
Authenticity by Typing for Security Protocols

Andrew D. Gordon
Microsoft Research

Alan Jeffrey
DePaul University

June 2002

Technical Report
To appear in the Journal of Computer Security

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Publication History

A portion of this work appeared in the proceedings of the 14th IEEE Computer Security
Foundations Workshop (CSFW 14), Cape Breton, June 11–13, 2001.

Affiliation

Alan Jeffrey is with DePaul University. The two authors completed part of this work at
Microsoft Research in Cambridge and part at DePaul University in Chicago.

Abstract

We propose a new method to check authenticity properties of cryptographic
protocols. First, code up the protocol in the spi-calculus of Abadi and Gordon.
Second, specify authenticity properties by annotating the code with correspon-
dence assertions in the style of Woo and Lam. Third, figure out types for the keys,
nonces, and messages of the protocol. Fourth, check that the spi-calculus code is
well-typed according to a novel type and effect system presented in this paper. Our
main theorem guarantees that any well-typed protocol is robustly safe, that is, its
correspondence assertions are true in the presence of any opponent expressible in
spi. It is feasible to apply this method by hand to several well-known cryptographic
protocols. It requires little human effort per protocol, puts no bound on the size
of the opponent, and requires no state space enumeration. Moreover, the types for
protocol data provide some intuitive explanation of how the protocol works. This
paper describes our method and gives some simple examples. Our method has led
us to the independent rediscovery of flaws in existing protocols and to the design
of improved protocols.

Contents

1 Verifying Correspondences by Typing Spi 1

2 Programming Protocols 3
2.1 Review of the Spi-Calculus . 4
2.2 Programming an Example . 6

3 Specifying Protocols 7
3.1 A Spi-Calculus with Correspondence Assertions 7
3.2 Specifying the Example . 9
3.3 Fixing the Example . 10

4 Typing Protocols 11
4.1 Types for Messages . 11
4.2 Effects for Processes . 13
4.3 Typing Rules . 18
4.4 Typing the Example . 24

5 Further Protocol Examples 25

6 Summary and Conclusion 26

A Protocol Examples 27
A.1 Abadi and Gordon’s Variant of Wide Mouth Frog 27
A.2 Woo and Lam’s Authentication Protocol 32
A.3 Otway and Rees’s Key Exchange Protocol 35
A.4 A Secure Message Stream . 36
A.5 Abbreviations Used in Examples . 38

B Formal Semantics of our Typed Spi-Calculus 40
B.1 A Trace Semantics for our Spi-Calculus 40
B.2 Correspondence Traces and Safe Processes 44
B.3 Proof of Subject Reduction . 46
B.4 Proof of Safety . 55

References 63

1 Verifying Correspondences by Typing Spi

We propose a new method for analysing authenticity properties of cryptographic pro-
tocols. Our proposal builds on and develops two existing ideas: Woo and Lam’s idea
of correspondence assertions for specifying authentication properties of protocols [41],
and Abadi’s idea of checking security properties of cryptographic protocols by type-
checking [1].

Woo and Lam’s idea of correspondence assertions is very simple. Starting from
some description of the sequence of messages exchanged by principals in a protocol,
we annotate it with labelled events marking the progress of each principal through
the protocol. Moreover, we divide these events into two kinds, begin-events and end-
events. Event labels typically indicate the names of the principals involved and their
roles in the protocol. For example, before running a protocol to authenticate its pres-
ence to another principal B, an initiator A asserts a begin-event labelled “initiator A
authenticating itself to responder B”. After satisfactory completion of the protocol, the
principal B asserts an end-event with the same label. A protocol satisfies these asser-
tions if in all protocol runs, and in the presence of a hostile opponent, every assertion of
an end-event corresponds to a distinct, earlier assertion of a begin-event with the same
label. The hostile opponent can capture, modify, and replay messages, but cannot forge
assertions.

Woo and Lam’s paper [41] describes a formal semantics for correspondence as-
sertions but suggests no verification techniques. Marrero, Clarke, and Jha [30] base
a model-checker for security protocols on correspondence assertions. This paper for-
malises correspondence assertions as new commands in the spi-calculus [3], a concur-
rent programming language equipped with abstract forms of cryptographic primitives.
We expect it would not be difficult to adapt the techniques of this paper to other con-
current languages.

There is a variety of different formulations of authenticity properties of protocols,
and even a little controversy [6, 16, 27, 13]. Still, we adopt correspondence assertions
because they are simple, precise, and flexible. They are simple annotations of a pro-
tocol expressed as a program. They have a precise semantics. They are flexible in the
sense that by annotating a protocol in different ways we can express different authen-
ticity intentions and guarantees. Correspondence assertions allow us to express what
Lowe [27] calls injective agreement between protocol runs. In a formal comparison
of authenticity properties, Focardi, Gorrieri, and Martinelli [14] formulate a property
that systematically generalises the equational properties proved in the original work on
spi [3], and show that this generalisation is strictly weaker than agreement. Therefore,
there is some evidence that the authentication properties proved in this paper are at
least as strong as in the original work.

By verifying suitable correspondence assertions, our method can rule out problems
such as vulnerability to replay attacks or confusions of identity. Still, like most other
formal methods for analysing authenticity protocols, our method deliberately abstracts
from the details of the underlying encryption algorithms, and therefore cannot detect
protocol weaknesses deriving from inadequacies in these algorithms.

Abadi’s idea of type-checking secrecy properties of cryptographic protocols in the
spi-calculus is part of a surge of interest in types for security. Other work includes

1

type systems for checking untrusted mobile code [26, 32, 19], for checking access
control [25, 37], and, most recently, other type systems for cryptographic primitives
[35, 2]. Abadi’s original system establishes secrecy properties, and features some un-
usual constructs that allow any opponent to be type-checked. This paper develops some
of the constructs in Abadi’s system, and proposes a new type and effect system [15, 29]
for the spi-calculus. For a well-typed program containing correspondence assertions, a
type safety theorem guarantees the program satisfies the assertions.

Our new method is the following. First, code up the protocol in the spi-calculus.
Second, specify authenticity properties expected of the protocol by annotating the code
with correspondence assertions. Third, figure out types for the keys, nonces, and mes-
sages of the protocol. Fourth, check that the spi-calculus code is well-typed. The type
safety theorem guarantees the soundness of the authenticity properties specified in the
second step. The theorem asserts these properties hold in the presence of an opponent
represented by an arbitrary spi process. Therefore, a limitation of the theorem is that
it does not rule out attacks that cannot be expressed in the spi-calculus. On the other
hand, it does not limit the size of the attacker in any way. We have applied this method
to several protocols by hand, and have re-discovered some known flaws.

Our method is one of only a few formal analyses that require little human effort
per protocol, while putting no bound on the size of the protocol or opponent. Other ex-
amples include Song’s mechanisation [38] of strand spaces [39], Heather and Schnei-
der’s algorithm [24, 22] for computing Schneider’s rank functions [36], and Cohen’s
resolution-based theorem prover TAPS [10]. Non-examples include most approaches
based on model-checking [28], which are automatic but require bounds on the size of
the opponent or the protocols, and most approaches based on theorem-proving [8, 34],
which impose no bound on opponent or protocol size, but require lengthy and expert
human intervention.

Our method is also one of only a few where analysing a protocol involves no ex-
ploration or enumeration of the possible states or messages of the protocol, and so is
decidable even for protocols with no bound on the size of the principals. The only other
such methods we know of are those based on proof-checking belief logics [9, 17]. Like
constructing a proof in a belief logic, the work of devising types for a protocol in our
system amounts to writing down a formal argument explaining the protocol. Failing
to find a proof or a typing can suggest possible attacks on the protocol. Unlike most
belief logics, our method has a precise computational basis.

In this paper, we only consider type checking, not type synthesis. Type checking
(where the computer checks user-defined typings) is easily seen to be decidable, and
provides a straightforward top-down algorithm for protocol verification. Type synthesis
(where the computer derives the typings itself) would be harder.

In summary, our new method enjoys a rare and attractive combination of strengths:

� It needs little human effort per protocol.
� It puts no bound on the size of the principals.
� It needs no state space enumeration per protocol.
� It has a precise computational foundation.
� It is decidable.

2

On the other hand, the type system on which our method is based has limitations. Like
all type systems, it is incomplete in the sense that perfectly well-behaved code can
fail to type-check. For example, we have found that certain uses of nonces cannot be
type-checked. Our system is also limited to symmetric-key cryptography. We leave the
study of types for other cryptographic primitives as future work.

The new technical contribution of this paper is a type and effect system for prov-
ing correspondence assertions that supports the cryptographic primitives of the spi-
calculus. A series of examples supports its usefulness. In earlier work [18], we pro-
posed a type system for proving correspondence assertions about non-cryptographic
communication protocols in the π-calculus. The system of the present paper copes
with untrusted opponents, encryption primitives, and synchronisation via nonce hand-
shakes, additional features essential for cryptographic protocols.

Contents of this Paper

Section 2 presents the spi-calculus, and illustrates programming of security protocols.
Section 3 extends the spi-calculus with correspondence assertions, and shows how they
can specify authenticity properties. Section 4 describes our type and effect system.
Section 5 discusses further examples. Section 6 concludes.

2 Programming Protocols

This section reviews the syntax and informal semantics of the spi-calculus, and explains
how to express a simple protocol example as a spi-calculus program.

Milner, Parrow, and Walker’s π-calculus [31] is a parsimonious formalism for con-
currency. It explains many different kinds of computation by reducing them to ex-
changes of names on communication channels. An important constituent of the calcu-
lus is a name generation operator for generating fresh names, which identify commu-
nication channels.

Abadi and Gordon’s spi-calculus [3] is an extension of the π-calculus with abstract
forms of encryption and decryption, akin to the idealised versions introduced by Dolev
and Yao [12]. The atomic names of the spi-calculus represent the random numbers
of cryptographic protocols, such as encryption keys and nonces, as well as channels.
The name generation operator abstractly represents the fresh generation of unguessable
random numbers such as keys and nonces. We can describe cryptographic protocols by
programming them in the spi-calculus.

There are several existing spi-calculus techniques, such as notions of bisimulation,
for reasoning about authenticity properties. The new contribution of this paper is a type
system for reasoning about authenticity. Our preliminary experience is that establish-
ing authenticity properties by typing is much less labour intensive than constructing
bisimulations.

3

2.1 Review of the Spi-Calculus

There are in fact several versions of spi. The main difference between the spi-calculus
presented in this section and the original version [3] is that each binding occurrence of a
name is annotated with a type, T . (We postpone defining the set of types till Section 4.)
Choosing these type annotations is part of our verification method; they are needed for
type-checking processes, but do not affect the runtime behaviour of processes.

We assume an infinite set of atomic names or variables, ranged over by m, n, x,
y, and z. For the sake of simplicity in presenting our type system, this version of the
spi-calculus, unlike the original, does not distinguish names from variables. The set of
messages, which includes the set of names, is given by the grammar in the following
table.

Names and Messages:

m � n � x � y � z name: variable, channel, nonce, key
L � M � N :: � message

x name�
M � N � pair� � empty tuple����� �

M � left injection����	 �
M � right injection

M � N encryption

� A message
�
M � N � is a pair, and

� � is an empty tuple. With these primitives we
can describe any finite record.

� Messages
����� �

M � and
����	 �

M � are tagged unions, differentiated by the distinct
tags

�����
and

����	
. With these primitives we can encode any finite tagged union.

� A message

M � N is the ciphertext obtained by encrypting the plaintext M with

the symmetric key N.

We regard messages as abstract representations of the bit strings manipulated by cryp-
tographic protocols. We assume there is enough redundancy in the format that we can
tell apart the different kinds of messages.

Free names of a message fn
�
M � :

fn
�
x � ∆�

x �
fn
�� �� ∆���

fn
�
M � N � ∆� fn

�
M ��� fn

�
N �

fn
� ����� �

M �� ∆� fn
�
M �

fn
� ����	 �

M �� ∆� fn
�
M �

fn
��

M � N � ∆� fn
�
M ��� fn

�
N �

We write M

x � N � for the outcome of a capture-avoiding substitution of the message

N for each free occurrence of the name x in the message M.
The set of processes is defined by the grammar:

4

Processes:

O � P� Q � R :: � process����� M N output�����
M

�
x:T � ;P input� ��� � � M
� � � x:T � y:U � ;P pair splitting�
	��� M
� � ����� � x:T � P

� � ����	 � y:U � Q union case� ��� 	���� � M
� �
 x:T � N ;P decryption��������� M

� � N;P name-check� ��� �
x:T � ;P name generation

P � Q composition	 � � ��	�� P replication����� � inactivity

These processes are:

� Processes ����� M N and
�����

M
�
x:T � ;P are output and input, respectively, along

an asynchronous, unordered channel M. If an output ����� x N runs in parallel with
an input

�����
x
�
y � ;P, the two can interact to leave the residual process P

y � M � .

� A process � ��� � � M
� � � x:T � y:U � ;P splits the pair M into its two components. If M

is
�
N � L � , the process behaves as P

x � N �
 y � L � . Otherwise, it deadlocks, that

is, does nothing.
� A process ��	���� M

� � ����� � x:T � P
� � ����	 � y:U � Q checks the tagged union M. If M is����� �

L � , the process behaves as P

x � L � . If M is

����	 �
N � it behaves as Q

y � N � .

Otherwise, it deadlocks.
� A process

� ��� 	���� � M
� �
 x:T � N ;P decrypts M using key N. If M is

L � N , the pro-

cess behaves as P

x � L � . Otherwise, it deadlocks. We assume there is enough

redundancy in the representation of ciphertexts to detect decryption failures.
� A process ��������� M

� � N;P checks the messages M and N are the same name
before executing P. If the equality test fails, the process deadlocks.

� A process
� ��� �

x:T � ;P generates a new name x, whose scope is P, and then runs
P.

� A process P � Q runs processes P and Q in parallel.
� A process

	 � � ��	�� P replicates P arbitrarily often. So
	 � � ��	�� P behaves like P �	 � � ��	�� P.

� The process ����� � is deadlocked.

Each binding occurrence of a name bears a type annotation. These types play a role in
type-checking but have no role at runtime; they do not affect the operational behaviour
of processes. In examples, for the sake of brevity, we sometimes omit type annotations.

Free names of a process fn
�
P � :

fn
� ����� M N

∆� fn
�
M ��� fn

�
N �

fn
� �����

M
�
x:T � ;P

∆� fn
�
M ��� fn

�
T ��� �

fn
�
P ���

x � �

5

fn
� � ��� � � M

� � � x:T � y:U � ;P � ∆� fn
�
M ��� fn

�
T ��� �

fn
�
U ���

x � ��� �
fn
�
P ���

x � y � �
fn
� ��	���� M

� � ����� � x:T � P
� � ����� � y:U � Q � ∆� fn

�
M ��� fn

�
T ��� �

fn
�
P ���

x � ���
fn
�
U ��� �

fn
�
Q ���

y � �
fn
� � ��� 	 ��� � M

� �
 x:T � N ;P � ∆� fn
�
M ��� fn

�
T ��� fn

�
N ��� �

fn
�
P ���

x � �
fn
� ��������� M

� � N;P � ∆� fn
�
M ��� fn

�
N ��� fn

�
P �

fn
� � ��� �

x:T � ;P � ∆� fn
�
T ��� �

fn
�
P ���

x � �
fn
�
P � Q � ∆� fn

�
P ��� fn

�
Q �

fn
� 	 � � ��	�� P � ∆� fn

�
P �

fn
� ����� � � ∆� �

We write P

x � N � for the outcome of a capture-avoiding substitution of the message

N for each free occurrence of the name x in the process P. We identify processes up
to the consistent renaming of bound names, for example when y

��
fn
�
P � , we equate� ��� �

x:T � ;P with
� ��� �

y:T � ; � P
 x � y � � . We will often elide ����� � from the end of
processes, and we will write ����� x M;P as shorthand for ����� x M � P.

2.2 Programming an Example

This section shows how to program a simple cryptographic protocol in spi. The proto-
col is intended to allow a fixed principal A to send a series of messages to another fixed
principal B via a public channel, assuming they both share a secret key K. The idea
is simply that A encrypts each message. Of course, for many purposes this protocol
is actually far too simple: it is vulnerable to an attacker intercepting and replaying a
message, so that B may accept the message twice though A sent it just once. In the
next section, we introduce correspondence assertions to specify that B should accept
a message M no more times than A sent M, and we discuss a standard guard against
replay attacks, based on nonces.

In a common notation, we can summarise this flawed protocol as follows:

Message 1 A � B :

M � K

Although standard, this notation leaves implicit details of both protocol behaviour and
security goals. One of the original purposes of the spi-calculus was to make protocol
behaviour explicit in an executable format. We can program the protocol in spi as
follows.

First, we describe the behaviour of the sender and receiver.

FlawedSender
�
net � key � ∆�	 � � ��	��� �
� �

msg � ;����� net

msg � key

FlawedReceiver
�
net � key � ∆�	 � � ��	�������

net
�
ctext � ;� ��� 	���� � ctext

� �
 msg � key

These are:

6

� The process FlawedSender
�
net � key � is the sender A, parameterized on net (the

name of the public channel) and key (the shared secret key). It repeatedly gener-
ates a fresh name msg, and then sends the ciphertext

msg � key on the public net

channel.

(In passing from the informal notation to the spi-calculus, we have determined
that the plaintexts of the sent messages are freshly generated, rather than say be-
ing predetermined. It is easy to adapt this process to take a list of predetermined
plaintexts as parameter.)

� The process FlawedReceiver
�
net � key � is the receiver B, parameterized on net

and key It repeatedly receives a message on the public net channel, binds it to
variable ctext, and attempts to decrypt it with key key.

