Lectures on Proof-Carrying Code

Peter Lee
Carnegie Mellon University

Lecture 2 (of 3)
June 21-22, 2003
University of Oregon

Back to our case study

Program AlsoInteresting while read() != 0
i := 0
while i < 100
use 1

$$
\mathbf{i}:=\mathbf{i}+1
$$

The language

$$
\begin{aligned}
s: & :=\text { skip } \\
& \left\lvert\, \begin{array}{l}
\text { i }:= \\
\text { if e then s else s } \\
\text { while e do s } \\
\mid \\
\text { s ; s } \\
\text { use e } \\
\text { acquire e }
\end{array}\right.
\end{aligned}
$$

Defining a VCgen

To define a verification-condition generator for our language, we start by defining the language of predicates

boolean expressions

Weakest preconditions

The VCgen we define is a simple variant of Dijkstra's weakest precondition calculus

It makes use of generalized predicates of the form: (\mathbf{P}, \mathbf{e})

- (P, e) is true if P is true and at least e units of the resource are currently available

Hoare triples

The VCgen's job is to compute, for each statement S in the program, the Hoare triple

- ($\left.P^{\prime}, e^{\prime}\right)$ S (P, e)
which means, roughly:
- If (\mathbf{P}, \mathbf{e}) holds prior to executing \mathbf{S}, and then \mathbf{S} is executed and it terminates, then ($\mathbf{P}^{\prime}, \mathbf{e}^{\prime}$) holds afterwards

VCgen

Since we will usually have the postcondition (true, 0) for the last statement in the program, we can define a function

- $\operatorname{Vcg}(S,(P, i)) \rightarrow\left(P^{\prime}, i^{\prime}\right)$
I.e., given a statement and its postcondition, generate the weakest precondition

The VCgen (easy parts)

vcg(skip, (P, e)) $=(\mathrm{P}, \mathrm{e})$
$\operatorname{vcg}\left(s_{1} ; s_{2},(P, e)\right)=\operatorname{vcg}\left(s_{1}, \operatorname{vcg}\left(s_{2},(P, e)\right)\right)$
$\operatorname{vcg}\left(x:=e^{\prime},(P, e)\right)=\left(\left[e^{\prime} / x\right] P,\left[e^{\prime} / x\right] e\right)$
$\operatorname{vcg}\left(i f \quad b\right.$ then s_{1} else $\left.s_{2},(P, e)\right)=$
(b? $P_{1}: P_{2}, b$? $e_{1}: e_{2}$)
where $\left(P_{1}, e_{1}\right)=\operatorname{vcg}\left(s_{1},(P, e)\right)$
and $\quad\left(P_{2}, e_{2}\right)=\operatorname{vcg}\left(S_{2},(P, e)\right)$
vcg(use $\left.e^{\prime},(P, e)\right)=\left(P \wedge e^{\prime} \geq 0\right.$,

$$
e^{\prime}+(e \geq 0 ? e: 0)
$$

vcg(acquire $\left.e^{\prime},(P, e)\right)=\left(P \wedge e^{\prime} \geq 0, e-e^{\prime}\right)$

Example 1

Prove: Pre \Rightarrow (true, -1)

Pre: (true, 0) (true $\wedge 2 \geq 0 \wedge 3 \geq 0,2+0-3$)

$\operatorname{vcg}\left(u s e e^{\prime},(P, e)\right)=\left(P \wedge e^{\prime} \geq 0, e^{\prime}+(e \geq 0\right.$? $e: 0)$
$\operatorname{vcg}\left(a c q u i r e e^{\prime},(P, e)\right)=\left(P \wedge e^{\prime} \geq 0, e-e^{\prime}\right)$

Example 2

$$
\begin{array}{l|l}
\begin{array}{ll}
\text { acquire } 3 \\
\text { use } 2 \\
\text { use } 1
\end{array} & \begin{array}{l}
\text { (true } \wedge 1 \geq 0 \wedge 2 \geq 0 \wedge 3 \geq 0,2+1+0-3) \\
\text { (true } \wedge 1 \geq 0 \wedge 2 \geq 0,2+1+0)
\end{array} \\
\text { (true } \wedge 1 \geq 0,1+0)
\end{array}\left(\begin{array}{l}
\text { (true, } 0)
\end{array}\right.
$$

$\operatorname{vcg}\left(u s e e^{\prime},(P, e)\right)=\left(P \wedge e^{\prime} \geq 0, e^{\prime}+(e \geq 0\right.$? $e: 0)$
$\operatorname{vcg}\left(a c q u i r e e^{\prime},(P, e)\right)=\left(P \wedge e^{\prime} \geq 0, e-e^{\prime}\right)$

