Lectures on Proof-Carrying Code

Peter Lee

Carnegie Mellon University

Lecture 2 (of 3) June 21-22, 2003 University of Oregon

2004 Summer School on Software Security

Back to our case study

Program AlsoInteresting while read() != 0 i := 0 while i < 100 use 1 i := i + 1</pre>

The language

```
s ::= skip
| i := e
| if e then s else s
| while e do s
| s ; s
| use e
| acquire e
```

Defining a VCgen

To define a verification-condition generator for our language, we start by defining the language of predicates

P::= b

$$| P \land P$$

 $| A \Rightarrow P$
 $| \forall i.P$
 $| e? P: P$

$$\begin{array}{c} \mathbf{A} : := \mathbf{b} \\ | \mathbf{A} \wedge \mathbf{A} \end{array}$$

annotations

boolean expressions

Weakest preconditions

The VCgen we define is a simple variant of Dijkstra's *weakest* precondition calculus

It makes use of generalized predicates of the form: (P,e)

 (P,e) is true if P is true and at least e units of the resource are currently available Hoare triples

The VCgen's job is to compute, for each statement S in the program, the Hoare triple

•(P',e') S (P,e)

which means, roughly:

 If (P,e) holds prior to executing S, and then S is executed and it terminates, then (P',e') holds afterwards

Since we will usually have the postcondition (true,0) for the last statement in the program, we can define a function

• vcg(S, (P,i)) \rightarrow (P',i')

I.e., given a statement and its postcondition, generate the weakest precondition

The VCgen (easy parts)

$$vcg(skip, (P,e)) = (P,e)$$

$$vcg(s_1;s_2, (P,e)) = vcg(s_1, vcg(s_2, (P,e)))$$

$$vcg(x:=e', (P,e)) = ([e'/x]P, [e'/x]e)$$

$$vcg(if b then s_1 else s_2, (P,e)) = (b? P_1:P_2, b? e_1:e_2)$$

$$where (P_1,e_1) = vcg(s_1, (P,e))$$

$$and (P_2,e_2) = vcg(s_2, (P,e))$$

$$vcg(use e', (P,e)) = (P \land e' \ge 0, e' + (e \ge 0? e : 0))$$

$$vcg(acquire e', (P,e)) = (P \land e' \ge 0, e-e')$$

Prove: Pre \Rightarrow (true, -1)

vcg(use e', (P,e)) = (P
$$\land e' \ge 0$$
, e' + (e ≥ 0 ? e:0)
vcg(acquire e', (P,e)) = (P $\land e' \ge 0$, e-e')

	$(true \land 1 > 0 \land 2 > 0 \land 3 > 0 2 + 1 + 0 - 3)$
acquire 3	
	(true \land 1 \ge 0 \land 2 \ge 0, 2+1+0)
use 2	
1190 1	(True $\wedge 1 \geq 0$, 1+0)
use I	
	(True, U)

vcg(use e', (P,e)) = (P
$$\land e' \ge 0$$
, e' + (e ≥ 0 ? e:0)
vcg(acquire e', (P,e)) = (P $\land e' \ge 0$, e-e')

acquire	9	
if (b)		
then	use	5
else	use	4
use 4		

 $(9 \ge 0, (b?9:8) - 9)$ (b?true:true, b?9:8) (5 \ge 0, 9) (4 \ge 0, 8) (4 \ge 0, 4) (true, 0)

```
vcg(if b then s1 else s2, (P,e)) =
  (b? P1:P2, b? e1:e2)
    where (P1,e1) = vcg(s1,(P,e))
    and (P2,e2) = vcg(s2,(P,e))
```

acquire	8	
if (b)		
then	use	5
else	use	4
use 4		

 $(8 \ge 0, (b?9:8) - 8)$ (b?true:true, b?9:8) (5 \ge 0, 9) (4 \ge 0, 8) (4 \ge 0, 4) (true, 0)

```
vcg(if b then s1 else s2, (P,e)) =
  (b? P1:P2, b? e1:e2)
    where (P1,e1) = vcg(s1,(P,e))
    and (P2,e2) = vcg(s2,(P,e))
```


Loops cause an obvious problem for the computation of weakest preconditions

acquire n
i := 0
while (i <n) do="" td="" {<=""></n)>
use 1
i := i + 1
}

Snipping up programs

A simple loop

Broken into segments

Loop invariants

We thus require that the programmer or compiler insert invariants to cut the loops

acquire n
i := 0
while (i <n) do="" td="" {<=""></n)>
use 1
i := i + 1
} with (i≤n, n-i)

Α	::=	b		
		Α	Λ	A

VCgen for loops

acquire n;	(\and n≥0, n-n)
i := 0;	(0≤n ∧ ∀i, n-0)
	(i≤n ∧ ∀i.i≤n ⇒ cond(i <n i+1<n="" n-i="" ∧="">n-i</n>
	n-i≥n-i)
while (i <n) do="" td="" {<=""><td>n-i)</td></n)>	n-i)
use 1:	(i+1≤n ∧ 1≥0, n-i)
i - i + 1	(i+1≤n, n-(i+1))
$\bot := \bot + \bot i$	(i≤n, n-i)
} with (i≤n,n-i);	
	(mue, U)

Our easy case

```
Program Static
  acquire 10000
  i := 0
  while i < 10000
    use 1
    i := i + 1
  with (i \le 10000, 10000-i)
```

Typical loop invariant for "standard for loops"

Our hopeless case

Program Dynamic while read() != 0 acquire 1 use 1 with (true, 0)

Typical loop invariant for "Java-style checking"

Our interesting case

Program Interesting N := read()acquire N i := 0 while i < Nuse 1 i := i + 1 with ($i \leq N$, N-i)

Also interesting

Program AlsoInteresting while read() != 0 acquire 100 i := 0 while i < 100use 1 i := i + 1 with (i<100, 100-i)

Annotating programs

How are these annotations to be inserted?