We specify the behaviour of the whole system running in the protocol by generating a
fresh name key—the shared secret key—and then by placing the sender and receiver in
parallel.

FlawedSystem
�
net � done � ∆�� ��� �

key � ;�
FlawedSender

�
net � key � � FlawedReceiver

�
net � key ��

Most protocols analysed with the spi-calculus have been programmed in this style.

3 Specifying Protocols

Woo and Lam [41] introduce correspondence assertions, a method for specifying pro-
tocol authenticity properties, such as properties that are violated by replay or man-in-
the-middle attacks. The method depends on principals asserting labelled begin- and
end-events during the course of a protocol. The idea is that each end-event should cor-
respond to a distinct, preceding begin-event with the same label. Otherwise there is an
error in the protocol.

To formalize these ideas, in Section 3.1, we enrich our spi-calculus with assertions
of begin- and end-events. Then, in Section 3.2, we illustrate how to specify an authen-
ticity property of our example protocol, and show in fact that the protocol is flawed. In
Section 3.3 we fix the flaw by adding a standard nonce handshake.

3.1 A Spi-Calculus with Correspondence Assertions

First, we introduce the following notation for events, using messages as labels.

Events:
� ��� ��� L begin-event labelled with message L� � � L end-event labelled with message L

Second, we add processes to assert begin- and end-events.

7

Processes:

O � P� Q � R :: � process
����� as in Section 2.1
� ��� ��� L;P begin-assertion� � � L;P end-assertion

Assertions are autonomous in that they act independently without any synchronisation
with other processes.

� The begin-assertion
� ��� ��� L;P autonomously asserts a

� � � ��� L event, and then
behaves as P.

� The end-assertion � � � L;P autonomously asserts an � � � L event, and then be-
haves as P.

Free names of a process fn
�
P � :

fn
� � � � ��� M;P � ∆� fn

�
M ��� fn

�
P �

fn
� � � � M � ∆� fn

�
M �

Given this informal semantics, we give an informal definition of process safety. (We
formalize these definitions in Appendix B via a trace semantics for the spi-calculus.)

Safety:

A process P is safe if and only if
for every run of the process and for every L,

there is a distinct
� ��� ��� L event for every � � � L event.

For example:

� Process
� ��� ��� L; � � � L is safe.

� Process
� ��� ��� L; � � � L; � � � L is unsafe because of the unmatched � � � L.

� Process
� ��� ��� L;

� � � ��� L; � � � L is safe; the unmatched
� ��� ��� L does not affect

safety.
� Process

� � � ��� L;
� ��� ��� L; � � � L; � � � L is safe; here there are two correspon-

dences, both named L.
� Process

� ��� ��� L; � � � L;
� � � ��� L

�

; � � � L
�

is safe.
� Process

� ��� ��� L; � � � L
�

;
� ��� ��� L

�

; � � � L is unsafe.

Safety does not require begin- and end-assertions to be properly bracketed:

� Process
� ��� ��� L;

� ��� ��� L
�

; � � � L
�

; � � � L is safe.
� Process

� ��� ��� L;
� ��� ��� L

�

; � � � L; � � � L
�

is safe.

8

Finally, consider the parallel process
� ��� ��� L � � � � L. This process either asserts a

� ��� ��� L event followed by an � � � L event, or it asserts an � � � L event followed by a
� ��� ��� L event. Because of the latter run, the process is unsafe.

We are mainly concerned not just with safety, but with safety in the presence of
an arbitrary hostile opponent, which we call robust safety. (This use of “robust” to
describe a property invariant under composition with an arbitrary environment follows
Grumberg and Long [20]). In the untyped spi-calculus [3], the opponent is modelled by
an arbitrary process. In our typed spi-calculus, we do not consider completely arbitrary
attacker processes, but restrict ourselves to opponent processes that satisfy two mild
conditions:

� Opponents cannot assert events: otherwise, no process would be robustly safe,
because of the opponent � � � x.

� Opponents are not required to be well-typed: we model this using a type
� �

for
untyped, untrusted data. This is discucssed further in Section 4

Opponents and Robust Safety:

A process P is assertion-free if and only if
it contains no begin- or end-assertions.

A process P is untyped if and only if
the only type occurring in P is

� �
.

An opponent O is an assertion-free untyped process.
A process P is robustly safe if and only if

P � O is safe for every opponent O.

3.2 Specifying the Example

Recall the protocol example of Section 2.2. Two fixed principals A and B share a key K
with which A sends a sequence of messages to B. We introduce begin- and end-events
labelled M for each message M. The sender asserts a begin-event labelled M before
sending M, and the receiver asserts an end-event labelled M after successfully receiving
a message M.

We express this idea informally as follows:

Event 1 A begins M
Message 1 A � B :

M � K

Event 2 B ends M

We express the idea formally by inserting assertion processes into the spi-calculus de-

9

scriptions of the sender and receiver. We update our definitions as follows.

CheckedSender
�
net � key � ∆�	 � � ��	��� ��� �

msg � ;
� � � ��� msg;����� net

msg � key

CheckedReceiver
�
net � key � ∆�	 � � ��	�������

net
�
ctext � ;� ��� 	���� � ctext

� �
 msg � key;� � � msg

CheckedSystem
�
net � ∆�� ��� �

key � ;�
CheckedSender

�
net � key � � CheckedReceiver

�
net � key ��

Next, we precisely state the authenticity property we desire (but that is actually violated
by the protocol).

Authenticity: The process CheckedSystem
�
net � is robustly safe. (Breaks.)

If the protocol is safe, each � � � msg has a distinct corresponding
� � � ��� msg, and there-

fore B accepts each message no more times than A sent it. Moreover, if the protocol is
robustly safe, no attacker can violate this property.

It is easy to prove that this protocol is safe, since the protocol itself never duplicates
messages. Still, the protocol is not robustly safe since a suitable attacker can violate
this safety property.

Attacker
�
net � ∆������

net
�
ctext � ; ����� net

�
ctext � ; ����� net

�
ctext �

Here is an unsafe run of the process CheckedSystem
�
net � � Attacker

�
net � . The sender

CheckedSender
�
net � key � generates a name msg, performs a single

� � � ��� msg; event,
and sends the ciphertext

msg � key on net. The attacker Attacker

�
net � receives this

message, and then sends two copies of on net. The receiver then receives one of these
copies, successfully decrypts it, and asserts an � � � msg event. So far so good. But now
another iteration of the body of CheckedReceiver

�
net � key � receives the second copy,

successfully decrypts it, and asserts another � � � msg event. Because of the second
end-event is unmatched, the run breaks the authenticity property displayed above.

3.3 Fixing the Example

A standard countermeasure against replay attacks is to include a nonce, a randomly
generated bit-string, in each ciphertext to ensure its uniqueness. The following variant
of our protocol is now initiated by the receiver, who sends a new nonce N to the sender,
to guard against replays of the encrypted form of the message M.

Event 1 A begins M
Message 1 B � A : N
Message 2 A � B :

M � N � K

Event 2 B ends M

10

In the spi-calculus, nonces are represented by names, and creation of fresh nonces by
name generation. We program the revised protocol as follows:

FixedSender
�
net � key � ∆�	 � � ��	�������

net
�
nonce � ;� ��� �

msg � ;
� � � ��� msg;����� net

msg � nonce � key

FixedReceiver
�
net � key � ∆�	 � � ��	��� ��� �

nonce � ;����� net nonce;�����
net

�
ctext � ;� ��� 	 ��� � ctext� �
 msg � nonce

� � key;��������� nonce
� � nonce

�

;� � � msg

The process ��������� nonce
� � nonce

�

;P checks that nonce and nonce
�

are the same name
before executing P. For the sake of simplicity, in this example and others in the paper
we omit error recovery code: upon receiving a ciphertext containing an unexpected
nonce, an instance of the receiver just terminates. The whole system and its authenticity
property are now:

FixedSystem
�
net � ∆�� ��� �

key � ;�
FixedSender

�
net � key � � FixedReceiver

�
net � key � �

Authenticity: The process FixedSystem
�
net � is robustly safe.

Given our modifications, this property is true. A direct proof is possible, but tricky,
since we must quantify over all possible attackers. The original paper on the spi-
calculus includes a verification via equational reasoning of a protocol similar to that
embodied in FixedSystem

�
net � . The point of our type system, presented next, is to

provide an efficient way of proving this specification, and others like it.

4 Typing Protocols

This section describes the heart of our method for analysing authenticity properties of
protocols: a dependent type and effect system for statically verifying correspondence
assertions by type-checking.

Section 4.1 and Section 4.2 explain informally how to type messages and how
to ascribe effects to processes, respectively. We present the type and effect system
formally in Section 4.3. Finally, in Section 4.4 we explain how to type the assertions
in the example of the previous section.

4.1 Types for Messages

There is an objection in principle to a security analysis based on type-checking pro-
cesses: it may be reasonable to assume that honest principals conform to typing rules,
but it is imprudent to assume the same of the opponent. As previously discussed, our

11

general model of the opponent is any untyped, assertion-free process. The objection to
a typed analysis is that we may miss attacks by ruling out processes that happen not to
conform to our typing rules. On the internet, famously, nobody knows you’re a dog.
Likewise, nobody knows your code failed the type-checker.

To answer this objection, Abadi [1] introduces an untrusted type (which we call
� �

) for public messages, those exposed to the opponent. Every message and every op-
ponent is typable if all their free variables are assigned the

� �
type. The type represents

the unconstrained messages that an arbitrary process manipulates. Since any opponent
can be typed in this trivial way we have not limited the power of opponents.

To illustrate this, here are some informal typing rules for messages and processes
(for brevity, we elide some technical requirements on free names). Messages of the

� �
type may be output, input, paired, split apart, encrypted, and decrypted, with no

constraints.

� If M :
� �

and N :
� �

then ����� M N is well-typed.
� If M :

� �
and P is well-typed then

�����
M

�
x:

� � � ;P is well-typed.
� If M :

� �
and N :

� �
then

�
M � N � :

� �
.

� If M :
� �

and P is well-typed then � ��� � � M
� � � x:

� � � y:
� � � ;P is well-typed.

� If M :
� �

and N :
� �

then

M � N :

� �
.

� If M :
� �

and N :
� �

and P is well-typed then
� ��� 	���� � M

� �
 x:
� � � N ;P is

well-typed.

When modelling protocols, we assume that all the names and messages exposed to
the opponent—representing public data and channels—are of this type. Names and
messages not publicly disclosed may be assigned other types, known as trusted types.

Messages of the trusted type � � � � T � are symmetric keys for encrypting messages
of type T . When encrypting with a � � � � T � , the plaintext must have type T , and the
resulting ciphertext is given untrusted type. Using the rules above for

� �
, we can send

and receive ciphertexts on untrusted channels. When decrypting with a � � � � T � , if
we succeed we know the plaintext must have been encrypted with the same key, and
therefore our typing rules assign it type T .

� If M : T and N : � � � � T � then

M � N :

� �
.

� If M :
� �

and N : � � � � T � and P is well-typed then
� ��� 	���� � M

� �
 x:T � N ;P is
well-typed.

The remaining trusted types are more standard. Messages of type � � � T � are channels
communicating data of type T . Messages of type

�
x:T � U � are dependent pairs where

the first element has type T and the second element has type U . The variable x is
bound, and has scope U . (The need for such dependent types arises later, when we
introduce a type for nonces.) The only message of the empty tuple type

� � is the empty
tuple

� � . Messages of type T � U are tagged unions. A union of type T � U is either of
the form

����� �
M � where M has type T , or of the form

����	 �
N � where N has type U . As

a technical convenience, to simplify some abbreviations introduced in Appendix A.5,
we introduce the empty type, � . There are no messages of this type. Other base types

12

such as
��� � or

� � � � ��	 � could easily be added to this language: we expect they would
produce no technical difficulties.

Types:

T � U :: � type
� �

untrusted type
� � � � T � shared-key type

� � � T � channel type� � empty tuple type�
x:T � U � dependent pair type

T � U variant type
� empty type

For example:

� � � � � � � � : key for encrypting untrusted data
� � � � � � � : channel for communicating untrusted data
� : key for encrypting either a key for encrypting un-

trusted data or a channel for communicating untrusted data

4.2 Effects for Processes

Our effect system tracks the unmatched end-assertions of a process. In its most basic
form, our main judgment

P :
� � � � L1 � ����� � � � � Ln �

means that the effect
� � � � L1 � ����� � � � � Ln � , is an upper bound on the multiset (or un-

ordered list) of end-events that P may assert without asserting a matching begin-event.
Hence, if P :

� � then every end-event in P has a matching begin-event, that is, P is safe.
Let e stand for an atomic effect. One kind of atomic effect is � � � L. The second

kind is ��������� N; we explain later its use to track nonce name-checking. Let es stand
for an effect, that is, a multiset

�
e1 � ����� � en � of atomic effects. We write es � es

�

for the
multiset union of the two multisets es and es

�

, that is, their concatenation. We write
es � es

�

for the multiset subtraction of es
�

from es, that is, the outcome of deleting an
occurrence of each atomic effect in es

�

from es. If an atomic effect does not occur in
an effect, then deleting the atomic effect leaves the effect unchanged.

Tracking Correspondences in Sequential Code

Given this notation, the typing rules for
� ��� ��� L;P and � � � L;P are essentially:

� If P : es then
� � � ��� L;P :

�
es � � � � � L � � .

� If P : es then � � � L;P :
�
es �

� � � � L � � .
These rules are enough to check correspondences in sequential code, for example:

� � � � L :
� � � � L �

13

�
� � � ��� L; � � � L :

� �
� � � � L; � � � L :

� � � � L � � � � L �
�

� � � ��� L; � � � L; � � � L :
� � � � L �

�
� � � ��� L;

� � � ��� L; � � � L; � � � L :
� �

Transferring Effects between Parallel Processes

Our rules for assigning effects to communications and compositions are similar to those
in previous work on effect systems for the π-calculus [11, 18].

� If M : � � � T � and N : T then ����� M N :
� � .

� If M : � � � T � and P : es then
�����

M
�
x:T � ;P : es.

� If P : esP and Q : esQ then P � Q :
�
esP � esQ � .

When computing the effect of the composition P � Q of two processes, we simply com-
pute the multiset union of the effects of the processes. This rule in itself does not
allow a begin-assertion in P, say, to account for an end-assertion in Q. For exam-
ple, the parallel composition

� � � ��� L � � � � L has effect
� � � � L � , while in contrast the

sequential composition
� ��� ��� L; � � � L has effect

� � . In the parallel case, we cannot
assume that the begin-event precedes the end-event so we must conservatively assign
the effect

� � � � L � . In the sequential case, the syntax guarantees that the begin-event
precedes the end-event so we can assign the effect

� � . Somehow we need to be able
to show that temporal precedences are established between parallel processes. Recall
our FixedSystem example: we need to show that a distinct

� ��� ��� msg precedes each� � � msg, even though these assertions are running in parallel.

Typing Nonce Handshakes

A nonce handshake guarantees temporal precedence between events in parallel pro-
cesses. In this paper, we consider a particular idiom for nonce handshakes, referred to
by Guttman and Thayer as incoming tests [21]. Other idioms are possible, for example
Guttman and Thayer’s outgoing tests, but we leave these for future work. Incoming
tests break down into several steps.

(1) The receiver creates a fresh nonce and publishes it.

(2) The sender embeds the nonce in a ciphertext.

(3) The receiver looks for the nonce in a received ciphertext. Finding the nonce
encrypted under a shared private key proves the sender recently generated the
ciphertext. If this is the first and only time the nonce is found, there is a one-to-
one correspondence between finding the nonce and the creation of the ciphertext
by the sender.

(4) To avoid vulnerability to replay of messages containing the nonce, the receiver
subsequently discards the nonce and no longer looks for it.

We type-check these four steps as follows.

14

(1) The receiver creates the nonce N in the untrusted type
� �

. This allows the nonce
to be sent on an untrusted channel, and reflects that it can be received and copied
by the opponent as well as the sender.

(2) The sender embeds the nonce in a ciphertext as a message of a new trusted type
� � � �
� es, where es is an effect. The sender casts the nonce N :

� �
to this trusted

type using the new process �
	���� N
� � � x:

� � � ��� es � ;P. At runtime, this process
simply binds the message N to the variable x of type

� � � ��� es, and then runs P.
The sender uses the variable x to embed the nonce in the ciphertext.

(3) After decrypting a ciphertext containing a nonce N
�

:
� � � ��� es, the receiver uses

a name-check ��������� N
� � N

�

;Q to check for the nonce N :
� �

which it made
public earlier. Only a cast can populate the type

� � � ��� es. So the presence
of the message N

�

:
� � � ��� es proves there was a preceding execution of a cast

process. Our type system ensures that at most one name-check process checks
for the presence of each nonce N :

� �
. Therefore, if the check succeeds, we are

guaranteed a one-to-one correspondence between the check and the preceding
process that cast N into the type

� � � �
� es. Note that the safety of this step relies
on global agreement between the trusted participants as to the types of each of
the messages.

(4) To guarantee that each nonce N is the subject of no more than one name-check,
we introduce a new atomic effect, written ��������� N. In general, our main judg-
ment takes the form,

P :
� � � � L1 � ����� � � � � Lm � ��������� N1 � ����� � ��������� Nn �

and means the multiset
� � � � L1 � ����� � � � � Lm � is an upper bound on the end-events

P asserts without previously asserting a corresponding begin-event, and that
the multiset

� ��������� N1 � ����� � ��������� Nn � is an upper bound on the multiset of free
nonces name-checked by P. We include ��������� N in the effect of a name-check��������� N

� � N
�

;Q on a nonce N. When checking name generation
� ��� �

N:
� � � ;P,

we check that ��������� N occurs at most once in the effect of P. This guarantees
that each free name is the subject of no more than one name-check.