Example 3

acquire 9
if (b)
then use 5
else use 4
use 4

($9 \geq 0$, (b?9:8) - 9)
(b?true:true, b?9:8)
$(5 \geq 0,9)$
$(4 \geq 0,8)$
($4 \geq 0,4$)
(true, 0)

```
vcg(if b then s1 else s2, (P,e)) =
    (b? P1:P2, b? e1:e2)
    where (P1,e1) = vcg(s1,(P,e))
    and (P2,e2) = vcg(s2,(P,e))
```


Example 4

```
acquire 8
if (b)
    then use 5
    else use 4
use 4
```

($8 \geq 0$, (b?9:8) - 8)
(b?true:true, b?9:8)
$(5 \geq 0,9)$
$(4 \geq 0,8)$
($4 \geq 0,4$)
(true, 0)

```
vcg(if b then s1 else s2, (P,e)) =
    (b? P1:P2, b? e1:e2)
    where (P1,e1) = vcg(s1,(P,e))
    and (P2,e2) = vcg(s2,(P,e))
```


Loops

Loops cause an obvious problem for the computation of weakest preconditions

```
acquire n
i := 0
while (i<n) do {
    use 1
    i := i + 1
}
```


Snipping up programs

A simple loop

Broken into segments
${ }^{\text {Pre }}$

Loop invariants

We thus require that the programmer or compiler insert invariants to cut the loops

```
acquire n
i := 0
while (i<n) do {
    use 1
    i := i + 1
} with (i\leqn, n-i)
An annotated loop
```

$$
\begin{array}{rl|}
\hline \mathbf{A}: & :=\mathrm{b} \\
& \mathrm{I} A \wedge \mathrm{~A} \\
\hline
\end{array}
$$

VCgen for loops

vcg(while b do s with ($\left.A_{I}, e_{I}\right)$, ($\left.\mathrm{P}, \mathrm{e}\right)$) $=$ $\left(A_{I} \wedge \forall i_{1}, i_{2}, \ldots . A_{I} \Rightarrow b ? P^{\prime} \wedge e_{I} \geq e^{\prime}\right.$, $: P \wedge e_{i} \geq e$,
e_{I})
where $\left(\mathrm{P}^{\prime}, \mathrm{e}^{\prime}\right)=\operatorname{vcg}\left(\mathrm{s},\left(\mathrm{A}_{\mathrm{I}}, \mathrm{e}_{\mathrm{I}}\right)\right)$
and i_{1}, i_{2}, \ldots are the variables modified in s

Example 5

acquire n;
i := 0;
while (i<n) do \{ use 1;
i := i + 1;
\} with (i $\leq n, n-i)$;
(... \and $n \geq 0, n-n$)
$(0 \leq n \wedge \forall i . \ldots, n-0)$
($i \leq n \wedge \forall i . i \leq n \Rightarrow$ cong $(i<n, i+1 \leq n \wedge n-i \geq n-i$,

$$
n-i \geq n-i)
$$

$n-i)$

$$
\begin{aligned}
& (i+1 \leq n \wedge 1 \geq 0, n-i) \\
& (i+1 \leq n, n-(i+1)) \\
& (i \leq n, n-i)
\end{aligned}
$$

(true, 0)

Our easy case

Program Static acquire 10000
i := 0 while i < 10000
use 1
i : $=1$ + 1
with (i<10000, 10000-i)

Typical loop invariant for "standard for loops"

Our hopeless case

Program Dynamic while read() != 0 acquire 1 use 1 with (true, 0)

Typical loop invariant for "J ava-style checking"

Our interesting case

Program Interesting N : = read() acquire N
i := 0
while $i<N$
use 1
i : $=\mathbf{i}+1$
with (íN, N-i)

Also interesting

Program AlsoInteresting while read() != 0 acquire 100
i := 0
while i < 100
use 1
i : $=1+1$
with (is100, 100-i)

Annotating programs

How are these annotations to be inserted?

- The programmer could do it

Or:

- A compiler could start with code that has every use immediately preceded by an acquire
- We then have a code-motion optimization problem to solve

VCGen's Complexity

Some complications:

- If dealing with machine code, then VCGen must parse machine code.
- Maintaining the assumptions and current context in a memoryefficient manner is not easy.

Note that Sun's kVM does verification in a single pass and only 8KB RAM!

VC Explosion

$$
\begin{aligned}
& a=b \Rightarrow\left(x=c \quad \Rightarrow \operatorname{safe}_{f}(y, c) \wedge\right. \\
& \left.x<>c=>\operatorname{safe}_{f}(x, y)\right) \\
& \wedge \\
& a<>b \Rightarrow \quad\left(a=x \quad \Rightarrow \operatorname{safe}_{f}(y, x) \wedge\right. \\
& \left.a<>x=>\operatorname{safe}_{f}(a, y)\right)
\end{aligned}
$$

Exponential growth in size of the VC is possible.

