Section 2.2.

Access
Matrix

bridge

protected object

e

Il B,

Space 2

Figure 4 A bridge object interposed between object spaces.

Bridges are hidden from application programmers. They
are purely an implementation technique and do not appear
in the API. Assuming security permits, a program behaves
as if it has a direct reference to objects in remote spaces. The
main exception to this rule are array references which always
refer to local copies of arrays, even if the entries in an array
can refer to remote objects. We return to the question of
arrays in Section 4.4. Consider class Root in Section 3.2; its
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start method contains the call c.init(ed, A) to transfer
references for the editor and storage objects to the client
program. The three objects are all in a different space to
the Root object; the references used are in fact references
to bridge objects even though the programmer of the Root
class does not see this.

Bridges are implemented using instances of Java Bridge
classes, where Bridge is an interface that we provide. Each
class C has a bridged class B¢ constructed for it. The inter-
face of B¢ is the same as that of C. Further, B¢ is defined
as a subclass of C, which makes it possible to use instances
of B¢ (i.e., the bridges) anywhere that instance of C are
expected.

The role of a bridge is three-fold:

1. It verifies that the caller can issue a call to the protected
object. To be more precise, this results in verifying that
the space of the caller can access the space of the callee
according to the security policy, consulted using the
checkAccess method of class Space. This method is
shown in Figure 7.

It forwards the request from the possessor to the pro-
tected object, if the possessor has the right to access
the protected object.

It ensures that objects exchanged as parameters be-
tween the possessor and the protected object do not
become directly accessible from outside their spaces.

The protection model is broken if an object obtains a di-
rect reference to an object in another space (a reference
is direct if no bridge is interposed between the objects).
This can happen during a call if the arguments are di-
rectly passed to the callee. Therefore, a bridge can be
interposed between the callee and the arguments it re-
ceives. Similarly, this wrapping can occur on the object
returned from the method call on the protected object.
To avoid reference leaks exploiting the Java exception
mechanism, bridges are also respomnsible for catching
exceptions raised during the execution of the protected
object’s method, and for throwing bridged versions of
the exceptions to the caller.

4.2 Interposition of Bridges

Bridges are introduced into the system when an applica-
tion object creates an object in a child space using the
newInstance method. This method is furnished by the sys-
tem (in Space) and cannot be redefined by users since it is
defined in a final class. In addition to creating the required
object and assigning it to the space, newInstance creates a
bridge for the new object. A reference to this bridge is re-
turned to the object that initiates the object creation, mak-
ing the new object accessible to its creator only through the
bridge. For instance, in the example 3.2, references E, A, ¢
point to a bridge instead of pointing directly to an Editor,
a Storage or a client object since these objects are created
using newInstance.

The other way that bridge objects appear in the system is
during cross-domain calls where the need for protection for
arguments and returned objects arise. By default, when a
reference to an object is passed through a bridge, a bridge



object for the referenced object is generated in the destina-
tion space. Nevertheless, if a bridge object for the protected
object already exists in the destination space, then a refer-
ence to this bridge is returned instead of having a new bridge
object generated. This is implemented using a map that
maps protected object and space pairs to the bridge used by
objects in that space to refer to the protected object. An
advantage of this solution is that the same bridge is shared
among objects of the same space referring to the same pro-
tected object. However, if objects reside in different spaces,
they cannot share the same bridge. A second advantage of
this is that the time needed to consult the bridge cache is
inferior to the time needed to generate a new bridge object.
A final advantage concerns equality semantics: the == oper-
ator applied to two bridge references to the same protected
object always evaluates to true.

However, there are cases where bridge interposition is not
necessary. For instance, if an object creates another object
which resides in the same space as its creator, then a di-
rect reference to the new object is allowed. This is the case
when the Java new operator is used, i.e., an object created
with new belongs to the same space as its creator and di-
rect invocations are allowed. Further, if a bridge receives a
bridge reference as an argument to a call and observes that
the protected object of that bridge is actually in the desti-
nation space, then the protected object reference is returned
in place of the bridge.

Figure 5 The creation of bridges between spaces.