In summary, our type and effect system provides a solution to the problem of guaran-
teeing temporal precedences between parallel processes: for every successful execution
of a process ��������� N

� � N
�

;Q, where N
�

:
� � � ��� es, there is a distinct preceding execu-

tion of a process ��	���� N
� � � x:

� � � �
� es � ;P, even if the name-check and the cast are in
parallel processes.

The following rules for computing the effect of casts and name-checks exploit this
temporal precedence. They allow us to guarantee by typing that those end-events fol-
lowing the name-check and listed in the effect es of the type

� � � �
� es are matched by
distinct begin-events that precede the cast. This effect is transferred from the name-
check to the cast; the effect es is added to the effect of a cast, and is subtracted from
the effect of a name-check.

� If N :
� �

and P : esP then �
	���� N
� � � x:

� � � ��� es � ;P :
�
esP � es � .

15

� If N :
� �

and N
�

:
� � � ��� es and Q : esQ

then ��������� N
� � N

�

;Q :
��

esQ � es � �
� ��������� N � � .

� If P : esP then
� �
� �

N � ;P :
�
esP � � ��������� N � � .

To illustrate these rules, we compute the effect of a nonce handshake that guarantees
the safety of a correspondence between a begin-event labelled m in one process and an
end-event with the same label in another. We consider fixed, global names m, n, and c.
We assume m:T for some type T . We assume n:

� �
is the name of a nonce that somehow

is already shared between the two processes. We assume c: � � �� � � � �
� � � � � m � �� is the
name of a trusted channel shared by the processes. (To focus on casting and checking
nonces, we communicate the nonce n over the trusted channel c; in realistic examples,
nonces are sent encrypted on untrusted channels.)

The first process

P � � ��� ��� m;�
	���� n
� � � n � : � � � �
� � � � � m � � ;����� c n
�

begins the correspondence, casts n into the type
� � � �
� � � � � m � , and then sends it on c.

We have �
	���� n
� � � n � : � � � �
� � � � � m � � ; ����� c n

�

:
� � � � m � and therefore P :

� � . The
second process

Q � �����
c
�
x:

� � � �
� � � � � m � � ;��������� n
� � x;� � � m

receives a name x off the channel c, checks that n equals x, and if so ends the corre-
spondence.

We have � � � m :
� � � � m � , and ��������� n

� � x; � � � m :
� � � � � m � � � � � � m � � �

� ��������� n � ,
and therefore Q :

� ��������� n � . Now, by the rules for name generation and composition,
we get that R � � ��� �

n:
� � � ; � P � Q � :

� � . So R is safe.
On the other hand, consider the process R

� � � ��� �
n:

� � � ; � P � � Q � Q � where we
have duplicated Q and where the process

P
� � � � � ��� m;��	���� n

� � � n � : � � � �
� � � � � m � � ;� ����� c n
� � ����� c n

� �
is a variation of P

�

that duplicates the nonce. Now, R
�

is unsafe, because the two
copies of Q can each receive one of the duplicate nonces sent by P

�

. Therefore both
can assert an end-event, but only one is accounted for by the begin-assertion by P

�

.
The process R

�

does not type-check, because it name-checks the nonce n more than
once. We can derive P

�

:
� � , but the whole process R

�

fails the rule for name gener-
ation, because process P

� � Q � Q has effect
� ��������� n � ��������� n � so the condition n

��

fn
� � ��������� n � ��������� n � � � ��������� n � � is false.

16

Effects and Atomic Effects

Given these motivations for and examples of assigning effects to processes, here is the
grammar of effects and atomic effects.

Effects:

e � f :: � atomic effect� � � L end-event labelled with message L��������� N name-check for a nonce N
es � fs :: � effect�

e1 � ����� � en � multiset of atomic effects

Free names, fn
�
es � , of an effect es:

fn
� � � � L � ∆� fn

�
L �

fn
� ��������� N � ∆� fn

�
N �

fn
� �

e1 � ����� � en � � ∆� fn
�
e1 ���������� fn

�
en �

We write es

x � M � for the outcome of a capture-avoiding substitution of the message

M for each free occurrence of the name x in the effect es.

Additional Types and Processes

We end this section by completing the grammars of types and processes with the new
type and new processes we need for typing nonce handshakes. We add a type for
nonces, and we give rules defining the set fn

�
T � of any type T .

Types:

T � U :: � type
����� as in Section 4.1
� � � ��� es nonce type

Free names, fn
�
T � , of a type T :

fn
�

� � � T �� ∆� fn
�
T �

fn
��

x:T � U �� ∆� fn
�
T ��� �

fn
�
U ���

x � �
fn
�� �� ∆���

fn
�
T � U � ∆� fn

�
T ��� fn

�
U �

fn
�

��� ∆� �
fn
� � � � ∆���

fn
�

� � � � T �� ∆� fn
�
T �

fn
� � � � ��� es � ∆� fn

�
es �

17

We write T

x � M � for the outcome of a capture-avoiding substitution of the message

M for each free occurrence of the name x in the type T .
As we explained, we add a process to cast untrusted data into nonce type. Moreover,

we add a new process for pattern matching pairs.

Processes:

O � P� Q � R :: � process
� � � as in Sections 2.1 and 3.1�
	���� M

� � � x:T � ;P cast to nonce type
� 	������ M

� � � N � y:U � ;P pair pattern matching

In a process �
	���� M
� � �

x:T � ;P, the name x is bound; its scope is the process P. In a
process � 	������ M

� � � N � y:U � ;P, the name y is bound; its scope of the process P.

� The process ��	���� M
� � � x:T � ;P casts the message M to the type T , by binding the

variable x to M, and then running P. (This process can only be typed by our type
system if T is of the form

� � � �
� es.)
� The process � 	������ M

� � �
N � y � ;P is similar to � ��� � � M

� � �
x � y � ;P except that it

checks that the first component of M is equal to N before extracting the second
component (which is bound to y in P). If the equality test fails, then the process
deadlocks.

Pair pattern matching is a generalization of π-calculus name equality testing, since�
M � N � P can be written � 	������ �

M � � �� � � � N � y � ;P.

Free names of a process fn
�
P � :

fn
� ��	���� M

� � � x:T � ;P � ∆� fn
�
M ��� fn

�
T ��� �

fn
�
P ���

x � �
fn
�

� 	������ M
� � � N � y:U � ;P � ∆� fn

�
M ��� fn

�
N ��� fn

�
U ��� �

fn
�
P ���

y � �

Pair pattern matching is used in the protocol examples in Appendix A.

4.3 Typing Rules

In this section, we formally define the judgments of our type and effect system.
These judgments all depend on an environment, E, that defines the types of all

variables in scope. An environment takes the form x1:T1 � ����� � xn:Tn and defines the type
Ti for each variable xi. The domain, dom

�
E � , of an environment E is the set of variables

whose types it defines.

Environments:

D � E :: � environment� empty
E � x:T entry

dom
�
x1:T1 � ����� � xn:Tn � ∆�

x1 � ����� � xn �

domain of an environment

18

The following are the five judgments of our type and effect system. They are induc-
tively defined by rules presented in the following tables.

Judgments E
�

J :

E
���

good environment
E
�

es good effect es
E
�

T good type T
E
�

M : T good message M of type T
E
�

P : es good process P with effect es

Rules for Environments:

(Env �)

� ���
(Env x) (where x

�� dom
�
E �)

E
�

T

E � x:T
���

These standard rules define an environment x1:T1 � ����� � xn:Tn to be well-formed just if
each of the names x1, . . . , xn are distinct, and each of the types Ti is well-formed.

Rules for Effects:

(Effect �)
E
���

E
� �

(Effect End)
E
�

es E
�

L : T

E
�

es �
� � � � L �

(Effect Check)
E
�

es E
�

N :
� �

E
�

es �
� ��������� N �

These rules define an effect
�
e1 � ����� � en � to be well-formed just if for each atomic effect

ei
� � � � L, message L has type T for some type T , and for each atomic effect ei

�
��������� N, message N has type

� �
.

Rules for Types:

(Type Un)
E
���

E
� � �

(Type Chan)
E
�

T

E
� � � � T �

(Type Pair)
E � x:T

�
U

E
� �

x:T � U �

(Type Unit)
E
���

E
� � �

(Type Variant)
E
�

T E
�

U

E
�

T � U

(Type Empty)
E
���

E
� �

(Type Key)
E
�

T

E
� � � � � T �

(Type Nonce)
E
�

es

E
� � � � �
� es

According to these rules a type is well-formed just if every effect occurring in the type
is itself well-formed.

Next, we present the rules for deriving the judgment E
�

M : T that assigns a type T
to a message M. We split the rules into three tables: first, the rule for variables; second,
rules for manipulating data of trusted type; and third, rules for assigning the untrusted
type to arbitrary messages.

19

Rule for Variables:

(Msg x)
E
� � x:T � E � � ���

E
� � x:T � E � � �

x : T

Rules for Messages of Trusted Type:

(Msg Pair)
E
�

M : T E
�

N : U

x � M �

E
� �

M � N � :
�
x:T � U �

(Msg Unit)
E
���

E
� � � :

� �
(Msg Inl)

E
�

M : T E
�

U

E
� ����� �

M � : T � U

(Msg Inr)
E
�

T E
�

N : U

E
� ����	 �

N � : T � U

(Msg Encrypt)
E
�

M : T E
�

N : � � � � T �
E
�

M � N :
� �

Rules for Messages of Untrusted Type:

(Msg Pair Un)
E
�

M :
� �

E
�

N :
� �

E
� �

M � N � :
� �

(Msg Unit Un)
E
���

E
� � � :

� �

(Msg Inl Un)
E
�

M :
� �

E
� ����� �

M � :
� �

(Msg Inr Un)
E
�

N :
� �

E
� ����	 �

N � :
� �

(Msg Encrypt Un)
E
�

M :
� �

E
�

N :
� �

E
�

M � N :
� �

Recall from Section 4.1 the principle that any message can be assigned the untrusted
type

� �
, provided its free variables are also untrusted. Using just the rules in the first

and third tables of message typing rules, we can prove:

Lemma 1 If fn
�
M ���

x1 � ����� � xn � then x1:
� � � ����� � xn:

� � �
M :

� �
.

Proof By structural induction on the message M. �

A message may be assigned both a trusted and an untrusted type. For example:

� x:
� � � y:

� � � �
x � y � : � z:

� � � � � � by (Msg Pair)
� x:

� � � y:
� � � �

x � y � : � �
by (Msg Pair Un)

20

Finally, we present the rules for assigning effects to processes. To state the rule for
name-generation we introduce the notion of a generative type. A type is generative if it
is untrusted or if it is a key or channel type. A process

� �
� �
x:T � ;P is only well-typed

if T is generative. This rule prevents the fresh generation of names of, for example, the
� � � ��� es type; it is crucial to our system that the only way of populating this type is
via a �
	���� process.

Generative Types:

A type is generative if and only if
it takes the form � � � T � , � �

, or � � � � T � .

Basic Rules for Processes:

(Proc Begin)
E
�

L : T E
�

P : es

E
� � � � ��� L;P : es � � � � � L �

(Proc End)
E
�

L : T E
�

P : es

E
� � � � L;P : es �

� � � � L �
(Proc Par)
E
�

P : es E
�

Q : fs

E
�

P � Q : es � fs

(Proc Repeat)
E
�

P :
� �

E
� 	 � � ��	�� P :

� �
(Proc Stop)

E
� �

E
� ����� � :

� �

(Proc Res) (where x
��

fn
�
es � � ��������� x � �)

E � x:T
�

P : es T is generative

E
� � ��� �

x:T � ;P : es � � ��������� x �
(Proc Subsum)
E
�

P : es E
�

es
�

E
�

P : es � es
�

We discussed informal versions of the rules (Proc Begin), (Proc End), (Proc Par), and
(Proc Res) previously. The rule (Proc Repeat) requires the effect of the replicated
process P to be empty. If P had a non-empty effect, then somehow we might assign
an infinite effect to

	 � � ��	�� P but this would not be useful. Assigning an effect to a
whole process is useful because if the effect is empty then the process is safe. Any
process enclosing

	 � � ��	�� P can only match a finite number of atomic effects arising
from

	 � � ��	�� P, and so must have a non-empty effect. So typing
	 � � ��	�� P is only useful

if P has an empty effect. The rule (Proc Stop) says the inactive process has empty
effect. The effect of a process is an upper bound on the behaviour of a process; the rule
(Proc Subsum) allows us to weaken this upper bound by enlarging the effect.

The rule (Proc Case), in the following table, uses an operator � defined as follows.
Let the multiset ordering es � es

�

mean there is an effect es
� �

such that es � es
� � � es

�

.
Then we write es � es

�

for the least effect es
� �

in this ordering such that both es � es
� �

and es
�

� es
� �

. Note that
�
es � es

� � � � �
es � es

� � � es
� � .

21

Rules for Processes Manipulating Trusted Types:

(Proc Output)
E
�

x : � � � T � E
�

M : T

E
� ����� x M :

� �
(Proc Input) (where y

�� fn
�
es �)

E
�

x : � � � T � E � y:T
�

P : es

E
� �����

x
�
y:T � ;P : es

(Proc Split) (where x
��

fn
�
es � and y

��
fn
�
es �)

E
�

M :
�
x:T � U � E � x:T � y:U

�
P : es

E
� � ��� � � M

� � � x:T � y:U � ;P : es

(Proc Match) (where y
��

fn
�
es �)

E
�

M :
�
x:T � U � E

�
N : T E � y:U

x � N � � P : es

E
�

� 	������ M
� � � N � y:U

x � N � � ;P : es

(Proc Case) (where x
��

fn
�
es � and y

��
fn
�
fs �)

E
�

M : T � U E � x:T
�

P : es E � y:U
�

Q : fs

E
� �
	��� M

� � ����� � x:T � P
� � ����	 � y:U � Q : es � fs

(Proc Decrypt) (where x
��

fn
�
es �)

E
�

M :
� �

E
�

y : � � � � T � E � x:T
�

P : es

E
� � ��� 	 ��� � M

� �
 x:T � y;P : es

(Proc Cast) (where x
��

fn
�
es �)

E
�

M :
� �

E � x:
� � � �
� fs

�
P : es

E
� ��	���� M

� � � x:
� � � �
� fs � ;P : es � fs

(Proc Check)
E
�

M :
� �

E
�

N :
� � � ��� fs E

�
P : es

E
� ��������� M

� � N;P :
�
es � fs � �

� ��������� M �

We discussed informal versions of the rules (Proc Input), (Proc Output), (Proc Cast),
and (Proc Check) previously. Rule (Proc Split) is a standard rule to allow a pair M :�
x:T � U � to be split into two components named x:T and y:U , where x may occur free

in the type U . The conditions x
��

fn
�
es � and y

��
fn
�
es � prevent the bound variables

x and y from appearing out of scope in the effect es. In the rule (Proc Match), the
message N : T is meant to match the first component of the pair M :

�
x:T � U � , and the

variable y:U gets bound to the second component. Again, the condition y
�� fn

�
es �

prevents y from appearing out of scope in es. The rule (Proc Case) is a standard rule
for checking inspections of tagged unions. In the rule (Proc Decrypt), the ciphertext M
is of untrusted type,

� �
, the key y is of type � � � � T � , and the plaintext, bound to x, has

type T . The condition x
��

fn
�
es � prevents x from appearing out of scope in the effect

es.

22

Rules for Processes Manipulating Untrusted Types:

(Proc Output Un)
E
�

M :
� �

E
�

N :
� �

E
� ����� M N :

� �
(Proc Input Un) (where y

�� fn
�
es �)

E
�

M :
� �

E � y:
� � �

P : es

E
� �����

M
�
y:

� � � ;P : es

(Proc Split Un) (where x
��

fn
�
es � and y

��
fn
�
es �)

E
�

M :
� �

E � x:
� � � y:

� � �
P : es

E
� � ��� � � M

� � � x:
� � � y:

� � � ;P : es

(Proc Match Un) (where y
��

fn
�
es �)

E
�

M :
� �

E
�

N :
� �

E � y:
� � �

P : es

E
�

� 	������ M
� � � N � y:

� � � ;P : es

(Proc Case Un) (where x
��

fn
�
es � and y

��
fn
�
fs �)

E
�

M :
� �

E � x:
� � �

P : es E � y:
� � �

Q : fs

E
� ��	���� M

� � ����� � x:
� � � P

� � ����	 � y:
� � � Q : es � fs

(Proc Decrypt Un) (where x
��

fn
�
es �)

E
�

M :
� �

E
�

N :
� �

E � x:
� � �

P : es

E
� � ��� 	 ��� � M

� �
 x:
� � � N ;P : es

(Proc Cast Un) (where x
��

fn
�
es �)

E
�

M :
� �

E � x:
� � �

P : es

E
� ��	���� M

� � � x:
� � � ;P : es

(Proc Check Un)
E
�

M :
� �

E
�

N :
� �

E
�

P : es

E
� ��������� M

� � N;P : es

These rules are similar to those in the previous table in how they compute effects of
processes, but differ in that all messages are of untrusted type. These rules are needed
to type-check opponents.

Our rules for processes conform to the principle, stated in Section 4.1, that any
opponent can be typed if all its free variables are assigned the type

� �
.

Lemma 2 (Opponent Typability) If O is an opponent, that is, an untyped, assertion-
free process, and fn

�
O ���

x1 � ����� � xn � then x1:
� � � ����� � xn:

� � �
O :

� � .
Proof By structural induction on O, with appeal to Lemma 1. �

The following theorem, proved in Appendix B, says a process is safe if it can be as-
signed the empty effect.