VC Explosion

$$
\begin{aligned}
& (a=b \quad=>P(x, b, c, x) \wedge \\
& a<>b=>P(a, b, x, x)) \\
& \wedge \\
& \left(\forall a^{\prime}, c^{\prime} . P\left(a^{\prime}, b, c^{\prime}, x\right)=>\right. \\
& \\
& a^{\prime}=c^{\prime} \Rightarrow \operatorname{safe}_{f}\left(y, c^{\prime}\right) \wedge \\
& \left.a^{\prime}<>c^{\prime} \Rightarrow>\operatorname{safe}_{f}\left(a^{\prime}, y\right)\right)
\end{aligned}
$$

Growth can usually be controlled by careful placement of just the right "join-point" invariants.

Proving the Predicates

Proving predicates

Note that left-hand side of implications is restricted to annotations

- vcg() respects this, as long as loop invariants are restricted to annotations

boolean expressions

A simple prover

We can thus use a simple prover with functionality

- prove(annotation, pred) \rightarrow bool
where prove(A, P) is true iff $A \Rightarrow P$
-i.e., $A \Rightarrow P$ holds for all values of the variables introduced by \forall

A simple prover

prove(A,b) $\operatorname{prove}\left(A, P_{1} \wedge P_{2}\right) \quad=\operatorname{prove}\left(A, P_{1}\right) \wedge \operatorname{prove}\left(A, P_{2}\right)$ $\operatorname{prove}\left(A, b ? P_{1}: P_{2}\right)=\operatorname{prove}\left(A \wedge b, P_{1}\right) \wedge$
$\operatorname{prove}\left(A, A_{1} \Rightarrow P\right) \quad=\operatorname{prove}\left(A \wedge A_{1}, P\right)$ prove(A, $\forall \mathbf{i} . \mathrm{P})$
prove $\left(A \wedge \neg b, P_{2}\right)$
$=\neg \operatorname{sat}(A \wedge \neg b)$
$=\operatorname{prove}(A,[a / i] P)$ (a fresh)

Soundness

Soundness is stated in terms of a formal operational semantics.

Essentially, it states that if

- Pre \Rightarrow vcg(program)
holds, then all use e statements succeed

Logical Frameworks

Logical frameworks

The Edinburgh Logical Framework (LF) is a language for specifying logics.

Kinds $\quad K \quad::=$ Type | $\Pi x: A . K$
Types $\quad A \quad::=a|A M| \Pi x: A_{1} \cdot A_{2}$
Objects $M::=x|c| M_{1} M_{2} \mid \lambda x: A . M$
LF is a lambda calculus with dependent types, and a powerful language for writing formal proof systems.

LF

The Edinburgh Logical Framework language, or LF, provides an expressive language for proofs-as-programs.

Furthermore, it use of dependent types allows, among other things, the axioms and rules of inference to be specified as well

Pfenning's Elf

Several researchers have developed logic programming languages based on these principles.
One of special interest, as it is based on LF, is Pfenning's Elf language and system.

true	$:$ pred.
false	$:$ pred.
八	pred $->$ pred $->$ pred.
\/ pred $->$ pred $->$ pred.	
$=>$	$:$ pred $->$ pred $->$ pred.
all	$:(\exp ->$ pred) $->$ pred..

This small example defines the abstract syntax of a small language of predicates

Elf example

So，for example：
$\forall A, B . A \wedge B \Rightarrow B \wedge A$
Can be written in Elf as

all（［a：pred］all（［b：pred］
 ＝＞（八 a b）（八 b a）））

true	：pred．
false	：pred．
ハ	：pred $->$ pred－＞pred．
\backslash	：pred－＞pred－＞pred．
＝＞	：pred－＞pred－＞pred．
all	：（exp－＞pred）－＞pred．

Proof rules in Elf

Dependent types allow us to define the proof rules...

```
pf : pred -> type.
truei : pf true.
andi : {P:pred} {Q:pred} pf P -> pf Q -> pf (/\ P Q).
andel : {P:pred} {Q:pred} pf (/\ P Q) -> pf P.
ander : {P:pred} {Q:pred} pf (/\ P Q) -> pf Q.
impi : {P1:pred} {P2:pred} (pf P1 -> pf P2) -> pf (=> P1 P2).
alli : {P1:exp -> pred} ({X:exp} pf (P1 X)) -> pf (all P1).
e
    : exp -> pred
```


Proofs in Elf

...which in turns allows us to have easy-to-validate proofs

```
... (impi (/\ a b) (/\ b a)
        ([ab:pf(/\ a b)]
        (andi (ander ab)
                (andel ab))))...) :
all([a:exp] all([b:exp]
    => (/\ a b) (八\ b a))).
```


LF as the internal language

it

Code producer

A verification condition

I am convinced it is safe to execute only if all([a:exp] (all([b:exp] (=> (八 a b) (八 b a)))

Code producer
Host
．．．（impi（／八ab）（八 b a）

（［ab：pf（／八 a b）］

（andi b a（ander a b ab）
（andel a b ab））））．．．）

Code producer
Host