An example of the interposition of bridge objects is shown
in Figure 5. Space 1 possesses an object O1 that creates an
object O2 in Space 2 using newInstance; a bridge Bl is
created for this reference. O1 then passes a reference for
itself to O2; Bl detects that this reference is remote and
creates a bridge B2. O2 creates an object O3 locally in its
space using new, and obtains a direct reference to it. O3 then
creates an object O4 in Space 3, and a bridge B3 is created.
Finally, O2 passes a reference for O1 to O4 (via 03); a new
bridge B4 is created for this that notes that the reference is
from Space 3 to Space 1.

The only exception to the above is the exchange of
RemoteSpace objects. Objects of this type can be freely
passed to foreign spaces without bridge intervention. Con-
sequently, direct access to these objects is allowed. These
objects are used by other spaces for granting or revok-
ing accesses to their children. Allowing direct sharing of
RemoteSpace objects does not lead to reference leaks, since
no methods or instance fields of RemoteSpace are accessible
to user programs, as can be seen from its API.

A Space object transmitted through a bridge is converted
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to a RemoteSpace. This is needed to ensure the invariant
that a Space object can only be referenced by an object
enclosed by that space.

4.3 Generating Bridge Classes

This subsection describes the generation by our system of
the bridge class B¢ which mediates accesses to instances of
class C.

Bridge generation always starts from a call to the
getBridge method of the BridgeFactory class. This method
expects three arguments, the object the bridge has to guard
(the protected object), the space of the protected object and
the space of the possessor. The method getBridge returns
a bridge whose class is a subclass of the protected object’s
class. If the class file of the bridge does not exist at the time
the method is called, construction of the class file is started
and instantiation of a new object follows. This method is
also responsible for the management of the map that caches
bridges interposed between a given space and a protected
object and returns a cached bridge if another object in the
given space refers to the protected object. An outline of the
code of class BridgeFactory is shown in Figure 10.

Bridge classes are placed in the same package as the object
space implementation. Their constructors are protected,
which prevents user code from directly creating instances.

The main task behind the generation of a bridge is to pro-
duce, for each method m defined in class C' as well as in its
superclasses, a corresponding method mp in B¢ that imple-
ments the expected functionality of the bridge as described
in Section 4.1.

The structure of each mp method generated for m is uni-
form. First, a piece of code is inserted at the beginning of
the method to consult the security policy. If the access is
granted, a bridge, instead of the argument itself, is passed to
the protected object when forwarding the call. This has to
be done for each argument (except if the argument is prim-
itive or of class RemoteSpace, in which case the value of the
argument is copied) and this ensures that the protected ob-
ject cannot possess a direct access to arguments. Once the
arguments are converted, the method forwards the call to the
protected object. If the call returns a non-primitive value,
then as for the arguments, a bridge instead of the returned
value is returned to the caller object. Figure 9 presents the
bridge generated from the user class FileUpdater shown in
Figure 8.

To avoid exceptions leaking out internal objects, bridges
catch exceptions thrown in the protected object and generate
a bridge that encapsulates the exception, before throwing
this exception back to the caller.

The code that checks whether access to the protected
object is allowed is performed in the static method
checkAccess defined in class Space. This method takes the
space of a protected object as well as the space of its caller
as input and consults the access matrix stored in the two di-
mensional array called authorizations for deciding whether
access can be granted or not.

The code that interposes a bridge between the arguments
of the call and the protected object is present in method
getBridgeForArg, whereas the code that interposes a bridge
between the returned value and the possessor of the bridge



is located inside method getBridgeForReturn. Both meth-
ods are defined inside class BridgeFactory as shown in Fig-
ure 10. Notice that these methods handle several cases; ei-
ther the argument (respectively the returned object) is a
bridge, a RemoteSpace, a Space or an instance of a user class.
If it is a bridge, then the object protected by the bridge is
extracted and an appropriate bridge is interposed between
the protected object and the callee (respectively the caller).

public class BridgeInternal

{
Object protectedObj;
Space protectedObjSpace;
Space callerSpace;

//initialize fields.
initialize( Object go, Space goSpace, Space pSpace)
{...}

Figure 6 Class Bridgelnternal

class Space{
// the access matrix
static boolean[][] authorizations;

static boolean checkAccess( Space protectedObjSpace,
Space callerSpace ){
return Space.authorizations[callerSpace.spaceID]
[protectedObjSpace.spaceID];

Figure 7 Method checkAccess controls access.