23

Theorem 1 (Safety) If E
�

P :
� � then P is safe.

Combined, Lemma 2 (Opponent Typability) and Theorem 1 (Safety) establish our main
result, that our type and effect system guarantees robust safety.

Theorem 2 (Robust Safety) If x1:
� � � ����� � xn:

� � �
P :

� � then P is robustly safe.

Proof For any untyped, assertion-free O, find xn � 1 � ����� � xn � m such that fn
�
O � �

x1 � ����� � xn � m � . By Lemma 2 (Opponent Typability), we have x1 :
� � � ����� � xn � m :

� � �
O :

� � . By a standard weakening lemma, proved in the full version, x1:
� � � ����� � xn:

� � �
P :

� � implies x1:
� � � ����� � xn � m:

� � �
P :

� � . So by rule (Proc Par) we have x1 :
� � � ����� � xn � m :

� � �
P � O :

� � , and so by Theorem 1 (Safety), P � O is safe. Thus, P is robustly safe. �

4.4 Typing the Example

Our example FixedSystem
�
net � from Section 3.3 uses a nonce handshake over the pub-

lic channel net to transfer messages from the sender to the receiver. Here we show
how to prove the example’s correspondence assertions by choosing suitable types and
adding a cast process.

The sender receives a nonce nonce off the public channel net, performs a begin-
event to indicate it is sending a message msg, embeds the nonce and the message in
a ciphertext encrypted with the shared key key, and returns the ciphertext to the re-
ceiver on net. Any public channel should be accessible to the opponent, so we as-
sign net the untrusted type

� �
, and since nonce is sent on these channels, they too

must have the untrusted type. We fix some arbitrary type Msg and assume each msg
is of this type. To type-check the correspondence between begin- and end-assertions
made by the sender and receiver, respectively, we add a cast process to the sender
to cast the nonce into the type

� � � �
� � � � � msg � . Therefore, the shared key has type
� � � � msg:Msg � nonce:

� � � ��� � � � � msg � � ; the first component of the ciphertext is the
actual message, and the second component is a nonce proving it is safe to assert an� � � msg event.

Therefore, we introduce the types

Msg some arbitrary type

Network
∆� � �

MyNonce
�
msg � ∆� � � � ��� � � � � msg�

MyKey
∆� � � � � msg:Msg � nonce:MyNonce

�
msg ��

and we type the sender as follows, where we display the effects of bracketed subpro-
cesses to the right.

TypedSender
�
net:Network � key:MyKey � :

� � ∆�	 � � ��	�������
net

�
nonce:

� � � ;� ��� �
msg:Msg � ;

� � � ��� msg;��	���� nonce� � � nonce
�

:MyNonce
�
msg �� ;����� net

msg � nonce

� � key
� � �

� �

�
� � � � msg�

� ���
��

�
� �

� �������
������

�

� �

24

Next, we type the receiver. Like the sender, it is effect-free, that is, it can be assigned
the empty effect.

TypedReceiver
�
net:Network � key:MyKey � :

� � ∆�	 � � ��	��� ��� �
nonce:

� � � ;����� net nonce;�����
net

�
ctext:

� � � ;� ��� 	 ��� � ctext� �
 msg:Msg � nonce
�

:MyNonce
�
msg � � key;��������� nonce

� � nonce
�

;� � � msg
� � � � � msg ��� � ��������� nonce�

� ���������
��������

�

� �

Since the sender and receiver are both effect-free, the whole system is also effect-free:

TypedSystem
�
net:Network � :

� � ∆�� �
� �
key:MyKey � ;�

TypedSender
�
net � key � � TypedReceiver

�
net � key ��

By Theorem 2 (Robust Safety), it follows that TypedSystem
�
net:Network � is robustly

safe. This proves the following authenticity property by typing.

Authenticity: The process TypedSystem
�
net � is robustly safe.

5 Further Protocol Examples

We have applied our method to several cryptographic protocols from the literature. We
verified some protocols, found flaws in others, but also found at least one incomplete-
ness in our method. Details are in an appendix, but we can summarise our experience
as follows.

� Abadi and Gordon [3] propose a nonce-based variation of the Wide Mouth Frog
key-exchange protocol [9]. We can verify authenticity properties of Abadi and
Gordon’s protocol by typing. Abadi and Gordon prove an equationally-specified
authenticity property by constructing a bisimulation relation based on an elabo-
rate invariant; our proof of correspondence assertions by typing took consider-
ably less time.

� Woo and Lam [40] propose a nonce-based authentication protocol. Trying to
type-check the protocol exposes known flaws in the protocol and suggests a
known simplification [4, 5].

� Otway and Rees [33] propose another nonce-based key exchange protocol. The
nonces used by the protocol to prove freshness are kept secret; hence the pro-
tocol does not fit the idiom that can be checked by our type system. Still, we
can type-check a more efficient version of the protocol suggested by Abadi and
Needham [4]. The typing suggests a further simplification.

In each case, there is a spi-calculus representation of the protocol in which there are
arbitrarily many participant principals and arbitrarily many sessions.

25

6 Summary and Conclusion

To summarise, we reviewed the spi-calculus, a formalism for precisely describing the
behaviour of security protocols based on cryptography. We embedded Woo and Lam’s
correspondence assertions in spi as a way of specifying authenticity properties. We
devised a new type and effect system that proves authenticity properties, simply by
type-checking.

To conclude, the examples in this paper, together with others we have investigated,
suggest that this is a promising technique for checking protocols, since it requires little
human effort to type a protocol, and the types of protocol data document how the
protocol works.

Acknowledgements

Thanks to Martı́n Abadi, Gavin Lowe, Dusko Pavlovic, Simon Peyton Jones, Benjamin
Pierce, Corin Pitcher, James Riely, and Andre Scedrov for discussions about this work.
The anonymous referees for the IEEE Computer Security Foundations Workshop pro-
vided invaluable feedback. C.A.R. Hoare suggested several improvements to a draft.
Alan Jeffrey was supported in part by Microsoft Research during some of the time we
worked on this paper.

26

A Protocol Examples

In this appendix we describe details of the examples mentioned in Section 5. Sec-
tion A.1 describes Abadi and Gordon’s version of Wide Mouth Frog. Section A.2
discusses Woo and Lam’s authentication protocol. Section A.3 discusses Otway and
Rees’s key-exchange protocol. Finally, we present a new typed protocol for secure
message streams in Section A.4.

Abbreviations Used in Examples

In these examples, we shall make use of the following syntax sugar:

� Dependent record types
�
x1:T1 � ����� � xn:Tn � , rather than just pairs. These come

with a constructor
�
M1 � ����� � Mn � and a destructor � 	������ M

� � � x1:T1 � ����� � xn:Tn � ;P.
� Tagged union types

���
1
�
T1 � � ������� � n

�
Tn � � rather than just binary choice T � U .

These come with a constructor
�

i
�
M � and a destructor � 	������ M

� � �
i
�
x:T � ;P.

� Dependent function types
�
x:T � � U . These come with an appropriate function

declaration and application syntax.

We show in Section A.5 that these constructs can be derived from our base language.

A.1 Abadi and Gordon’s Variant of Wide Mouth Frog

The original paper on the spi-calculus [3] includes a lengthy proof of authenticity and
secrecy properties for a variation of the Wide Mouth Frog key distribution protocol [9]
based on nonce handshakes instead of timestamps. In this section, we show how to
type-check this protocol.

To begin with we look at an unsafe version of the protocol, to illustrate how at-
tempting to type-check a protocol may expose flaws. This broken protocol consists of
a sender (Alice), a receiver (Bob) and a server (Sam). Alice wishes to contact Bob, and
asks Sam to establish her credentials:

Event 1 A begins “A sending B key KAB”
Message 1 A � S A
Message 2 S � A NS

Message 3 A � S A �
 B � KAB � NS � KAS

Message 4 S � B
� �

Message 5 B � S NB

Message 6 S � B

A � KAB � NB � KBS

Event 2 B ends “A sending B key KAB”

(For the sake of readability, we use “A sending B key KAB” as a shorthand for the mes-
sage

�
A � B � KAB � .)

This protocol can be compromised by an intruder I impersonating Sam, if Alice

27

acts both as a sender and a receiver:

Event α.1 A begins “A sending B key KAB”
Message α.1 A � I A
Message β.4 I � A

� �
Message β.5 A � I NA

Message α.2 I � A NA

Message α.3 A � I A �
 B � KAB � NA � KAS

Message β.6 I � A

B � KAB � NA � KAS

Event β.2 A ends “B sending A key KAB”

At this point, Alice believes that she has been contacted by Bob, when in fact she has
been contacted by the intruder.

We can easily express this protocol in the spi-calculus, and use
� ��� ��� M and � � � M

statements to specify the desired correspondence property.
We define FlawedSender

�
net � alice � key � to be the sender, using net as the insecure

communications medium, acting on behalf of alice using secret key key (in order to
bootstrap the system, we have the sender receive bob’s name from the network, so the
attacker can create as many concurrent sessions as they like):

FlawedSender
�

net:Network � alice:Princ � key:WMFKey
�
alice �

� ∆� 	 � � ��	�������
net

�
bob:Princ � ;� �
� �

sKey:SKey � ;
� ��� ��� “alice sending bob key sKey”;����� net

�
alice � ;�����

net
�
nonce:

� � � ;�
	���� nonce
� � � nonce

�

:WMFNonce
�
alice � bob � sKey �� ;����� net

�
alice �
 bob � sKey � nonce

� � key � ;
We define FlawedReceiver

�
net � bob � key � to be the receiver, using net as the insecure

28

communications medium, acting on behalf of bob, using secret key key:

FlawedReceiver
�

net:Network � bob:Princ � key:WMFKey
�
bob �

� ∆� 	 � � ��	�������
net

� � ;� ��� �
nonce:

� � � ;����� net
�
nonce � ;�����

net
�
ctext:

� � � ;� ��� 	 ��� � ctext� �
 alice:Princ �
sKey : SKey �
nonce

�

: WMFNonce
�
alice � bob � sKey � � key;��������� nonce

� � nonce
�

;� � � “alice sending bob key sKey”

We define FlawedServer
�
net � lookup � to be the server, using net as the insecure com-

munications medium, making use of a trusted database lookup function lookup to ac-
cess the secret keys:

FlawedServer
�
net:Network � lookup:WMFLookup � ∆�	 � � ��	�������

net
�
alice:Princ � ;� ��� �

nonceA:
� � � ;����� net

�
nonceA � ;�����

net
�
alice � ctext:

� � � ;� �
� keyA : WMFKey
�
alice � � lookup

�
alice � ;� ��� 	 ��� � ctext� �
 bob:Princ �

sKey : SKey �
nonceA

�

: WMFNonce
�
alice � bob � sKey � � keyA;��������� nonceA

� � nonceA
�

;����� net
� � ;�����

net
�
nonceB:

� � � ;��	���� nonceB� � � nonceB
�

:WMFNonce
�
alice � bob � sKey � � ;� �
� keyB : WMFKey

�
bob � � lookup

�
bob � ;����� net

alice � sKey � nonceB

� � keyB

Then we can try to define the types appropriately. For most of the types, it is fairly
routine(for the WMFLookup type, we need to use an appropriate function type, and for
the SKey type, we need an appropriate Msg type for the payload, but these do not play

29

an important role in the typing) :

Network
∆� � �

Princ
∆� � �

WMFLookup
∆� �

princ:Princ � � WMFKey
�
princ �

SKey
∆� � � � � Msg �

WMFNonce
�
alice � bob � sKey � ∆�

� � � ��� � � � � “alice sending bob key sKey” �
WMFKey

�
princ � ∆� � � � � WMFMsg

�
princ ��

The problem comes when we try to give a definition for WMFMsg, which is the type of
the plaintext of messages used in the WMF protocol. In order to type-check Message
3, we require:

WMFMsg
�
alice � ��

bob:Princ � sKey:SKey � nonce:WMFNonce
�
alice � bob � sKey ��

and in order to type-check Message 6, we require:

WMFMsg
�
bob � ��

alice:Princ � sKey:SKey � nonce:WMFNonce
�
alice � bob � sKey ��

Unfortunately, these requirements are inconsistent, since the roles of alice and bob
have been swapped. This is the root of the attack on this broken WMF, which relies
on the fact that the key for alice is being used in two incompatible ways, depending on
whether alice is acting as the sender or the receiver.

This is an example of a type-flaw attack [23] and may be solved by the standard
solution of adding tag information to messages. This is akin to the use of tagged union
types in type-safe languages like ML or Haskell. In this case, we have the type for
Message 3 of the protocol:

WMFMsg3
�
alice � ∆��

bob:Princ � sKey:SKey � nonce:WMFNonce
�
alice � bob � sKey ��

and the type for Message 6:

WMFMsg6
�
bob � ∆��

alice:Princ � sKey:SKey � nonce:WMFNonce
�
alice � bob � sKey ��

and we can define WMFMsg
�
princ � as the tagged union of these two types:

WMFMsg
�
princ � ∆��

msg3
�
WMFMsg3

�
princ �� � msg6

�
WMFMsg6

�
princ � ��

We can then check that the safe versions of the principals are effect-free. The sender,
receiver, and server are given in Figure 1.

The key database has to implement the lookup function, and be effect-free. In prac-
tice, an implementation would require access to a secure database, but in this example,

30

we can just hard-wire in the principal names and keys, and use pattern-matching to
define the database:

KeyDB
�
lookup:WMFLookup � princ1:Princ � key1:WMFKey

�
princ1 � � ����� �

princn:Princ � keyn:WMFKey
�
princn �� ∆�

� � � ��� � � �
lookup

�
princ1 � : WMFKey

�
princ1 � � � 	 �
� � 	 � key1

...
lookup

�
princn � : WMFKey

�
princn � � � 	 �
� � 	 � keyn

We define a Wide Mouth Frog configuration to be a process of the form:

� �
� �
lookup:WMFLookup � ;� �
� �
princ1:Princ � ; ������ �
� �
princn:Princ � ;� �
� �
key1:WMFKey

�
princ1 �� ; ������ �
� �

keyn:WMFKey
�
princn �� ;

FixedSender
�
net � princ1 � key1 � � �������

FixedSender
�
net � princn � keyn � �

FixedReceiver
�
net � princ1 � key1 � � �������

FixedReceiver
�
net � princn � keyn � �

FixedServer
�
net � lookup � �

KeyDB
�
lookup � princ1 � key1 � ����� � princn � keyn �

We can then apply the results of this paper to get:

� Any Wide Mouth Frog configuration is effect-free, and hence robustly safe.

Thus, we have shown the Wide Mouth Frog protocol to satisfy this particular safety
property for an arbitrary number of principals, sessions, and in the presence of an
arbitrary attacker and well-typed database implementation.

The use of tagged unions to represent the different message types which are sent in
a protocol is a common technique, and corresponds to the final phrase of Principle 10
of Abadi and Needham [4]:

If an encoding is used to present the meaning of a message, then it should
be possible to tell which encoding is being used. In the common case
where the encoding is protocol dependent, it should be possible to deduce
that the message belongs to this protocol, and in fact to a particular run of
the protocol, and to know its number in the protocol.

Many protocols use ad hoc techniques such as incrementing timestamps, or juggling
the order of participant names to encode message numbers implicitly. Our type system
makes these ad hoc solutions formal, as an instance of the standard technique of using
tagged union types.

31

A.2 Woo and Lam’s Authentication Protocol

Woo and Lam [40] propose a server-based symmetric-key authentication protocol. Al-
ice wishes to authenticate herself to Bob, and does so by responding to a nonce chal-
lenge with a message which Bob can ask the trusted server to decrypt:

Event 1 A begins “A authenticates to B”
Message 1 A � B : A
Message 2 B � A : NB

Message 3 A � B :

msg3

�
NB � � KAS

Message 4 B � S :

msg4

�
A �
 msg3

�
NB � � KAS � � KBS

Message 5 S � B :

msg5

�
NB � � KBS

Event 2 B ends “A authenticates to B”

(In the original protocol, the messages were untagged, but we have provided tags for
the reasons discussed in the previous section.) Abadi and Needham [4] demonstrate
that this protocol is not robustly safe, because message 5 does not mention A.