- The programmer could do it
- Or:
 - A compiler could start with code that has every use immediately preceded by an acquire
 - We then have a code-motion optimization problem to solve

VCGen's Complexity

Some complications:

- If dealing with machine code, then VCGen must parse machine code.
- Maintaining the assumptions and current context in a memoryefficient manner is not easy.

Note that Sun's kVM does verification in a single pass and only 8KB RAM!

VC Explosion

 $a=b \implies (x=c \implies safe_{f}(y,c) \land x <> c \implies safe_{f}(x,y))$ $\land a <> b \implies (a=x \implies safe_{f}(y,x) \land a <> x \implies safe_{f}(a,y))$

Exponential growth in size of the VC is possible.

VC Explosion

Growth can usually be controlled by careful placement of just the right "join-point" invariants.

Proving the Predicates

Proving predicates

Note that left-hand side of implications is restricted to annotations

 vcg() respects this, as long as loop invariants are restricted to annotations

P::= b
| P
$$\land$$
 P
| A \Rightarrow P
| \forall i.P
| e? P: P

predicates

$$\begin{array}{ccc} \mathbf{A} & \vdots \vdots = & \mathbf{b} \\ & & | & \mathbf{A} & \wedge & \mathbf{A} \end{array}$$

annotations

boolean expressions

A simple prover

We can thus use a simple prover with functionality

• prove(annotation, pred) \rightarrow bool

where prove(A,P) is true iff $A \Rightarrow P$

 i.e., A⇒P holds for all values of the variables introduced by ∀

A simple prover

- prove(A,b)
- $prove(A, P_1 \land P_2)$
- prove(A,b? $P_1:P_2$)

- = \neg sat(A $\land \neg$ b)
 - = prove(A, P_1) \land prove(A, P_2)
 - = prove(A \wedge b,P₁) \wedge

prove(A $\land \neg b, P_2$)

- = prove($A \land A_1, P$)
- prove(A, \i.P)

prove($A_1 \Rightarrow P$)

= prove(A,[a/i]P) (a fresh)

Soundness is stated in terms of a formal operational semantics.

Essentially, it states that if

• Pre \Rightarrow vcg(*program*)

holds, then all **use e** statements succeed

Logical Frameworks

The Edinburgh Logical Framework (LF) is a language for specifying logics.

Kinds K ::= Type $| \Pi x : A.K$ Types $A ::= a | A M | \Pi x : A_1.A_2$ Objects $M ::= x | c | M_1M_2 | \lambda x : A.M$

LF is a lambda calculus with dependent types, and a powerful language for writing *formal proof systems*.

The Edinburgh Logical Framework language, or LF, provides an expressive language for proofsas-programs.

Furthermore, it use of dependent types allows, among other things, the axioms and rules of inference to be specified as well

Pfenning's Elf

Several researchers have developed logic programming languages based on these principles.

One of special interest, as it is based on LF, is Pfenning's Elf language and system.

true false	: pred. : pred.
/\	: pred -> pred -> pred.
\backslash /	: pred -> pred -> pred.
=>	: pred -> pred -> pred.
all	: (exp -> pred) -> pred.

This small example defines the abstract syntax of a small language of predicates

Elf example

So, for example: $\forall A, B. A \land B \Rightarrow B \land A$ Can be written in Elf as all([a:pred] all([b:pred])) $=> (/ \land a b) (/ \land b a)))$

true	: pred.
false	: pred.
/\	: pred -> pred -> pred.
\backslash /	: pred -> pred -> pred.
=>	: pred -> pred -> pred.
all	: (exp -> pred) -> pred.

Proof rules in Elf

Dependent types allow us to define the proof rules...

```
pf : pred -> type.
truei : pf true.
andi : {P:pred} {Q:pred} pf P -> pf Q -> pf (/\ P Q).
andel : {P:pred} {Q:pred} pf (/\ P Q) -> pf P.
ander : {P:pred} {Q:pred} pf (/\ P Q) -> pf Q.
impi : {P1:pred} {P2:pred} pf (/\ P Q) -> pf Q.
impi : {P1:pred} {P2:pred} (pf P1 -> pf P2) -> pf (=> P1 P2).
alli : {P1:exp -> pred} ({X:exp} pf (P1 X)) -> pf (all P1).
e : exp -> pred
```

Proofs in Elf

...which in turns allows us to have easy-to-validate proofs

```
... (impi (/\ a b) (/\ b a)
        ([ab:pf(/\ a b)]
        (andi (ander ab)
                    (andel ab))))...) :
all([a:exp] all([b:exp]
        => (/\ a b) (/\ b a))).
```

LF as the internal language