Each bridge contains a BridgeInternal object. The role
of this object is to store the information related to the state
of the bridge, i.e, its protected object, the latter’s space,
and the space of the possessor. The class BridgeInternal is
shown in Figure 6. It is not possible to reserve a field for this
information inside a user bridge class because the generic
methods getBridgeForArg and getBridgeForReturn need
to access this information when they receive any bridge as
argument or returned object.

Soot is the framework for manipulating Java bytecode [24]
that we used for generating the bridge classes.

public class FileUpdater

{
public File concatFiles(File filel , File file2)
throws FileNotFoundException

{
if( !'filel.exists() || !file2.exists() )
throw new
FileNotFoundException("File Not Found!");
filel.append(file2);
return filel;
}

Figure 8 A user class example

4.4 Caveats for Java

This section looks in more detail at the implications of the
object space implementation for Java programs. In partic-
ular, several features of the language, such as final classes
and methods, are incompatible with the implementation ap-
proach. Dealing with these issues means imposing restric-
tions on the classes of objects that can be referenced across
space boundaries.

Final and private clauses are important software en-
gineering notions for controlling the visibility of classes in an
application. For the object space implementation to work,
each class C of which an object is transfered through a
bridge has a class B¢ generated that subclasses C. Final
classes thus cannot have bridges generated. In the current
implementation, the bridge generator complains if an ob-
ject is passed whose class contains final clauses, though

public class FileUpdaterBridge extends FileUpdater
implements Bridge {
BridgeInternal bi = new BridgeInternal();

FileUpdaterBridge(){}

FileUpdaterBridge( Object obj,
Space protectedObjSpace,
Space callerSpace ) {
bi.initialize( obj , protectedObjSpace ,
callerSpace );

}
BridgeInternal getBridgeInternal(){return bi;}

public File concatFiles(File argl , File arg2)
throws FileNotFoundException {
if ( Space.checkAccess( bi.protectedObjSpace,
bi.callerSpace ) ) {
try {
File argliBridge = (File)BridgeFactory.
getBridgeForArg( argl , bi );
File arg2Bridge = (File)BridgeFactory.
getBridgeForArg( arg2 , bi );

File returnedObj=((FileUpdater)bi.protectedObj).
concatFiles( argiBridge , arg2Bridge );

return (File)BridgeFactory.
getBridgeForReturn(returned0bj , bi );
}
catch (FileNotFoundException e) {
throw (FileNotFoundException)BridgeFactory.
getBridgeForReturn(e , bi);
}
catch (Throwable e) {
throw (RuntimeException)BridgeFactory.
getBridgeForReturn(e , bi);
}
}
else
throw new AccessException("Unauthorized Call");

Figure 9 Example bridge class generated.



this restriction does not apply to java.lang.0Object (see be-
low). In order to handle final methods and classes, the ob-
ject space system loader could remove final modifiers from

class BridgeFactory {
// maps a pair (objectToProtect , callerSpace) to
// to the bridge interposed between them
Map objAndCallerSpaceToBridge;

static Bridge getBridge( Object object ,
Space protectedObjSpace,
Space callerSpace ) {
This method first checks if the map already
contains a bridge interposed
between the object and callerSpace.
If so, it returns the bridge.

// If not, it checks whether the bridge’s class
// file exists.

// If the class file does not exist, this method
// asks Soot to build one.

Finally, it creates and returns a new instance
of the bridge.
}

static Object getBridgeForArg(Object arg,
BridgeInternal currentBI) {
if( arg instanceof Bridge ) {
BridgeInternal argBI = ((Bridge)arg).
getBridgeInternal();

// If the call argument is a bridge on a object
// located in the same space as the callee,
// return a direct reference to the object.

if( argBI.protectedObjSpac

currentBI.protectedObjSpace )
return argBI.protectedObj;

// The call argument is located in another space.
// Get a handle on it.
return BridgeFactory.
getBridge( argBI.protectedObj ,
argBI.protectedObjSpace ,
currentBI.protectedlbjSpace );
}
else if( arg instanceof RemoteSpace ) {
// No bridges required around RemetoSpace
return arg;
}
else if( arg instanceof Space ) {
// Do not allow transfer of space objects.
return new RemoteSpace((Space)arg);
}
else
// The call argument lives in the caller’s space.
// Get a handle on it.
return BridgeFactory.
getBridge( arg ,
currentBI.callerSpace,
currentBI.protectedObjSpace );
}