The possibility of this attack is made clear when we try to type-check the protocol.
We have types:

WLKey
�
princ � ∆� � � � � � WLMsg

�
princ �� �

WLMsg
�
princ � ∆� �

msg3
�
WLMsg3

�
princ �� �

msg4
�
WLMsg4

�
princ �� �

msg5
�
WLMsg5

�
princ �� �

WLMsg3
�
alice � ∆� �

nonce:WLNonce
�
alice � bob ��

WLMsg4
�
bob � ∆� �

alice:Princ � ctext:
� � �

WLMsg5
�
bob � ∆� �

nonce:WLNonce
�
alice � bob � �

WLNonce
�
alice � bob � ∆� � � � ��� � � � � “alice authenticates to bob” �

WLLookup
∆� �

princ:Princ � � WLKey
�
princ �

At this point it becomes clear that the protocol is not well-typed, since the types
are not well-formed: WLMsg3

�
alice � contains an unbound occurrence of bob and

WLMsg5
�
bob � contains an unbound occurrence of alice. Abadi and Needham observe

that Message 5 should be changed to:

Message 5’ S � B :

msg5

�
A � NB � � KBS

but did not make any similar observation for Message 3. Their strengthened protocol
allows Bob to know that Alice is talking to somebody, but does not allow Bob to know
that Alice is talking to Bob. For example, one possible run, where Alice begins a

32

dialogue with Charlie, but is authenticated to Bob is:

Event α.1 A begins “A authenticates to C”
Message α.1 A � I : A
Message β.1 I � B : A
Message β.2 B � I : NB

Message α.2 I � A : NB

Message α.3 A � I :

msg3

�
NB � � KAS

Message β.3 I � B :

msg3

�
NB � � KAS

Message β.4 B � S :

msg4

�
A �
 msg3

�
NB � � KAS � � KBS

Message β.5 S � B :

msg5

�
NB � � KBS

Event β.2 B ends “A authenticates to B”

This attack is noted by Anderson and Needham [5], and is stopped by a similar change
to the protocol:

Message 3’ A � B :

msg3

�
B � NB � � KAS

Finally, our type system makes clear that the encryption of message 4 is unnecessary,
since all the data is of type

� �
, and so can safely be sent in plaintext, as suggested by

Abadi and Needham [4]:

Message 4’ B � S : A � B �
 msg3
�
B � NB � � KAS

The resulting protocol can be type-checked, using types:

WLMsg
�
princ � ∆��

msg3
�
WLMsg3

�
princ �� � msg5

�
WLMsg5

�
princ �� �

WLMsg3
�
alice � ∆��

bob:Princ � nonce:WLNonce
�
alice � bob � �

WLMsg5
�
bob � ∆��

alice:Princ � nonce:WLNonce
�
alice � bob ��

To see that the sender is effect-free, we calculate:

FixedSender
�
net:Network � alice:Princ � key:WLKey

�
alice �� ∆�	 � � ��	�������

net
�
bob:Princ � ;

� � � ��� “alice authenticates to bob”;����� net
�
alice ������

net
�
nonce:

� � � ;��	���� nonce
� � � nonce

�

:WLNonce
�
alice � bob � � ;����� net

msg3

�
bob � nonce

� � � key � � � � �
����� �

� �����
����

�

� �

33

To see that the receiver is effect-free, we calculate:

FixedReceiver
�
net:Network � bob:Princ � key:WLKey

�
bob �� ∆�	 � � ��	�������

net
�
alice:Princ � ;� ��� �

nonce:
� � � ;����� net

�
nonce ������

net
�
ctext:

� � � ;����� net
�
alice � bob � ctext ������

net
�

msg5
�
alice � nonce

�

:WLNonce
�
alice � bob � � � key � ;��������� nonce

� � nonce
�

;� � � “alice authenticates to bob”
� � � � �

����� � � � ��������� nonce�

� ���������
��������

�

� �

To see that the server is effect-free, notice that the server makes no use of any process��������� N
� � N

�

;P, �
	���� N
� � � N � � ;P or � � � M, and so is automatically effect-free:

FixedServer
�
net:Network � lookup:WLLookup � ∆�	 � � ��	�������

net
�
alice:Princ � bob:Princ � ctext:

� � � ;� �
� keyA:WLKey
�
alice � � lookup

�
alice � ;� �
� keyB:WLKey

�
bob � � lookup

�
bob � ;� ��� 	 ��� � ctext

� �
 msg3
�
bob � nonce

�

:WLNonce
�
alice � bob �� � keyA;����� net

msg5

�
alice � nonce

� � � keyB

We define a Woo and Lam configuration to be a process of the form:

� ��� �
lookup:WLLookup � ;� ��� �
princ1:Princ � ; ����� � ��� �

princn:Princ � ;� ��� �
key1:WLKey

�
princ1 �� ; ����� � �
� �

keyn:WLKey
�
princn �� ;

FixedSender
�
net � princ1 � key1 � � ������� FixedSender

�
net � princn � keyn �� FixedReceiver

�
net � princ1 � key1 � � ����� � FixedReceiver

�
net � princn � keyn �� FixedServer

�
net � lookup � � KeyDB

�
lookup � princ1 � key1 � ����� � princn � keyn �

for any effect-free KeyDB. We can then apply the results of this paper to get:

� Any Woo and Lam configuration is effect-free, and hence robustly safe.

This example has shown that in our type system, it is important that all messages con-
tain the names of the principals involved. Our type system enforces Principle 3 of
Abadi and Needham [4]:

If the identity of a principal is essential to the meaning of a message, it is
prudent to mention the principal’s name explicitly in the message.

This requirement is enforced through the usual requirement for variables in a program
to be correctly scoped: violations of Principle 3 may be caught because a variable is
used when it is not in scope.

34

A.3 Otway and Rees’s Key Exchange Protocol

Otway and Rees [33] propose a server-based symmetric-key key exchange protocol.
We cannot verify their protocol using the type system of this paper, even though (as
far as we are aware) it is correct, since it relies on using nonces to stand for principal
names, which are kept secret, as well as for freshness. Still, it may be possible to adapt
our type system to deal with this use of nonces; we leave this for future work.

Abadi and Needham [4] propose a simplification of the protocol, which we verify
here:

Message 1 A � B A � B � NA

Message 2 B � S A � B � NA � NB

Event 1 S begins “initiator A shares KAB with B”
Event 2 S begins “responder B shares KAB with A”
Message 3 S � B

msg4

�
A � B � KAB � NA � � KAS �

msg3
�
A � B � KAB � NB � � KBS

Event 3 B ends “responder B shares KAB with A”
Message 4 B � A

msg4

�
A � B � KAB � NA � � KAS

Event 4 A ends “initiator A shares KAB with B”

At the end of this dialogue, Alice and Bob both know that KAB was generated by Sam
for their private use. Alice does not know that Bob actually received KAB, since this
protocol does not ensure that Alice and Bob actually receive KAB, just that nobody else
does.

We can allocate types to this protocol:

ORKey
�
princ � ∆�

� � � �� msg3
�
ORMsg3

�
princ �� � msg4

�
ORMsg4

�
princ � ���

ORMsg3
�
bob � ∆��

alice:Princ � bob
�

:Princ � sKey:SKey �
nonce:ORNonce3

�
alice � bob � sKey � �

ORMsg4
�
alice � ∆��

alice
�

:Princ � bob:Princ � sKey:SKey �
nonce:ORNonce3

�
alice � bob � sKey � �

ORNonce3
�
alice � bob � sKey � ∆�

� � � ��� � � � � “responder bob shares sKey with alice” �
ORNonce4

�
alice � bob � sKey � ∆�

� � � ��� � � � � “initiator alice shares sKey with bob” �
ORLookup

∆��
princ:Princ � � ORKey

�
princ �

35

and then type-check Alice:

FixedSender
�
net:Network � alice:Princ � key:ORKey

�
alice �� ∆�	 � � ��	�������

net
�
bob:Princ � ;� �
� �

nonceA:
� � � ;����� net

�
alice � bob � nonceA � ;�����

net
�

msg4
�
alice � bob � sKey:SKey �
nonceA

�

:ORNonce4
�
alice � bob � sKey �� � keyA � ;��������� nonceA

� � nonceA
�

;� � � “initiator alice shares sKey with bob”
� � � � �

����� � � � ��������� nonceA�

� �������
������

�

� �

type-check Bob:

FixedReceiver
�
net : Network � bob:Princ � key:ORKey

�
bob � � ∆�	 � � ��	�������

net
�
alice:Princ � bob � nonceA:

� � � ;� ��� �
nonceB:

� � � ;����� net
�
alice � bob � nonceA � nonceB � ;�����

net
�
ctext:

� � �
 msg3
�
alice � bob � sKey:SKey �
nonceB:ORNonce3

�
alice � bob � sKey � � � key � ;��������� nonceB

� � nonceB
�

;� � � “responder bob shares sKey with alice”
� � � � �

����� � � � ��������� nonceB�

� �������
������

�

� �

and type-check Sam:

FixedServer
�
net:Network � lookup:ORLookup � ∆�	 � � ��	�������

net
�
alice:Princ � bob:Princ � nonceA:

� � � nonceB:
� � � ;� �
� keyA:ORKey

�
alice � � lookup

�
alice � ;� �
� keyB:ORKey

�
bob � � lookup

�
bob � ;� ��� �

sKey:SKey � ;
� � � ��� “initiator alice shares sKey with bob”;
� � � ��� “responder bob shares sKey with alice”;��	���� nonceA

� � � nonceA
�

:ORNonce4
�
alice � bob � sKey �� ;��	���� nonceB

� � � nonceB
�

:ORNonce3
�
alice � bob � sKey �� ;����� net

��

msg4

�
alice � bob � sKey � nonceA

� � � keyA
�

msg3
�
alice � bob � sKey � nonceB

� � � keyB
� � � �

� �

�
� � � �

����� �

� �����
����

�
� � � �

����� �

� �������
������

�

� �

We can then apply the techniques of this paper to show that this modified protocol is
robustly safe. This typing makes it clear that Bob’s name is not required in Message
3 and Alice’s name is not required in Message 4, and these names could be dropped
without compromising the correspondence assertions.

A.4 A Secure Message Stream

In Section 4.4 we showed how we can verify a simple two-message protocol to en-
sure the authenticity of messages. The protocol relied on Alice to send Bob a nonce

36

challenge for every message Bob sends:

Event 1 A begins A sent M
Message 1 B � A : N
Message 2 A � B :

M � N � K

Event 2 B ends A sent M

This is rather inefficient, since it requires an acknowledgement message for every mes-
sage. Instead, we could use message identifiers to ensure the freshness of messages
without Alice having to send constant acknowledgements. Our language does not sup-
port message identifiers directly, but they can be coded in messages of nonces: each
time Bob sends Alice a message, he sends two nonces: the nonce for the current mes-
sage, and the nonce for the next message. This is enough for Alice to ensure freshness
of messages:

Message 0 B � A : N1

Event 1a A begins A sent M1

Message 1 A � B :

M1 � N2 � N1 � K

Event 1b B ends A sent M1

�����

Event na A begins A sent Mn

Message n A � B :

Mn � Nn � 1 � Nn � K

Event nb B ends A sent Mn

In order to check this protocol, we need to make use of latent nonce effects, since nonce
Nn is being used to ensure the freshness of nonce Nn � 1. The types we use are:

MidKey
∆� � � � �� msg:Msg � nonceB:

� � � nonceA:MidNonce
�
msg � nonceB � ��

MidNonce
�
msg � nonceB � ∆� � � � �
� � � � � “Sender sent msg” � ��������� nonceB�

The receiver is type-checked:

FixedReceiver
�
net:Network � key:MidKey � ∆�� �
� �

nonceA:
� � � ;����� net nonceA

FixedReceiver
�
net � key � nonceA � � � ��������� nonceA�

� �

�
� �

where we use the recursive function:

FixedReceiver
�
net:Network � key:MidKey � nonceA:

� � � ∆������
net

�
��
msg:Msg � nonceB:

� � � nonceA
�

:MidNonce
�
msg � nonceB �� � key � ;��������� nonceA

� � nonceA
�

;� � � “Sender sent msg”;
FixedReceiver

�
net � key � nonceB �

The sender is type-checked similarly. This example shows that it is useful for partici-
pants in a protocol to be able to pass nonces and nonce effects, as allowed by our effect
system.

37

A.5 Abbreviations Used in Examples

We shall now show that the abbreviations we used in our examples can be defined in
our type system. We made use of types for dependent records, tagged unions, and
dependent function types:

Syntax sugar for use in types:

T � U :: � type
����� as in Sections 4.1 and 4.2�
x1:T1 � x2:T2 � ����� � xn:Tn � dependent record� �

1
�
T1 � � ������� � n

�
Tn �� tagged union�

x:T � � U dependent function

We allowed the construction of messages of record or tagged union type:

Syntax sugar for use in messages:

L � M � N :: � message
� � � as in Section 2.1�
M1 � ����� � Mn � record

�
i
�
M � tagged union

In processes, we can make use of function declaration, function call, function return,
and pattern-matching:

Syntax sugar for use in processes:

O � P� Q � R :: � process
� � � as in Sections 2.1, 3.1 and 4.2

� � � ��� � � � f
�
X1 � : T1

� � P1 ����� f
�
Xn � : Tn

� � Pn function declaration� ��� x:U � f
�
M � ;P function call	 ��� � 	 � M function return

� 	������ M
� � X ;P pattern match����� M P; output with residual�����

M
�
X � ;P pattern matching input� ��� 	���� � M

� �
 X � P; pattern matching decrypt

where X ranges over a grammar of patterns:

Patterns:

X � Y � Z :: � patterns
x:T variable
M constant�
X1 � ����� � Xn � tuple

�
i
�
X � tagged union

X � M cyphertext

38

We will now give definitions for each of these extensions, beginning with types. De-
pendent records and tagged unions are routine, since we already have pairs and vari-
ants types. Dependent records use a variant of the translation of functions into the
π-calculus [31]; this is explored in more detail in [18]).

Abbreviations for types:
�
x1:T1 � x2:T2 � ����� � xn:Tn � ∆� �

x1:T1 � � x2:T2 � � ����� � xn:Tn � � � � ����� � ��� �
1
�
T1 � � ������� � n

�
Tn �� ∆� �

T1 �
�
T2 �

�
�����

�
Tn � ��� ����� ����

x:T � � U
∆� � � � x:T � � � � U ��

The translations of messages are similarly straightforward.

Abbreviations for messages:
�
M1 � M2 � ����� � Mn � ∆� �

M1 � � M2 � � ����� � Mn � � � � ����� �� �
�

i
�
M � ∆� ���

i
�
M ����

1
�
M � ∆� ����� �

M ����
n � 1

�
M � ∆� ����	 � ���

n
�
M ��

We write ����� x
�
M � ;P as a simple shorthand for ����� x M � P:

Abbreviations ����� M N;P:

����� M N;P
∆� � ����� M N � � P

We use a variant of Milner’s translation of the λ-calculus into the π-calculus, extended
to deal with pattern-matching.

Abbreviations for functions, where f :
�
x:T � � U:

� � � ��� � � � f
�
X1 � : U1

� � P1 ����� f
�
Xn � : Un

� � Pn
∆�	 � � ��	�� ����� f

�
request:

�
x:T � � � � U ��� � ;�

� 	������ request
� � � X1 � return: � � � U1 �� ;P1 � �������

� 	������ request
� � � Xn � return: � � � Un �� ;Pn

�
	 ��� � 	 � M

∆�
����� return N� ��� x:U � f

�
M � ;P

∆�� �
� �
k: � � � U � � ; ����� f

�
M � k � ; ����� k

�
x:U � ;P

where we define pattern-matching as:

Abbreviations for pattern matching:
�����

M
�
X � ;P

∆� �����
M

�
x � ; � 	������ x

� � X ;P� ��� 	���� � M
� �
 X � N ;P

∆� � ��� 	���� � M
� �
 x � N; � 	������ x

� � X ;P
� 	������ M

� � x:T ;P
∆� P

x � M �

39

� 	������ M
� � � � ;P

∆� P
� 	������ M

� � � N � X1 � ����� � Xn � ;P
∆� � 	������ M

� � � N � y � ; � 	������ y
� � � X1 � ����� � Xn � ;P

� 	������ M
� � � X0 � X1 � ����� � Xn � ;P

∆� � ��� � � M
� � � x � y � ;

� 	������ x
� � X0; � 	������ y

� � � X1 � ����� � Xn � ;P
� 	������ M

� � ���
1
�
X � ;P

∆� ��	���� M
� � ����� � x � � 	������ x

� � X ;P
� � ����	 � x � ����� �

� 	������ M
� � ���

n � 1
�
X � ;P

∆� �
	��� M
� � ����� � x � ����� � � � ����	 � x � � 	������ x

� � ���
n
�
X � ;P

� 	������ M
� �
 X � NP;

∆� � ��� 	���� � M
� �
 x � N ; � 	������ x

� � X ;P
� 	������ M

� � N;P
∆� � 	������ �

M � � � � � � � N � x � ;P

Thus we have demonstrated that our core language is powerful enough to describe the
examples in this section.

B Formal Semantics of our Typed Spi-Calculus

This appendix develops a formal operational semantics for the spi-calculus. Hence, we
make precise the informal definition of process safety stated in Section 3.1, and prove
the type safety result, Theorem 1 (Safety), stated in Section 4.3.

We begin in Appendix B.1 by defining a trace semantics for the spi-calculus, and
use it to define safety in Appendix B.2. In Appendix B.3, we state and prove a subject
reduction property (that is, a type preservation property). Finally, in Appendix B.4 we
exploit subject reduction to prove Theorem 1 (Safety).

B.1 A Trace Semantics for our Spi-Calculus

We use a trace semantics based on the Chemical Abstract Machine [7]. First, we define
a structural equivalence P � Q on processes, and then we define the trace semantics in
terms of structural equivalence. This is the same technique as Milner [31] uses in the
presentation of the π-calculus, and Abadi and Gordon [3] use in the presentation of the
spi-calculus.

Structural Equivalence: P � Q

P � P (Struct Refl)
Q � P � P � Q (Struct Symm)
P � Q � Q � R � P � R (Struct Trans)

P � Q �
� ��� �

x:T � ;P �
� ��� �

x:T � ;Q (Struct Res)
P � Q � P � R � Q � R (Struct Par)

P � ����� � � P (Struct Par Zero)
P � Q � Q � P (Struct Par Comm)�
P � Q � � R � P � � Q � R � (Struct Par Assoc)	 � � ��	�� P � P � 	 � � ��	�� P (Struct Repl Par)

x
�� fn

�
P ��� P � � �
� �

x:T � ;Q �
� ��� �

x:T � ; � P � Q � (Struct Par Res)

40

x �� y � x �� fn
�
U � � y �� fn

�
T � �� �
� �

x:T � ; � �
� �
y:U � ;P �

� ��� �
y:U � ; � ��� �

x:T � ;P
(Struct Res Res)

A trace of a process is a finite sequence of events. The set of possible events
includes the begin- and end-events defined in Section 3.1, as well as other events rep-
resenting various actions of processes.

Each process is given a trace semantics, where a trace is a sequence of events
performed by the process. Events take the following forms.