// Same idea as getBridgeForArg but this time

// the returned object is protected from the caller

static Bridge getBridgeForReturn( Object returnedObj,
BridgeInternal currentBI ){...}

Figure 10 Class BridgeFactory
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class files before linking. To prevent illegal subclassing, the
loader must record the final modifiers in each class already
loaded, and verify that further classes loaded do not violate
final constraints. The loader must also remove private
modifiers from classes Bc. This rewriting approach was
used by loaders in the JavaSeal [6] system to remove catchs
of ThreadDeath exceptions, since catching these exceptions
would allow an applet to ignore terminate signals from its
parent. The re-writing approach does not work for system
classes, as these are loaded and linked by the basic system
loader.

System classes These classes include the java.lang,
java.util and java.io classes. The problem with these
classes is that they can be final, e.g., java.lang.String, or
they contain final methods that cannot be overridden.

The class java.lang.0Object must be permitted since ev-
ery class sub-classes it. The only final methods of this class
are notifyAll, notify, wait, and getClass. These methods
cannot be overridden, and so invocation of these methods on
objects cannot be controlled. The former three methods are
used for thread synchronization. However, locking is out
of the scope of our access control model; it is an issue for
a fully-fledged protection domain model but this requires
modification to the virtual machine in any case. Concerning
the method getClass, a program that calls getClass on a
bridge class gets a class object for the bridged object. How-
ever, the constructor of a bridge class is protected, so the
program can do nothing with the object.

Special treatment is also given to system classes like
String and Integer which are final classes in Java 2. Our
implementation provides tailored versions of these classes to
represent strings and integers exchanged across boundaries.
The class I0SString for instance is simply a wrapper around
a String object, and can be exchanged between spaces. The
reader may have noticed the class I0SString in the paper’s
examples. The object space implementation also provides
a bridged class for I0SString. This class contains a copy
of the wrapped String object in I0SString, and is used
to transfer the value of the string across spaces in the set
method. The API of IOSString is given below. The second
constructor takes a String object; this allows a space to cre-
ate an I0SString from a String locally and to transmit that
string value to another domain.

public class I0SString implements Serializableq{
protected String myString;
public I0SString(){};
public I0SString(String s);
public I0SString getString();
public void set(I0SString s);
public void print();

Lastly, since String is final and cannot have a bridge de-
fined for it, bridge classes define the toString method to
return null in order to avoid direct references to Strings
in remote domains. In cases where strings need to be ex-
changed for convenience, like in exceptions for instance, the
user class should define a getMessage method that returns
an I0SString.



Field accesses Access to fields is also a form of inter-
object communication and must be controlled for security.
The current implementation however does not yet cater for
this. A solution would be for the loader to instrument the
bytecode with instructions that consult the access matrix
before each field access, or for field accesses to be converted
into method calls. The former approach is applied to Java
in [21]. In the current implementation of bridges, access to
fields in remote objects become access to fields in bridges.
These fields do not reflect the corresponding fields in the
protected object.

Static fields and methods Static methods pose two
problems. First, they cannot be redefined in subclasses. Sec-
ond, objects referenced by static variables could be shared
between protection domains without an access control check
taking place. In a fully fledged implementation of protection
domains, classes should not be shared between domains [6]
to avoid undetected sharing between domains. In the object
space implementation, the bridge generator signals an error
when an it receives an object of a user class that contains
static methods.

The problem of static variables is looked at in [8]. This
proposal strengthens isolation between loader spaces by
keeping a different copy of objects referenced by static vari-
ables for each copy of the class used by a loader. Unfor-
tunately, we cannot use this solution for the object space
implementation since classes are shared across domains.

Remote Array

Figure 11 Treatment of arrays in object space implementation.

Arrays Arraysin Java are objects in the sense that meth-
ods defined in Object can be executed on array objects.
Unfortunately, an array is not an object in the sense that
element selection using “[ ]’ is not a method call, and this
requires special treatment. Our approach is outlined in Fig-
ure 11. Whenever a reference to an array object is copied
across a space boundary (i.e., through a bridge), the array
is copied locally. The copy is even made if the array con-
tains primitive types like int or char. The implication of
this approach is that method calls on array objects do not
traverse space boundaries and that array selection is done
locally. In effect, copy by value is being used for array ob-
jects; an array entry can be modified in one space without a
corresponding change in another domain. Entries in copied
arrays for objects become bridges if not already so. This
means that non-array objects are always named using the
same bridge object within a space, even though array ob-
jects may be copied. If sharing of arrays is required, then
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the programmer must furnish an array class that has entry
selectors as methods.

This solution has an interesting repercussion regarding
the example of the bug in Java cited in Section 2.3.2.
The signers object was in fact represented by an array
“Identity signers[]1”. If the object space model were used
to implement this, then a copy of the signer array would
be returned to the caller, whose modifications to the array
would remain innocuous.

Synchronization on objects is intricately influenced by
the interposition of bridges between objects. Two objects
located in different spaces and willing to synchronize on the
same protected object would experience undesired behavior
since they are implicitly performing their operations on two
different bridges protecting the protected object instead of
acting on the protected object itself. This problem arises if
synchronized statements are used instead of relying on solu-
tions that exploit synchronized methods. The latter is per-
fectly valid since bridges forward calls to protected objects
and consequently, locking occurs on the protected objects
themselves.

Native methods can also lead to security flaws since
they could be used to leak object references between spaces
and there is no way to control this code. Our current im-
plementation for Java does not allow bridges for classes that
possess native methods, except for Object’s methods, e.g.,
hashCode.

4.5 Performance evaluation

Efficiency is one of the goals of the object space model. In
particular, the cost of mediation of inter-space calls by bridge
should be generally inferior to the cost of copy-by-value (of
which “serialization” is an example) and the exchange of the
byte array over a communication channel.

We conducted performance measures for the implementa-
tion running over SunOS 5.6 on a 333 MHz Ultra-Sparc-IIi
processor using Sun’s VM for JDK1.2.1. All measures were
obtained after averaging over a large number of iterations.

One of the basic measures taken was to compare the cost
of a method call between protection domains using the space
(bridge) model and the loader (Java serialization) model. We
also made comparisons with J-Kernel [25]. The latter allows
domains to exchange parameters either by using the Java
serialization mechanism, or by using a faster serialization
tool developed for J-Kernel or by passing capabilities. A
J-Kernel capability is an object that denotes an object in
a remote domain; this is J-Kernel’s equivalent of a bridged
object.

The table below shows comparisons for: A) a method call
with no parameters, B) for a method call with a string as
parameter, and C) for a method call with an article object
as a parameter. The Article class is used in the application
of Section 3.2, and consists of a hash-table of files repre-
senting the article contents, as well as strings for the article
attributes. Times are shown in micro-seconds. For A, we
estimated that a basic method call without arguments (and
serialization) was around 5 nano-seconds.



A cross-domain call without arguments is faster in our ap-
proach than with J-Kernel. For such a basic call, J-Kernel’s
overhead can mainly be explained by the thread context
switch that has to be performed when crossing domains. In
our implementation, the only overhead resides in the secu-
rity policy check required during cross-domain calls. This
cost is quite low since this check reduces to a lookup in an
access matrix implemented as a static two dimensional ar-
ray stored in class Space. Even though accessing the matrix
is fast, the trade-off is that space required is O(N?) in the
number of Spaces present in the system.

Mechanisms that use copy for passing parameters are as
expected slower that their counterpart that do not (J-Kernel
with capability and our object space model). Further, they
do not scale well with the size of arguments.

The cost of parameter passing with the object space model
is approximately two times slower than passing parameters
with capabilities in J-Kernel. The overhead comes from the
dynamic creation and lookup of bridges in our model. How-
ever, this cost comes with a benefit. Our model has stricter
controls on access to objects. In J-Kernel, once a capability
is released into the environment, it is not possible to con-
trol its spread among domains whereas in our model, we can
selectively grant or revoke access to certain domains.

Space | Serial. J-Kernel
Serial. | fast copy | capability
A 0.2 - 0.8
B 2.5 91.8 264.7 7.1 1.4
C 2.5 363.2 1004.2 587.2 14

The figures give an estimate of the basic mechanism. To
get a more general overview, we implemented the article
packager example of Section 3.2 using both the object space
model and the Java loader model. The space implementa-
tion was described earlier. In the loader implementation, a
class loader object is created to load the client and article
classes. The service classes (Storage & Editor) are loaded
with the system loader. A communication channel object
is installed between the client and service objects for the
exchange of serialized messages.