Events:

α � β :: � events
� ��� ��� L begin-event labelled with message L� � � L end-event labelled with message L�
	���� x:T cast-event of name x to type T��������� x check-event for nonce x
� � � x:T fresh-event for name x
τ internal-event

Events may contain free names. For example, fn
� � � � �

Sender sent msg �� �

msg � .

Free names, fn
�
α � , of an event α

fn
�
τ � ∆� �

fn
� ��	���� x:T � ∆�

x � � fn
�
T �

fn
� ��������� x � ∆�

x �
fn
� � � � ��� M � ∆� fn

�
M �

fn
� � � � M � ∆� fn

�
M �

fn
� ��� � x:T � ∆�

x � � fn
�
T �

Events may also contain generated names. For example, gn
� ��� � msg:Msg � �

msg � .
Generated names, gn

�
α � , of an event α

gn
�
α � ∆���

x � if α � ��� � x:T� otherwise

We interpret events as follows:

� An event
� � � ��� L arises from a process

� � � ��� L;P, and represents the beginning
of a correspondence.

� An event � � � L arises from a process � � � L;P, and represents the end of a corre-
spondence.

� An event ��	���� N:T arises from a process �
	���� N
� � �

x:T � ;P, and represents the
cast of an untrusted message into the type T , which the type system requires to
be of the specific form

� � � ��� es.

41

� An event ��������� N arises from a process ��������� N
� � N;P, and represents a suc-

cessful check for the presence of a nonce.
� An event � � � x:T arises from a process

� ��� �
x:T � ;P, and represents the genera-

tion of a fresh name x.
� An event τ arises from an internal computational step of a process.

For example, in the FixedSystem
�
net � example from Section 3.3, one possible sequence

of events is:

� ��� � nonce:
� �

: the receiver generates a fresh untrusted name nonce.
� ��� � msg:Msg: the sender generates a new message msg.
�

� � � ��� �
Sender sent msg � : the sender begins a correspondence.

� ��	���� nonce:MyNonce
�
msg � : the sender casts the untrusted message nonce to the

type MyNonce .
� ��������� nonce: the receiver checks that the received nonce is nonce.
� � � � �

Sender sent msg � : the receiver ends a correspondence.

On the other hand, in the compromised system FlawedSystem
�
net � � Attacker

�
net � one

possible sequence of events is:

� ��� � msg:Msg: the sender generates a new message msg.
�

� � � ��� �
Sender sent msg � : the sender begins a correspondence.

� � � � �
Sender sent msg � : the receiver ends a correspondence.

� � � � �
Sender sent msg � : the receiver mistakenly ends the same correspondence

twice.

Next, we give a formal definition of the events a process is capable of, using a
labelled transition system semantics P

α� � P
�

, meaning “P can perform event α and
become P

�

”.

Labelled transitions: P
α� � P

�

����� x M � ����� x
�
y:T � ;P

τ�� P

y � M � (Trans Comm)� ��� � � � M � N � � � � x:T � y:U � ;P

τ�� P

x � M �
 y � N � (Trans Split)

� 	������ �
M � N � � � � M � y:U � ;P

τ�� P

y � N � (Trans Match)�
	��� ����� � M � � � ����� � x:T � P

� � ����	 � y:U � Q
τ�� P

x � M � (Trans Case Inl)�
	��� ����	 � M � � � ����� � x:T � P

� � ����	 � y:U � Q
τ�� Q

y � M � (Trans Case Inr)� ��� 	���� �
 M � N

� �
 x:T � N ;P
τ�� P

x � M � (Trans Decrypt)

�
	���� x
� � � y:T � ;P �

����� x:T������� � P

y � x � (Trans Cast)

��������� x
� � x;P �

���
�
�

x������� � P (Trans Check)
� ��� ��� M;P

	
���
 �
M������� � P (Trans Begin)

� � � M;P
�����

M����� � P (Trans End)

42

� ��� �
x:T � ;P

� ���
x� ��� � P (Trans Gen)

gn
�
α � �

fn
�
Q � � � � P

α� � P
�

� P � Q α�� P
� � Q (Trans Par)

x
��

fn
�
α � � P

α� � P
�

�
� ��� �

x:T � ;P
α� � � ��� �

x:T � ;P
�

(Trans Res)
P � Q � Q α� � Q

� � Q �

� P
�

� P
α�� P

�

(Trans �)

A trace is a sequence of events which the process may perform.

Traces:

s � t :: � α1 � ����� � αn trace (written ε if n � 0)

We extend the definition of free and generated names to traces:

Free names, fn
�
s � , and generated names, gn

�
s � , of trace s

fn
�
a1 � ����� � an � ∆� fn

�
a1 ��� ������ fn

�
an �

gn
�
a1 � ����� � an � ∆� gn

�
a1 ���������� gn

�
an �

The traces of a process P are defined using a trace-labelled transition system P
s�� P

�

meaning ‘P performs trace s and becomes P
�

.’

Traced transitions: P
s�� P

�

P � P
�

� P
ε�� P

�

(Trace �)

P
α�� P

� � � P � � s�� P
�

� P
a � s� � P

� �

(Trace Event) (where fn
�
a � �

gn
�
s � � �)

For example one trace of FixedSystem
�
net � is (ignoring τ actions):

��� � nonce:
� � �

��� � msg:Msg �
� � � ��� �

Sender sent msg � ���	���� nonce:MyNonce
�
msg � ���������� nonce �� � � �

Sender sent msg �
One trace of FlawedSystem

�
net � � Attacker

�
net � is:

� � � msg:Msg �
� ��� ��� �

Sender sent msg � �� � � �
Sender sent msg � �� � � �
Sender sent msg �

43

B.2 Correspondence Traces and Safe Processes

We now define our notion of safety, through correspondence assertions. To do so, we
need to recall some standard notation for unordered collections of data, or multisets. If
x ranges over elements of some given set, we let xs range over multisets of elements of
that set.

Multiset of elements

xs :: � multiset�
x1 � ����� � xn � unordered collection of elements

We identify multisets up to permuting elements, so
�
x � y � � �

y � x � but not up to copying
elements, so

�
x � �� �

x � x � . We define some standard operations on multisets.

Multiset algebra xs � xs
�

, xs � xs
�

, xs � xs
�

, x
�

xs, xs � xs
�

�
x1 � ����� � xm � �

�
y1 � ����� � yn � ∆� �

x1 � ����� � xm � y1 � ����� � yn �
xs � xs

�

if and only if xs � xs
� � � xs

�

for some xs
� �

xs � xs
� ∆� the smallest xs

� �

such that xs � xs
� �

� xs
�

x
�

xs if and only if
�
x � � xs

xs � xs
� ∆� the smallest xs

� �

such that xs � xs
� �

and xs
�

� xs
� �

For example:

�
�
x � y � �

�
y � z � � �

x � y � y � z � .
�

�
x � y � �

�
x � y � z � but

�
x � y � y � �� �

x � y � z � .
�

�
x � y � y � z � � �

w � x � y � � �
y � z � .

� x
� �

x � y � but z
�� �

x � y � .
�

�
x � y � �

�
y � z � � �

x � y � z � .
For example, we use Ms to range over multisets of messages.

Multisets of messages Ms:

Ms :: � multiset of messages�
M1 � ����� � Mn � unordered collection of messages

We define the beginnings and endings of a trace s as the multiset of event labels begun
and ended, respectively, in s.

Beginnings, begins
�
s � , and endings, ends

�
s � , of a trace s

begins
�
a1 � ����� � an � ∆� begins

�
a1 � � ����� � begins

�
an �

where begins
�
a � ∆� � �

M � if a � � � � ��� M� � otherwise

44

ends
�
a1 � ����� � an � ∆� ends

�
a1 � � ����� � ends

�
an �

where ends
�
a � ∆� � �

M � if a � � � � M� � otherwise

Next, we say that a trace is a correspondence if its beginnings dominate its endings;
that is, for each end-event labelled L, there is a corresponding begin-event labelled L.

Correspondence:

A trace s is a correspondence if and only if ends
�
s � � begins

�
s � .

For the example trace of FixedSystem
�
net � we have:

begins
� � � � nonce:

� � � ��� � msg:Msg � � ��� ��� �
Sender sent msg � ���	���� nonce:MyNonce

�
msg � � ��������� nonce � � � � �

Sender sent msg ��� �
Sender sent msg�

ends
� � � � nonce:

� � � ��� � msg:Msg � � ��� ��� �
Sender sent msg � ���	���� nonce:MyNonce

�
msg � � ��������� nonce � � � � �

Sender sent msg ��� �
Sender sent msg�

Therefore, since this trace s satisfies ends
�
s � � begins

�
s � , it is a correspondence.

For the example trace of FlawedSystem
�
net � � Attacker

�
net � we have:

begins
� ��� � msg:Msg � � ��� ��� �

Sender sent msg � �� � � �
Sender sent msg � � � � � �

Sender sent msg � �� �
Sender sent msg �

ends
� � � � msg:Msg � � � � ��� �

Sender sent msg � �� � � �
Sender sent msg � � � � � �

Sender sent msg � �� �
Sender sent msg � Sender sent msg �

Since this trace has ends
�
s � �� begins

�
s � , it is not a correspondence.

We can now restate, precisely, the notions of safety and robust safety introduced
informally in Section 3.1.

Safety and Robust Safety:

A process P is safe if and only if for all traces s and processes P
�

,
if P

s�� P
�

then s is a correspondence.
A process P is robustly safe if and only if for all opponent processes O, P � O is safe

For example, since FlawedSystem
�
net � � Attacker

�
net � has a trace that is not a cor-

respondence, it follows that FlawedSystem
�
net � � Attacker

�
net � is not safe. Since the

process Attacker
�
net � is an opponent process, it follows that FlawedSystem

�
net � is not

robustly safe.

45

B.3 Proof of Subject Reduction

In this section, we prove a subject reduction property for the labelled transition system,
that transitions preserve typings. To do so, however, we need to extend the type system
to accommodate the fact that cast-processes can change the type of a name after a
transition.

We can illustrate some of the subtleties introduced by casting by considering three
processes that are well-typed with respect to the typing environment defined by E �
x:

� � � y:
� � � z: � � � � � � �
� � � � � y � � .

Firstly, the following example illustrates that a well-typed process can cast the name
x, originally of type

� �
, into the distinct type

� � � �
� � � � � y � .

P1
∆� ��	���� x

� � � x � : � � � ��� � � � � y � � ; ����� z x
�

E
�

P1 :
� � � � y �

P1 �
��� � x: ��� � �

��� �����
y ��
������������������� � ����� z x

Secondly, the following example illustrates that the name y, originally of type
� �

,
can be cast into the type

� � � ��� � � � � y � , that depends on the name y itself.

P2
∆� �
	���� y

� � � y � : � � � ��� � � � � y � � ; ����� z y
�

E
�

P2 :
� � � � y �

P2 �
��� � y: ��� � �

��� �����
y ��
������������������� � ����� z y

Thirdly, the following example illustrates that the name x can be cast to two distinct
types,

� � � ��� � � � � x � and
� � � ��� � � � � y � .

P3
∆� �
	���� x

� � � x � : � � � �
� � � � � x � � ; ��	���� x
� � � x � � : � � � ��� � � � � y � � ; ����� z x

� �

E
�

P3 :
� � � � x � � � � y �

P3 �
��� � x: ��� � �

��� �����
y ���������������������� � �

��� � x: ��� � �
��� �����

x ��
������������������� � ����� z x

Moreover, the possibility that a name can come to inhabit multiple distinct types
arises in the setting of our running example. Recall from Section 3.3 that we have:

net:
� � �

FixedSystem
�
net � :

� �
Now, consider the attacker:

Attacker
�
net � ∆� �����

net
�
nonce:

� � � ; ����� net
�
nonce � ; ����� net

�
nonce �

We can derive
net:

� � �
FixedSystem

�
net � � Attacker

�
net � :

� �
but FixedSystem

�
net � � Attacker

�
net � has the trace:

� ��� � �
nonce � : receiver generates a nonce

(initially nonce:
� �

).
� ��� � �

msg1 � : sender generates a message msg1:Msg.

46

�
� � � ��� �

Sender sent msg1 � : sender begins correspondence 1.
� ��	���� nonce:

� � � ��� � � � � ��� �
Sender sent msg1 � � : sender casts nonce

(so now nonce:
� � � �
� � � ��� ��� �

Sender sent msg1 � �).
� ��� � �

msg2 � : sender generates a message msg2:Msg.
�

� � � ��� �
Sender sent msg2 � : sender begins correspondence 2.

� ��	���� nonce:
� � � ��� � � � � ��� �

Sender sent msg2 � � : sender casts nonce again
(so now nonce:

� � � �
� � � ��� ��� �
Sender sent msg2 � �).

At the end of this trace, nonce has been given three incompatible types:

� Of an untrusted message, nonce:
� �

.
� Of a nonce for correspondence 1, nonce:

� � � ��� � � � � ��� �
Sender sent msg1 � � .

� Of a nonce for correspondence 2, nonce:
� � � ��� � � � � ��� �

Sender sent msg2 � � .
If we are going to allow names to have more than one type, we need to extend the

definition of an environment to allow this.
To accommodate the possibility that a name of type

� �
can be cast to additional

types of the form
� � � ��� es, we allow additional entries of the form � x:

� � � ��� es to be
added to environments.

Extended environments:

E :: � environment
����� as before
E � � x:T extended entry (T always takes the form

� � � �
� es)

For example, we now allow the environment:

nonce:
� � �

msg1:Msg �
� nonce:

� � � ��� � � � � ��� �
Sender sent msg1 � � �

msg2:Msg �
� nonce:

� � � ��� � � � � ��� �
Sender sent msg2 � �

which records that nonce originally had type
� �

, but has since been cast to two other
nonce types.

We extend the definitions of dom
�
E � and fn

�
E � :

Free names fn
�
E � of an extended environment:

fn
�
E � � x:T � ∆� fn

�
E ���

x � � fn
�
T �

Domain dom
�
E � of an extended environment:

dom
�
E � � x:T � ∆� dom

�
E ���

x �

47

We also extend the rules for typing with extended environments. The rule rule (Env
� x) allows the formation of an extended environment E � � x:T only when x originally
had type

� �
, and now also has nonce type. This matches the type rule (Proc Cast). The

rule (Msg � x) extracts type information from such extended environments.

Typing with extended environments:

(Env � x)
E
�

x :
� �

E
�

es

E � � x:
� � � ��� es

���

(Msg � x)
E � � x:T � E � ���

E � � x:T � E � �
x : T

We now show some standard properties about our extended type and effect system.

Lemma 3 (Environment) If E
�

J then E
���

.

Proof Show by induction on the derivation of E � E � �
J that if E � E � �

J then E
���

.
�

Lemma 4 (Weakening) If E � E � � �
J and E � E � � E � � ���

then E � E � � E � � �
J .

Proof An induction on the derivation of E � E � � �
J . �

Lemma 5 (Substitutivity) If E � x:T � E � �
J and E

�
M : T and x

��
dom

�
E
� � then we

have E � � E �

x � M � � � J

x � M � .

Proof First show by case analysis that if E
�

M : T and T is � � � U � , � � � � U � or
� � � ��� es then M is a name. The result then follows by induction on the derivation of
E � x:T � E � �

J . �

Lemma 6 (Subsumption Elimination) If E
�

P : es then E
�

P : fs can be derived
without rule (Proc Subsum), where fs � es.

Proof First show that if E
�

es and E
�

fs then E
�

es � fs, E
�

es � fs and E
�

es � fs. Then show by induction on derivation that if E
�

P : es then E
�

es. The result
then follows by induction on the derivation of E

�
P : es. �

Next, we show a standard property of our labelled transition system, that we can
move every use of structural equivalence up to top level. To state this lemma, we use
the shorthand

� ��� �
D � ;P where:

� ��� �
x1:T1 � ����� � xn:Tn � ;P

∆� � ��� �
x1:T1 � ; ����� � �
� �

xn:Tn � ;P

This construct enjoys the derived type rule:

Derived type rule for
� ��� �

D � ;P:

(Proc Res D) (where dom
�
D � �

fn
�
es � checks

�
D � � ���)

E � D � P : es D is generative

E
� � ��� �

D � ;P : es � checks
�
D �

where checks
�
x1:T1 � ����� � xn:Tn � � � ��������� x1 � ����� � ��������� xn �

and x1:T1 � ����� � xn:Tn is generative if and only if T1 � ����� � Tn are all generative.

48

Lemma 7 (� Elimination) If P
α� � P

�

then:

P �
� �
� �

D � ; � Q � R � P
�

�
� ��� �

D � ; � Q � � R � fn
�
α � �

dom
�
D � � �

and Q
α� � Q

�

can be derived without rules (Trans Par) (Trans Res) or (Trans �).

Proof An induction on the derivation of P
α� � P

�

. �

We now show that the effect judgment for processes is preserved by structural equiva-
lence.

Proposition 8 (Subject Equivalence) If E
�

P : es and P � Q then E
�

Q : es.

Proof Prove by induction on the derivation of � that if P � Q or Q � P then if
E
�

P : es then E
�

Q : es. �

Next, we state the main result of this section, a subject reduction property for our
labelled transition system.

Proposition 9 (Subject Reduction) Suppose E
�

P : es.

(1) If P
τ�� P

�

then E
�

P
�

: es.

(2) If P �
��� � x:T� ����� � P

�

then either:

(a) E
�

P
�

: es, or

(b) E � � x:T
�

P
�

: es � fs where T � � � � ��� fs and fs � es.

(3) If P �
���

�
�

x������ � P
�

then either:

(a) E
�

P
�

: es, or

(b) E
�

x :
� � � ��� fs, E

�
P
�

:
�
es � fs ��� � ��������� x � and ��������� x

�
es.