The application is highly interactive, so a direct compari-
son is not obvious; we therefore compared two types of com-
munication: the cost of saving an article stored within a
program on disk, and the cost of sending an event message
from the GUI Editor to the client.

In the loader version, the time to save a small article is ap-
proximately 5617 micro-seconds; this cost includes the time
to serialize the article. In the space version, the figure was
slightly less (5520 micro seconds). This also has an arti-
cle serialization since the article must be serialized to be
saved on disk. The figure includes a creation of a bridge
object for the article being passed to the Storage object.
The time to send a message from the GUI to the program
is about 143 micro-seconds in the space implementation. In
the loader implementation, this figure is around 1511 micro-
seconds due to serialization. The cost of serialization can
be reduced by making the classes of the objects exchanged
sharable (have them loaded by the system loader). How-
ever, the result of this is to weaken isolation because there
is greater scope for aliasing between domains.
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Regarding space usage, a bridge requires 4 words: a ref-
erence to a BridgeInternal object which contains 3 words
(reference to guarded object, and references to guarded and
possessor spaces). A Space object requires 3 words (an inter-
nal Integer identifier, a reference for the parent space, a ref-
erence to a hash-map object containing the children spaces);
the pointer to the access matrix is static, so is shared by
all Space objects. If there are N spaces active in a system,
then the overhead of a space is N? access matrix entries and
NM entries in the hash-map maintained by BridgeFactory
that maps object and space pairs to bridges. M denotes the
number of objects in the space referenced by objects in other
spaces. If all spaces contains M objects, then the maximum
number of bridges in the system is N?M; this represents the
case where all objects in all spaces are referenced by objects
in all other spaces.

The measures were taken for installed bridge classes. In
our implementation, a bridge class is generated on the fly if
the class cannot be found on disk. This is a costly process.
For instance, a bridge for the Editor class takes around 3.67
seconds to generate (due to parsing of the class file). On
startup of the article packager application, the root, service
and client spaces are created; this necessitates the creation
of 10 bridges, which takes around 6.24 seconds.

5 Related Work

This section compares our object space model with related
work; it is divided into Java related work, and more general
work on program security.

5.1 Java Security

Java has an advanced security model that includes protec-
tion domains, whose design goal was to isolate applets from
each other. The basic mechanism used is the class loader.
Each applet in Java is assigned its own class loader which
loads a distinct and private version of a class for its protec-
tion domain [17]. Java possesses the property that a class
of one loader has a distinct type to the same class loaded
by another loader. Typing is therefore the basis for isolation
since creating a reference from one loader space to another
is signaled as a type error.

A problem with this model is that dynamic typing can
violate the property that spaces do not reference each
other. This is because all classes loaded by the basic sys-
tem loader are shared by all other loader spaces - they are
never reloaded. The system loader loads all basic classes
(e.g., java.lang.*) so sharing between loader spaces is en-
demic. This sharing is enough to lead to aliasing between
loader spaces. Consider a class Password which is loaded
by two loader spaces ¢ and j; the resulting class versions
are Password; and Password;. This class implements the in-
terface PasswordID with methods init and value. Suppose
that the interface PasswordID is loaded by the system loader.
In this case, the following program allows one password to
read the value of the other, that is, the password object of
loader space (UID 2) can directly invoke the password object
in the other space.

public final class Password implements PasswordID{



private int UID;
private PasswordID sister;
private String password;

public static void main(String[] args)
throws Exception{
// Create two loader spaces
MyLoader cll = new MyLoader();
MyLoader cl2 = new MyLoader();
// Root leaks references to each space
PasswordID childl (PasswordID)cll
.loadClass("Password") .newInstance();
PasswordID child2 = (PasswordID)cl2
.loadClass("Password") .newInstance();
childl.init(1, "hth3tgh3", child2);
child2.init(2, "trb4ybb", childl);
}

public void init(int i, String s, PasswordID R){
sister = R; password = s; UID = i;
if(UID == 2)
System.out.println("Here’s No 1’s password: "
+ sister.value());

3

public String value(){
return password;

}
}

This program starts by creating two loaders of class
MyLoader. This loader reads files from a fixed directory.
It delegates loading of all basic Java classes and of the
PasswordID interface to the parent (system) loader. The
program then creates an instance of Password in each loader
space (by asking each loader to load and instantiate an in-
stance of the class). The program grants each password a
reference for each other. Despite the fact that each domain
has a distinct loader, the call on value by the second pass-
word on the first succeeds.

Loader spaces are used to implement protection domains
in several Java-based systems, e.g., [3, 14, 6, 25]. Isolation is
obtained only if the shared classes do not make leaks such as
that in the above example. In the object space approach, the
model at least guarantees that if ever a reference to an object
escapes or is leaked to another space, use of that reference
is nevertheless mediated by a security policy. The security
policy prohibits calls between spaces by default: an access
right for a space must be explicitly granted, and this grant
can be undone by a subsequent revocation.

One advantage of the loader space model over the object
space model is that the former allows a program to control
the classes that are loaded into its protection domain. This
is important for preventing code injection attacks, where ma-
licious code is inserted into a domain in an attempt to steal
or corrupt data. In the object space model, only a parent
can force a child space to execute code not foreseen by the
program through the newInstance method. However, there
is no way to control the classes used by a particular space.

Section 4 compared the implementation of the object
space model with J-Kernel [25]. Recall that protection do-
mains in J-Kernel are made up of selected shared system
classes, user classes loaded by a domain loader, as well as
instances of these classes. A capability object is used to
reference an object in a remote domain. A call on a capabil-
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ity object transfers control to the called domain; parameters
in the call are copied by value unless they are capability
objects, which are copied directly.

In comparison to the object space model, J-Kernel uses
copy-by-value by default, whereas the object space model
uses copy-by-reference. J-Kernel must explicitly create a
capability for an object to transfer it by reference; the
object space model must explicitly serialize an object to copy
it by value. The latter approach is a more natural object-
oriented choice. Access control is based on capabilities in J-
Kernel. A problem with capabilities is that their propagation
cannot be controlled: once a domain exports a capability
for one of its objects, it can no longer control what other
domain receives a copy of the capability. Revocation exists
but this entails revoking all copies of a capability, meaning
that the distribution of access rights for an object must start
again from scratch. In the object space model, an owner can
grant and revoke rights for spaces selectively to other spaces.
Another difference between the two systems is the presence
of the hierarchy in the object space model and the absence
of multiple class loaders and class instances.

The goal of the JavaSeal kernel [6] is to isolate mobile
agents from each other and from the host platform. A pro-
tection domain in JavaSeal is known as a seal, and is also
implemented using the Java loader mechanism. The set of
seals is organized into a hierarchy. A message exchanged
between two seals is routed via their common parent seal,
which can suppress the message for security reasons. It was
in fact our experience with programming a newspaper ap-
plication [19] over JavaSeal that first motivated the object
space model. Many objects such as environment variables
and article objects needed to be distributed to several seals.
This meant copy-by-value semantics, which we found to be
cumbersome for mutable objects like key certificates and ar-
ticle files. We wanted a safe form of object sharing to sim-
plify programming.

Interesting similarities exist between the object space
model and memory management in real-time Java [5]. The
latter has ScopedMemory objects that act as memory heaps
for temporary objects. A newly created real-time thread can
be assigned a ScopedMemory; alternatively, threads can en-
ter the context of a ScopedMemory by executing its enter ()
method. The memory object contains a reference counter
that is incremented each time that a thread enters it. An
object created by a thread in a ScopedMemory is allocated
in that memory object. An object (in a ScopedMemory) may
create other ScopedMemory objects, thus introducing a hi-
erarchy. The goal of the scoped memory model is to avoid
use of a (slow) garbage collector to remove objects. When
the reference counter of a ScopedMemory object becomes 0,
the objects it contains can be removed. To prevent dangling
references, an object cannot hold a reference to an object
in a sibling ScopedMemory; the JVM dynamically checks all
reference assignments to verify this constraint.

Compared with the object space model, both approaches
use a hierarchy with accesses between spaces being dynami-
cally checked. However, the access restrictions in the object
space model can be dynamically modified, and accesses be-
tween non-related spaces are possible. On the other hand,
the object space model does not deal with resource termina-
tion.