(4) If P
	
� �
 �

M������� � P
�

then E
�

P
�

: es �
� � � � M � .

(5) If P
�����

M� ��� � P
�

then E
�

P
�

: es � � � � � M � , and � � � M � es.

(6) If P
�
���

x:T� ����� � P
�

then (up to appropriate α-conversion of x) either:

(a) E � x:T
�

P
�

: es and T is generative, or

(b) E � x:T
�

P
�

: es �
� ��������� x � and T is

� �
.

Proof

(1) If P
τ�� P

�

then such that E
�

P
�

: es.

A case analysis on the derivation of P
τ�� P

�

.

49

Case (Trans Comm): By Lemma 6 (Subsumption Elimination) and Lemma 7
(� Elimination); and Rules (Proc Par), (Proc Res D), (Proc Output), (Proc
Input), (Proc Output Un) and (Proc Input Un), we have:

P �
� ��� �

D � ; � ����� x M � ����� x
�
y:T � ;Q � R �

P
�

�
� ��� �

D � ; � Q

y � M � � R �

E � D �
x : U

E � D �
M : T

E � D � y:T
�

Q : esQ

E � D �
R : esR

es �
�
esQ � esR ��� checks

�
D �

where T � � �
and U � � �

, or U � � � � T � ; D is generative; dom
�
D � �

fn
��

esQ � esR � � checks
�
D �� � � ; and y

��
fn
�
esQ � . Then by Lemma 5

(Substitutivity), and Rules (Proc Par), (Proc Res D) and (Proc Subsum) we
have:

E
�

P
�

: es

as required.

Case (Trans Split): By Lemma 6 (Subsumption Elimination) and Lemma 7 (�
Elimination); and Rules (Proc Par), (Proc Res D), (Msg Pair), (Proc Split),
(Msg Pair Un), (Proc Split Un) we have:

P �
� ��� �

D � ; � � ��� � � � M � N � � � � x:T � y:U � ;Q � R �
P
�

�
� ��� �

D � ; � Q

x � M �
 y � N � � R �

E � D �
M : T

E � D �
N : U

x � M �

E � D � x:T � y:U
�

Q : esQ

E � D �
R : esR

es �
�
esQ � esR ��� checks

�
D �

where D is generative; dom
�
D � �

fn
� �

esQ � esR � � checks
�
D �� � � ; x

��

fn
�
esQ � ; and y

�� fn
�
esQ � . Then by Lemma 5 (Substitutivity), and Rules (Proc

Par), (Proc Res D) and (Proc Subsum) we have:

E
�

P
�

: es

as required.

Case (Trans Match): By Lemma 6 (Subsumption Elimination) and Lemma 7
(� Elimination); and Rules (Proc Par), (Proc Res D), (Msg Pair), (Proc

50

Match), (Msg Pair Un), (Proc Match Un) we have:

P �
� ��� �

D � ; � � 	������ �
M � N � � � � M � y:U

x � M � � ;Q � R �

P
�

�
� ��� �

D � ; � Q

y � N � � R �

E � D �
M : T

E � D �
N : U

x � M �

E � D � y:U

x � M � �

Q : esQ

E � D �
R : esR

es �
�
esQ � esR ��� checks

�
D �

where D is generative; dom
�
D � �

fn
��

esQ � esR � � checks
�
D � � � � ; and

y
��

fn
�
esQ � . Then by Lemma 5 (Substitutivity), and Rules (Proc Par), (Proc

Res D) and (Proc Subsum) we have:

E
�

P
�

: es

as required.

Case (Trans Case Inl): By Lemma 6 (Subsumption Elimination) and Lemma 7
(� Elimination); and Rules (Proc Par), (Proc Res D), (Msg Inl), (Proc
Case), (Msg Inl Un), (Proc Case Un), we have:

P �
� �
� �

D � ; � �
	��� ����� � M � � � ����� � x:T � Q
� � ����	 � y:U � R � S �

P
�

�
� �
� �

D � ; � Q

x � M � � S �

E � D �
M : T

E � D � x:T
�

Q : esQ

E � D � y:U
�

R : esR

E � D �
S : esS

es �
�
esQ � esR � � esS

where D is generative; dom
�
D � �

fn
�� �

esQ � esR � � esS � � checks
�
D �� �� ; x

��
fn
�
esQ � ; and y

��
fn
�
esR � . Then by Lemma 5 (Substitutivity), and

Rules (Proc Par), (Proc Res D) and (Proc Subsum) we have:

E
�

P
�

: es

as required.

Case (Trans Case Inr): As for Case (Trans Case Inl).

Case (Trans Decrypt): By Lemma 6 (Subsumption Elimination) and Lemma 7
(� Elimination); and Rules (Proc Par), (Proc Res D), (Msg Encrypt), (Proc

51

Decrypt), (Msg Encrypt Un), (Proc Decrypt Un), we have:

P �
� �
� �

D � ; � � ��� 	���� �
 M � N
� �
 x:T � N ;Q � R �

P
�

�
� �
� �

D � ; � Q

x � M � � R �

E � D �
M : T

E � D � x:T
�

Q : esQ

E � D �
R : esR

es �
�
esQ � esR ��� checks

�
D �

where D is generative; dom
�
D � �

fn
��

esQ � esR � � checks
�
D � � � � ; and

x
��

fn
�
esQ � . Then by Lemma 5 (Substitutivity), and Rules (Proc Par), (Proc

Res D) and (Proc Subsum) we have:

E
�

P
�

: es

as required.

(2) If P �
��� � x:T� ����� � P

�

then either:

(a) E
�

P
�

: es, or

(b) E � � x:T
�

P
�

: es � fs where T � � � � ��� fs and fs � es.

By Lemmas 6 (Subsumption Elimination) and 7 (� Elimination); and Rules (Proc
Par), (Proc Cast) and (Proc Cast Un) we have:

P �
� �
� �

D � ; � �
	���� x
� � � y:T � ;Q � R �

P
�

�
� �
� �

D � ; � Q

y � x � � R �

E
�

x :
� �

E � D � y:T
�

Q : esQ

E � D �
R : esR

es �
�
esQ � fs � esR ��� checks

�
D �

where D is generative; dom
�
D � �

fn
� �
	���� x:T � � � ; dom

�
D � �

fn
� �

esQ � fs �
esR � � checks

�
D �� � � ; y

��
fn
�
esQ � ; and either T � � �

and fs � � � or T �
� � � �
� fs.

Case (T � � �
and fs � � �): By Lemma 5 (Substitutivity), and Rules (Proc Par),

(Proc Res D) and (Proc Subsum) we have:

E
�

P
�

: es

as required.

Case (T � � � � �
� fs): Since E � D � y:T
�

Q : esQ, by Lemma 3 (Environment)
and Rules (Env x) we have E � D � T . Since fn

�
T � �

dom
�
D � � � , and x

��

dom
�
D � , by repeated use of Lemma 5 (Substitutivity) we have E

�
T and

52

E
�

x :
� �

. Then we use Rule (Env � x) to get E � � x:T
� �

, so we can apply
Lemma 4 (Weakening) to get E � � x:T � D � y:T

�
Q : esQ. By Rule (Msg � x)

we have E � � x:T � D � x : T and so we can apply Lemma 5 (Substitutivity),
and Rules (Proc Par), (Proc Res D) and (Proc Subsum) to get:

E � � x:T
�

P
�

: es � fs

and fs � es as required.

(3) If P �
���

�
�

x������ � P
�

then either:

(a) E
�

P
�

: es, or

(b) E
�

x :
� � � ��� fs, E

�
P
�

:
�
es � fs ��� � ��������� x � and ��������� x

�
es.

By Lemmas 6 (Subsumption Elimination) and 7 (� Elimination); and rules (Proc
Par), (Proc Res D), (Proc Check), and (Proc Check Un) we have:

P �
� �
� �

D � ; � ��������� x
� � x;Q � R �

P
�

�
� �
� �

D � ; � Q � R �
E � D �

x : T

E � D �
Q : esQ

E � D �
R : esR

es �
� �

esQ � fs � � fs
�

� esR ��� checks
�
D �

where D is generative; dom
�
D � �

fn
� ��������� x:T � � � ; dom

�
D � �

fn
� ��

esQ � fs � �
fs
�

� esR � � checks
�
D �� � � ; and either T � � �

and fs � fs
� � � � or T �

� � � �
� fs and fs
� � � ��������� x � .

Case (T � � �
and fs � fs

� � � �) By Lemma 5 (Substitutivity), and Rules (Proc
Par), (Proc Res D) and (Proc Subsum) we have:

E
�

P
�

: es

as required.

Case (T � � � � �
� fs and fs
� � � ��������� x �) By Lemma 5 (Substitutivity), and Rules

(Proc Par), (Proc Res D) and (Proc Subsum) we have:

E
�

x :
� � � ��� fs

E
�

P
�

:
�
es � fs ��� � ��������� x �

and ��������� x
�

es as required.

(4) If P
	
� �
 �

M������� � P
�

then E
�

P
�

: es �
� � � � M � .

53

By Lemmas 6 (Subsumption Elimination) and 7 (� Elimination); and Rules (Trans
Begin), (Proc Par), (Proc Res D), and (Proc Begin) we have:

P �
� ��� �

D � ; � � ��� ��� M;Q � R �
P
�

�
� ��� �

D � ; � Q � R �
E � D �

M : T

E � D �
Q : esQ

E � D �
R : esR

es �
� �

esQ � � � � � M � � � esR ��� checks
�
D �

where D is generative; dom
�
D � �

fn
� � ��� ��� M � � � ; and dom

�
D � �

fn
� ��

esQ �� � � � M � � � esR � � checks
�
D �� � � . Then by Lemma 5 (Substitutivity), and

Rules (Proc Par), (Proc Res D) and (Proc Subsum) we have:

E
�

P
�

: es �
� � � � M �

as required.

(5) If P
�����

M� ��� � P
�

then E
�

P
�

: es � � � � � M � , and � � � M
�

es.

By Lemmas 6 (Subsumption Elimination) and 7 (� Elimination); and Rules (Trans
End), (Proc Par), (Proc Res D) and (Proc End) we have:

P �
� �
� �

D � ; � � � � M � Q �
P
�

�
� �
� �

D � ;Q

E � D �
M : T

E � D �
Q : esQ

es �
�
esQ �

� � � � M � ��� checks
�
D �

where D is generative; dom
�
D � �

fn
� � � � M � � � ; and dom

�
D � �

fn
� �

esQ �
� � � � M � � �

checks
�
D �� � � . Then by Lemma 5 (Substitutivity), and Rules (Proc Par), (Proc

Res D) and (Proc Subsum) we have:

E
�

P
�

: es � � � � � M �
and � � � M

�
es as required.

(6) If P
�
���

x:T� ����� � P
�

then (up to appropriate α-conversion of x) either:

(a) E � x:T
�

P
�

: es and T is generative, or

(b) E � x:T
�

P
�

: es �
� ��������� x � and T is

� �
.

By Lemmas 6 (Subsumption Elimination) and 7 (� Elimination); and Rules (Trans
Gen), (Proc Par),(Proc Res D) and (Proc Res) we have:

P �
� �
� �

D � ; � � �
� �
x:T � ;Q � R �

P
�

�
� �
� �

D � ; � Q � R �
E � D � x:T

�
Q : esQ

E � D �
R : esR

es �
��

esQ � � ��������� x � � � esR ��� checks
�
D �

54

where D is generative; dom
�
D � �

fn
� ��� � x:T � � � ; dom

�
D � �

fn
��

esQ �
� � � � M � ���

checks
�
D � � ��� ; x

�� fn
�
esQ � ; and T is generative.

Case (T � � �
) By Lemma 5 (Substitutivity), Lemma 4 (Weakening), and Rules

(Proc Par), (Proc Res D) and (Proc Subsum) we have:

E � x:
� � �

P
�

: es �
� ��������� x �

as required.

Case (T �� � �
) Since E � D � x:T

�
Q : esQ, we have by Lemma 3 (Environment)

E � D � x:T
�

esQ and so (since E � D � x:T �� � ��������� x �) we have ��������� x
�� esQ.

By Lemma 5 (Substitutivity), Lemma 4 (Weakening), and Rules (Proc Par)
(Proc Res D) and (Proc Subsum) we have:

E � x:T
�

P
�

: es

as required. �

B.4 Proof of Safety

The purpose of this appendix is to prove the type safety result, Theorem 1 (Safety). It
asserts that a process assigned the empty effect is safe. This theorem is a key fact in
the proof of the main result of the paper, Theorem 2 (Robust Safety), in Section 4.3.

To prove Theorem 1 (Safety), we actually prove a stronger invariant, Proposition 18
(Transition Safety), about processes with non-empty effects. To state the invariant we
introduce a function ends

�
E
�

es � which computes the multiset of end-events repre-
sented by an effect es. With this notation, we can roughly state the invariant as follows:

� If E
�

P : es and P
s�� P

�

then we can find E
�

and es
�

such that E
� �

P
�

: es
�

where
ends

�
E
�

es � � begins
�
s � � ends

�
E
� �

es
� � � ends

�
s � .

From this, we deduce that every process E
�

P :
� � is safe.

However, we have some work ahead of us, in particular in defining the function
ends

�
es � . A naı̈ve definition would just be to count all of the � � � M effects in es, but

this ignores the latent effect of nonces. Consider the following typing:

x:
� � � � x:

� � � ��� � � � � M � � � ��������� x
� � x; � � � M � :

� ��������� x �
The process has trace ��������� x � � � � M, which has an unbalanced � � � M, even though
the effect of the process only contains a ��������� x effect. So, in addition to counting the
end-events, we need also to compute the end-events that may be unleashed by nonce
effects.

Another problem is that we have to make sure that nonces are used linearly, that is,
at most once. For example we need to ban processes such as:

x:
� � � � x:

� � � ��� � � � � M � � � ��������� x
� � x; ��������� x

� � x; � � � M; � � � M � :
� ��������� x � ��������� x �

55

which use a nonce more than once, or even worse:

x:
� � � � x:

� � � ��� � � � � M � ��������� x � �� ��������� x
� � x; � � � M; ��������� x

� � x; � � � M; ����� � :
� ��������� x �

where we have a self-certifying nonce with the cyclic type x :
� � � �
� � � � � M � ��������� x � ,

which allows an unbounded number of unbalanced assertions.
We first define the latent effects of a well-typed message E

�
M :

� �
. If M is

anything other than a name, then the latent effects are emtpy. Otherwise if M � x, we
find all the occurrences of x:

� � � �
� es in E, and sum them. For example:

effects
�
x:

� � � � x:
� � � ��� � � � � M � � � x:

� � � ��� � ��������� N � � x :
� � �� � � � � M � ��������� N �

Effects effects
�
E
�

M :
� � � of a typed message E

�
M :

� �
:

effects
�
E � x:T

�
x :

� � � ∆� � �
effects

�
E � � x:

� � � ��� es
�

x :
� � � ∆� effects

�
E
�

x :
� � � � es

effects
�
E � x:T

�
y :

� � � ∆� effects
�
E
�

y :
� � � (when x �� y)

effects
�
E � � x:T

�
y :

� � � ∆� effects
�
E
�

y :
� � � (when x �� y)

effects
�
E
�

M :
� � � ∆� � � (when M is not a name)

As discussed above, we maintain an invariant for well-typed systems, which is that they
are nonce linear, so they only only allow each nonce to be checked once. We define
this in terms of a predicate Ms

�
checks

�
E
�

es � which can be read as ‘Ms is a lower
bound on the nonce checks allowed by E

�
es’. For example:

�
x � �

checks
�
x:

� � � � ��������� x � ��
x � y � �

checks
�
x:

� � � y:
� � � � ��������� x � ��������� y � ��

x � y � �
checks

�
x:

� � � y:
� � � � x:

� � � �
� � ��������� y � � � ��������� x � ��
x � x � �

checks
�
x:

� � � � ��������� x � ��������� x � ��
x � x � �

checks
�
x:

� � � � x:
� � � �
� � ��������� x � � � ��������� x � �

When we calculate the lower bound on the nonces allowed by E
�

es, we include the
latent effects of es. In particular, the last example shows that we have to be careful
about cyclic uses of nonces.

Lower bound Ms
�

checks
�
E
�

es � of the nonces of a typed effect E
�

es:

(Nonces
� �)

� � �
checks

�
E
�

es �

(Nonces ��������� M)
Ms � �

M � �
checks

�
E
�

es � effects
�
E
�

M :
� � ��

Ms
�

checks
�
E
�

es �
� ��������� M � �

Having defined Ms
�

checks
�
E
�

es � , we can define the nonce linear and nonce acyclic
effects:

56

Nonce linear typed effects E
�

es

A typed effect E
�

es is nonce linear if and only if
there is no M such that

�
M � M � �

checks
�
E
�

es � .

Nonce acyclic typed effects E
�

es

A typed effect E
�

es is nonce acyclic if and only if
there is no

�
M � �

checks
�
E
�

es � such that
�
M � M � �

checks
�
E
� � ��������� M � � .

For example:

x:
� � � � ��������� x � is linear and acyclic

x:
� � � y:

� � � � ��������� x � ��������� y � is linear and acyclic
x:

� � � y:
� � � � x:

� � � ��� ��������� y
� � ��������� x � is linear and acyclic

x:
� � � � ��������� x � ��������� x � is acyclic but not linear

x:
� � � � x:

� � � ��� ��������� x
� � ��������� x � is neither linear nor acyclic

We can now show some properties about nonce linear effects, and nonce acyclic effects,
in particular that every nonce linear effect is nonce acyclic.