5.2 Program Security Mechanisms

There has been much work on integrating access control into
programs. Some approaches annotate programs with calls to
a security policy checker [21, 9]. In Java for instance [9], a
system class contains a method call to a SecurityManager
object that checks whether the calling thread has the right
to pursue the call. Another approach to program security
uses programming language support. For instance, the lan-
guages [13, 18] include the notion of access rights; programs
can possess rights for objects and access by a program to
an object can only progress if it possesses the access right.
Language designers today tend to equate security to type
correctness. In this way, security is just another “good be-
havior” property of a program, that can be verified using
static analysis or dynamic checking [20, 16]

Leroy and Rouaix use typing to enforce security in en-
vironments running applets [16]. Security in this context
means that an applet cannot gain access to certain objects
(such as those private to an environment function), and that
objects which are accessible can only be assigned a specified
set of permitted values. Each system type 7 has special
versions t that each define a set of permitted values. For
instance, 7 may be String, and ¢ be CLASSPATH with pos-
sible values being /applet/public and /bin/java. Each
conversion from 7 to ¢ on an object entails verifying that the
object respects the permitted values. Environment functions
available to applets are bridge-like in the sense that each in-
coming reference of type 7 is cast to ¢. This is similar to the
object space model implementation in Java since for each
class 7, a bridge class ¢ is constructed that contains code to
verify the system’s access control policy. Access permissions
are specified by an access matrix in the object space model,
rather than by permitted object values.

The goal of JFlow [20] is information flow security; this
deals with controlling an attacker’s ability to infer informa-
tion from an object rather than with controlling access to
the object’s methods. JFlow extends the Java language by
associating security labels with variables. A security label
denotes the sensitivity of an object’s information. JFlow
has a static analyzer that ensures that an object does not
transfer a reference or data to an object with an inferior
security label, as this would constitute a leak. The complex-
ity of the mechanism comes from ensuring that information
about objects used in an conditional expression evaluation
is not implicitly leaked to objects modified in the scope of
the conditional expression.

In comparison to these works, the object space implemen-
tation relies on typing to ensure that each object access is
made using a secure version of the class (i.e., one that in-
cludes access control checks). Annotation of classes with
checks could be included to check field accesses between ob-
jects [21], as we mentioned in Section 4.

A related topic to access control is aliasing control,
e.g., Confined types [4], Balloons [1] or Islands [11]. Con-
fined types is a recent effort to control the visibility of ker-
nel objects by controlling the visibility of class names. A
confined type is a class whose objects are invisible to spe-
cific user programs. The advantage of this approach is that
the confinement of a type is verified by the compiler. On
the other hand, classes cannot be confined and non-confined
at the same time. It is important that one can designate
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some objects of a class as protected, and other objects as
public. For instance, the visibility of Strings that repre-
sent passwords must be confined, though the class String
is a general class that should be accessible to all programs.
Another problem with aliasing control is that object visi-
bility can vary during the object’s lifetime. For instance,
an object given to a server must remain accessible to that
server during the server’s work-time. Once the server has
completed its task, the object should be removed from the
server’s visibility; this is the server containment property [7].
The object space model controls access on an object basis,
and the visibility constraints can be dynamically altered.

6 Conclusions

This paper has presented an access control model for an
object-oriented environment. The model API is strongly in-
fluenced by Java and its loader spaces programming model,
though aims to overcome weaknesses in Java access control
caused by aliasing. We evaluated our proposition for an im-
plementation over Java 2. Though the implementation has
the advantage of portability, it means that we cannot ad-
dress resource control and domain termination issues. These
issues must be treated if object spaces are to become fully-
fledged protection domains. Virtual machine support could
also be useful to overcome the limitations of the model in
Java, e.g., the prohibition of field accesses and the work
around of final modifiers.

Our results show that interposition of access control pro-
grams between objects of different domains can be more ef-
ficient than a simple copy-by-value of data between loader
spaces. We believe that the object space model is a more
natural object programming style than copy-by-value, espe-
cially for objects that need to be accessed by many programs
and whose value can change often, e.g., environment vari-
ables. The model also has the advantage that any leak of a
reference between spaces is innocuous if the receiving space
has not been explicitly granted the right to use the space of
the referenced object. And even if access has been granted,
this right may always be removed.
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