Lemma 10 (Nonce monotonicity) If Ms
�

checks
�
E
�

es � and E
�

fs then Ms
�

checks
�
E
�

es � fs � .
Proof An induction on the proof of Ms

�
checks

�
E
�

es � . �

Lemma 11 (Nonce transitivity) If we have
�
M � �

checks
�
E
�

es � and also that Ms
�

checks
�
E
� � ��������� M � � then Ms

�
checks

�
E
�

es � .
Proof An induction on the proof of

�
M � �

checks
�
E
�

es � . To get
�
M � �

checks
�
E
�

es � we must have used Rule (Nonces ��������� M) and so either:

� ��������� M
�

es, so by Lemma 10 (Nonce monotonicity) we have Ms
�

checks
�
E
�

es � , or
� es � fs �

� ��������� N � and
�
M � �

checks
�
E
�

fs � effects
�
E
�

N :
� � � � , so by

induction Ms
�

checks
�
E
�

fs � effects
�
E
�

N :
� � �� , and so by Rule (Nonces��������� M) Ms

�
checks

�
E
�

es � .
The result follows. �

Lemma 12 (Linear implies acyclic) If E
�

es is nonce linear then E
�

es is nonce
acyclic.

Proof Follows from Lemma 11 (Nonce transitivity). �

We can now define ends
�
E
�

es � for a nonce acyclic effect E
�

es. This is used to set
up the invariant for our type safety result.

57

Endings ends
�
E
�

es � of a nonce acyclic effect E
�

es:

ends
�
E
� � � � ∆� � �

ends
�
E
�

es �
� � � � M � � ∆� ends

�
E
�

es � �
�
M �

ends
�
E
�

es �
� ��������� M � � ∆� ends

�
E
�

es � � ends
�
E
�

effects
�
E
�

M :
� � ��

Note that ends
�
E
�

es � is not well-defined for nonce cyclic effects, for example if:

E � x:
� � � � x:

� � � ��� � ��������� x � � � � M �
then:

ends
�
E
� � ��������� x � �� ends

�
E
� � ��������� x � � � � M � �� ends

�
E
� � ��������� x � � � � M � � � � M � ��

�����

However, they are well-defined for nonce acyclic effects, which is enough for our pur-
poses.

Lemma 13 (End Definedness) If E
�

es is nonce acyclic then ends
�
E
�

es � is well-
defined.

Proof For any finite set of names X , let ends
�
E
�

es � X be defined:

ends
�
E
� � � � X� � �

ends
�
E
�

es �
� � � � M � � X� ends

�
E
�

es � X �
�
M �

ends
�
E
�

es �
� ��������� M � � X

� � ends
�
E
�

es � X � ends
�
E
�

effects
�
E
�

M :
� � �� X � �

M � if M
�

X
ends

�
E
�

es � X otherwise

It is routine to see that ends
�
E
�

es � X is well-defined, by induction first on X then on
es. We then show by induction on the definition of ends

�
E
�

es � X that:

if �
�
x � �

checks
�
E
�

es � � x �
X then ends

�
E
�

es � X
� ends

�
E
�

es �
In particular, we have that ends

�
E
�

es � dom � E � � ends
�
E
�

es � , and so ends
�
E
�

es � is
well-defined. �

We can now prove some lemmas, leading up to the type safety results we need to show
that effect-free processes are safe.

Lemma 14 (End Homomorphism) ends
�
E
�

es � fs � � ends
�
E
�

es � � ends
�
E
�

fs � .

58

Proof An induction on es. �

Lemma 15 (End � x) If
�
x � �� checks

�
E
�

es � then ends
�
E � � x:T

�
es � � ends

�
E
�

es � .
Proof An induction on es. �

Lemma 16 (End Nonce) If E
�

x :
� � � ��� es and E

�
x :

� �
then ends

�
E
� � ��������� x � � �

ends
�
E
�

es � .
Proof Show by induction on E that es � effects

�
E
�

x :
� � � . The result then follows

by Lemma 14 (End Homomorphism). �

Lemma 17 (End Add Nonce) If E
�

es � fs is nonce linear then ends
�
E
�

es � fs � �
ends

�
E � � x:

� � � �
� fs
�

es �
Proof An induction on es. The only interesting case is when:

es � es
�

�
� ��������� x �

Since E
�

es � fs is nonce linear, we have
�
x � �� checks

�
E
�

es
� � and

�
x � �� checks

�
E
�

effects
�
E � � x:

� � � ��� fs
�

x :
� � � � and so by Lemmas 14 (End Homomorphism) and 15

(End � x):

ends
�
E
�

es � fs �
� ends

�
E
�

es
�

�
� ��������� x � � fs �

� ends
�
E
�

es
�

�
� ��������� x � � � ends

�
E
�

fs �
� ends

�
E
�

es
� � � ends

�
E
�

effects
�
E
�

x :
� � �� � ends

�
E
�

fs �
� ends

�
E
�

es
� � � ends

�
E
�

effects
�
E
�

x :
� � � � fs �

� ends
�
E � � x:

� � � ��� fs
�

es
� � �

ends
�
E � � x:

� � � ��� fs
�

effects
�
E � � x:

� � � ��� fs
�

x :
� � ��

� ends
�
E � � x:

� � � ��� fs
�

es
�

�
� ��������� x � �� ends

�
E � � x:

� � � ��� fs
�

es �
as required.

Proposition 18 (Transition Safety) If E
�

es is nonce linear, E
�

P : es and P
α� � P

�

then E
� �

P
�

: es
�

for some nonce linear E
� �

es
�

such that ends
�
E
�

es � � begins
�
α � �

ends
�
E
� �

es
� � � ends

�
α � .

Proof A case analysis on α:

Case (α � ��	���� x:T) By Proposition 9 (Subject Reduction), we have one of the follow-
ing cases:

Subcase (E
�

P
�

: es) Immediate.

59

Subcase (E � � x:T
�

P
�

: es � fs where T � � � � �
� fs and fs � es) Then, using
Lemma 17 (End Add Nonce) we have:

ends
�
E
�

es � � begins
�
α �

� ends
�
E
�

es �
� ends

�
E � � x:T

�
es � fs �

� ends
�
E � � x:T

�
es � fs � � ends

�
α �

and E � � x:T
�

es � fs is nonce linear as required.

Case (α � ��������� x) By Proposition 9 (Subject Reduction), we have one of the follow-
ing cases:

Subcase (E
�

P
�

: es) Immediate.

Subcase (E
�

x :
� � � ��� f s, E

�
P
�

:
�
es � fs ��� � ��������� x � , ��������� x

�
es) Given

Lemmas 16 (End Nonce) and 14 (End Homomorphism) we have:

ends
�
E
�

es � � begins
�
α �

� ends
�
E
�

es �
� ends

�
E
� �

es � � ��������� x � � �
� ��������� x � �� ends

�
E
� �

es � � ��������� x � �� � ends
�
E
� � ��������� x � �

� ends
�
E
� �

es � � ��������� x � �� � ends
�
E
�

fs �
� ends

�
E
� �

es � fs ��� � ��������� x � �� ends
�
E
� �

es � fs ��� � ��������� x � � � ends
�
α �

and E
� �

es � fs ��� � ��������� x � is nonce linear as required.

Case (α � � � � ��� M) Follows directly from Proposition 9 (Subject Reduction).

Case (α � � � � M) Follows directly from Proposition 9 (Subject Reduction).

Case (α � ��� � x:T) Follows directly from Proposition 9 (Subject Reduction).

Case (α � τ) Follows directly from Proposition 9 (Subject Reduction). �

Proposition 19 (s�� Safety) If E
�

es is nonce linear, E
�

P : es and P
s�� P

�

then E
� �

P
�

: es
�

for some nonce linear E
� �

es
�

such that ends
�
E
�

es � � begins
�
s � � ends

�
E
� �

es
� � � ends

�
s � .

Proof An induction on the derivation of P
s�� P

�

.

Case (Trace �) We have:

s � ε
P � P

�

By Proposition 8 (Subject Equivalence):

E
�

P
�

: es

60

and so (since begins
�
ε � � ends

�
ε � � � � we have:

ends
�
E
�

es � � begins
�
s � � ends

�
E
�

es � � ends
�
s �

as required.

Case (Trace Event) We have:

P
α� � P

� �

P
� � t�� P

�

s � α � t
By Proposition 18 (Transition Safety) we can find nonce linear E

� � �
es

� �

such
that:

E
� � �

P
� �

: es
� �

ends
�
E
�

es � � begins
�
α � � ends

�
E
� � �

es
� � � � ends

�
α �

By induction, we can find nonce linear E
� �

es
�

such that:

E
� �

P
�

: es
�

ends
�
E
� � �

es
� � � � begins

�
t � � ends

�
E
� �

es
� � � ends

�
t �

and so:

ends
�
E
�

es � � begins
�
s �

� ends
�
E
�

es � � begins
�
α � � begins

�
t �

� ends
�
E
� � �

es
� � � � ends

�
α � � begins

�
t �

� ends
�
E
� �

es
� � � ends

�
α � � ends

�
t �

� ends
�
E
� �

es
� � � ends

�
s �

as required. �

We have now done all the work required to show our main theorem: any effect-free
process is safe.

Proof of Theorem 1 (Safety) If E
�

P :
� � then P is safe.

Proof If P
s�� P

�

then we use Proposition 19 (
s�� Safety) to get:

begins
�
s �

� ends
�
E
� � � � � begins

�
s �

� ends
�
E
� �

es
� � � ends

�
s �

� ends
�
s �

Thus, P is safe. �

61

FixedSender
�
net:Network � alice:Princ � key:WMFKey

�
alice � � ∆�	 � � ��	�������

net
�
bob:Princ � ;� ��� �

sKey:SKey � ;
� ��� ��� “alice sending bob key sKey”;����� net

�
alice � ;�����

net
�
nonceA:

� � � ;�
	���� nonceA
� � � nonceA

�

:WMFNonce
�
alice � bob � sKey � � ;����� net

�
alice �
 msg3

�
bob � sKey � nonceA

� � � key � ; � � � � � � � �
����� �

� �����
����

�

� �

FixedReceiver
�
net:Network � bob:Princ � key:WMFKey

�
bob � � ∆�	 � � ��	�������

net
� � ;� �
� �

nonceB:
� � � ;����� net

�
nonceB � ;�����

net
�
ctext:

� � � ;� ��� 	���� � ctext
� �
 msg6

�
alice � sKey � nonceB

� � � key;��������� nonceB
� � nonceB

�

;� � � “alice sending bob key sKey”
� � � � �

����� � � � ��������� nonceB�

� �������
������

�

� �

FixedServer
�
net:Network � lookup:WMFLookup � ∆�	 � � ��	�������

net
�
alice:Princ � ;� ��� �

nonceA:
� � � ;����� net

�
nonceA � ;�����

net
�
alice � ctext:

� � � ;� �
� keyA : WMFKey
�
alice � � lookup

�
alice � ;� ��� 	 ��� � ctext

� �
 msg3
�
bob � sKey � nonceA

� � � keyA;��������� nonceA
� � nonceA

�

;����� net
� � ;�����

net
�
nonceB:

� � � ;��	���� nonceB
� � � nonceB

�

:WMFNonce
�
alice � bob � sKey � � ;� �
� keyB : WMFKey

�
bob � � lookup

�
bob � ;����� net

msg6

�
alice � sKey � nonceB

� � � keyB
� � �

� �

�
� � � �

����� �

� �������
������

�

� ���������
����� �

� �����������������
����������������

�

� �

Figure 1: Type checked participants in the Wide Mouth Frog protocol

62

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, September 1999.

[2] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. In
Foundations of Software Science and Computation Structures (FoSSaCS 2001),
volume 2030 of Lectures Notes in Computer Science, pages 25–41. Springer,
2001.

[3] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148:1–70, 1999.

[4] M. Abadi and R. Needham. Prudent engineering practice for cryptographic pro-
tocols. IEEE Transactions on Software Engineering, 22(1):6–15, 1996.

[5] R. Anderson and R. Needham. Programming Satan’s computer. In J. van
Leeuwen, editor, Computer Science Today: Recent Trends and Developments,
volume 1000 of Lectures Notes in Computer Science, pages 426–440. Springer,
1995.

[6] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-
vances in Cryptology: CRYPTO’93, volume 773 of Lectures Notes in Computer
Science, pages 232–249. Springer, 1994.

[7] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96(1):217–248, April 1992.

[8] D. Bolignano. An approach to the formal verification of cryptographic protocols.
In Third ACM Conference on Computer and Communications Security, pages
106–118, 1996.

[9] M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. Proceed-
ings of the Royal Society of London A, 426:233–271, 1989.

[10] E. Cohen. TAPS: A first-order verifier for cryptographic protocols. In 13th Com-
puter Security Foundations Workshop, pages 144–158. IEEE Computer Society
Press, 2000.

[11] S. Dal Zilio and A.D. Gordon. Region analysis and a π-calculus with groups.
In Mathematical Foundations of Computer Science 2000 (MFCS2000), volume
1893 of Lectures Notes in Computer Science, pages 1–21. Springer, 2000.

[12] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transac-
tions on Information Theory, IT–29(2):198–208, 1983.

[13] A. Durante, R. Focardi, and R. Gorrieri. A compiler for analysing cryptographic
protocols. ACM Transactions on Software Engineering and Methodology, 2000.
To appear.

[14] R. Focardi, R. Gorrieri, and F. Martinelli. Message authentication through non-
interference. In International Conference on Algebraic Methodology And Soft-
ware Technology (AMAST2000), volume 1816 of Lectures Notes in Computer
Science, pages 258–272. Springer, 2000.

63

[15] D.K. Gifford and J.M. Lucassen. Integrating functional and imperative program-
ming. In ACM Conference on Lisp and Functional Programming, pages 28–38,
1986.

[16] D. Gollmann. What do we mean by entity authentication? In 1995 IEEE Com-
puter Society Symposium on Research in Security and Privacy, pages 46–54,
1995.

[17] L. Gong, R. Needham, and R. Yahalom. Reasoning about beliefs in cryptographic
protocols. In 1990 IEEE Computer Society Symposium on Research in Security
and Privacy, 1990.

[18] A.D. Gordon and A. Jeffrey. Typing correspondence assertions for communi-
cation protocols. In Mathematical Foundations of Programming Semantics 17,
Electronic Notes in Theoretical Computer Science. Elsevier, 2001. To appear.

[19] A.D. Gordon and D. Syme. Typing a multi-language intermediate code. In 28th
ACM Symposium on Principles of Programming Languages (POPL’01), pages
248–260, 2001.

[20] O. Grumberg and D.E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, 1994.

[21] J.D. Guttman and F.J. Thayer Fábrega. Authentication tests. In 2000 IEEE Com-
puter Society Symposium on Research in Security and Privacy, 2000.

[22] J. Heather. ‘Oh! . . . Is it really you?’ Using rank functions to verify authentication
protocols. PhD thesis, Royal Holloway, University of London, 2000.

[23] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on
security protocols. In 13th Computer Security Foundations Workshop, pages 255–
268. IEEE Computer Society Press, 2000.

[24] J. Heather and S. Schneider. Towards automatic verification of authentication
protocols on an unbounded network. In 13th Computer Security Foundations
Workshop, pages 132–143. IEEE Computer Society Press, 2000.

[25] M. Hennessy and J. Riely. Resource access control in systems of mobile agents. In
3rd International Workshop on High-Level Concurrent Languages, volume 16(3)
of Electronic Notes in Theoretical Computer Science. Elsevier, 1998.

[26] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Addison-
Wesley, 1997.

[27] G. Lowe. A hierarchy of authentication specifications. In 10th Computer Security
Foundations Workshop, pages 31–43. IEEE Computer Society Press, 1995.

[28] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
CSP and FDR. In T. Margaria and B. Steffen, editors, Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’96), volume 1055 of Lectures
Notes in Computer Science, pages 147–166. Springer, 1996.

[29] J.M. Lucassen. Types and effects, towards the integration of functional and im-
perative programming. PhD thesis, MIT, 1987. Available as Technical Report
MIT/LCS/TR–408, MIT Laboratory for Computer Science.

64

[30] W. Marrero, E.M. Clarke, and S. Jha. Model checking for security protocols.
In DIMACS Workshop on Design and Formal Verification of Security Protocols,
1997. Preliminary version appears as Technical Report TR–CMU–CS–97–139,
Carnegie Mellon University, May 1997.

[31] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[32] G. Necula. Proof-carrying code. In 24th ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages, pages 106–119. ACM Press, 1997.

[33] D. Otway and O. Rees. Efficient and timely “mutual authentication”. Operating
Systems Review, 21(1):8–10, 1987.

[34] L.C. Paulson. The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security, 6:85–128, 1998.

[35] B. Pierce and E. Sumii. Relating cryptography and polymorphism. Available
from the authors, 2000.

[36] S.A. Schneider. Verifying authentication protocols in CSP. IEEE Transactions
on Software Engineering, 24(9), September 1998.

[37] C. Skalka and S. Smith. Static enforcement of security with types. In P. Wadler,
editor, 2000 ACM International Conference on Functional Programming, pages
34–45, 2000.

[38] D.X. Song. Athena: a new efficient automatic checker for security protocol anal-
ysis. In 12th Computer Security Foundations Workshop. IEEE Computer Society
Press, 1999.

[39] F.J. Thayer Fábrega, J.C. Herzog, and J.D. Guttman. Strand spaces: Why is
a security protocol correct? In 1998 IEEE Computer Society Symposium on
Research in Security and Privacy, 1998.

[40] T.Y.C. Woo and S.S. Lam. Authentication for distributed systems. Computer,
25(1):39–52, 1992.

[41] T.Y.C. Woo and S.S. Lam. A semantic model for authentication protocols. In
IEEE Symposium on Security and Privacy, pages 178–194, 1993.

65

