[EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 6, JUNE 1990 563

A Hookup Theorem for Multilevel Security

DARYL MC CULLOUGH

Abstract—In this paper, the author describes a security property for
trusted multilevel systems, restrictiveness, which restricts the infer-
ences a user can make about sensitive information. This property is a
hookup property, or composable, meaning that a collection of secure
restrictive systems when hooked together form a secure restrictive
composite system. The author argues that the inference control and
composability of restrictiveness make it an attractive choice for a se-
curity policy on trusted systems and processes.

Index Terms—Composable, information, process, security.

I. INTRODUCTION

ULTILEVEL security requires that sensitive infor-

mation be disclosed only to authorized personnel.
In the ‘‘paper world,”’ this is enforced by assigning to
each document and each employee a security level indi-
cating sensitivity and authority. Commonly used levels in
the government are unclassified, confidential, secret, and
top_secret. The levels form a partially ordered set, so that
an employee can be said to be authorized to read a doc-
ument only if his level is greater than or equal to that of
the document.

For information processing systems multilevel security
becomes more complicated, because not all information
is in the form of documents and not all consumers of in-
formation are employees. Generally for such systems the
problem of multilevel security consists of two aspects:

1) Access control—determining who can see informa-
tion of a given sensitivity leaving the system.

2) Correct labeling—determining the sensitivity of in-
formation entering and leaving the system.

The second issue, correct labeling, becomes much more
important in computer systems because of the possible
presence of Trojan Horse programs. A Trojan Horse pro-
gram is a malicious program that when run by a high level
user will try surreptitiously to obtain classified informa-
tion from that user and convey it to an accomplice, usu-
ally the unauthorized user who programmed the Trojan
Horse. These programs often masquerade as useful pro-
grams such as word processors or compilers.

Rather than inspect each program on a system to see if
it is a Trojan Horse program (it may not be possible to
decide by inspection whether a program is a Trojan Horse

Manuscript received August 1, 1989; revised January 29, 1990. Rec-
ommended by T. A. Berson and S. B. Lipner. This work was supported by
the Rome Air Development Center, Griffiss Air Force Base, NY, under
Contract F30602-85-C-0098.

The author is with Odyssey Research Associates, 301A Harris B. Dates
Drive, Ithaca, NY 14850.

IEEE Log Number 9034811.

or not), people instead try to build computer systems
which are secure even in the presence of malicious pro-
grams.

In this paper we will describe a security property that
addresses these issues, called restrictiveness, which is
composable. This means that for a collection of trusted
processes ‘‘hooked up’’ to make a system, or for a col-
lection of system ‘‘hooked up’’ to make a network, the
system or network is secure if each component is secure.

Using restrictiveness as a definition of security for
trusted systems provides confidence in building large,
complex systems from smaller, easier to verify trusted
components. Security is modularized and so becomes
more manageable. We first consider two earlier models
for security, and point out some of their shortcomings.

A. The Bell-LaPadula Model: Trusted and Untrusted
Processes

The issues of access control and correct labeling are
addressed by the Bell-LaPadula model [1]. In this model,
all entities involved with a computer system—users, files,
programs, etc.—are divided into two classifications: sub-
Jects and objects. Subjects are the active entities, such as
users and processes, which are capable of reading and
modifying system state information, while objects are
passive containers for information, such as files. Subjects
which are processes are further divided into trusted pro-
cesses and untrusted processes.

1) Rules for Untrusted Subjects: To enforce security
for untrusted processes, Bell-LaPadula requires that every
object and every untrusted process be assigned a security
level. The model then demands that

a) An untrusted process may only read from objects of
lower or equal security level. (Motto: Read down.)

b) An untrusted process may only write to (or modify)
objects of greater or equal security level. (Motto: Write
up.)

The read down rule insures that a process is only al-
lowed to read information it is entitled (by its security
classification) to read. The write up rule ensures that all
objects are correctly labeled; it is impossible to put infor-
mation into an object which comes from a source whose
level is higher than the security label on the object.

In the Bell-LaPadula model, users are interpreted as
untrusted subjects, except that allowance is made for users
to act at any security level less than their maximum. For
example, a secret user may login as a secret or unclassi-
fied subject, but not as a top_secret subject.

0098-5589/90/0600-0563$01.00 © 1990 IEEE

564 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 6, JUNE 1990

2) Trusted Processes: The answers the model provides
are incomplete, however, because it does not provide
guidance for determining the sensitivity of information
coming from the rrusted processes of a system. A trusted
process is any process which is exempted from the strin-
gent requirements enforced on untrusted processes. They
are called ‘‘trusted’’ because, since they are not bound by
the normal rules, it is necessary to have reason to trust
that they do not behave maliciously.

Trusted processes are needed whenever an activity po-
tentially involves information at several different security
levels. For example, the file server must be able to read
and write files at all different levels, and so cannot pos-
sibly be bound by the access control rules given above.
In the Bell-LaPadula model, the need for such multilevel
processes was recognized, but no precise security rules
for the behavior of such processes were given.

To fill this gap, it is desirable to have a security prop-
erty for a trusted process that guarantees that information
leaving the process is correctly labeled: that high-level
information does not ‘‘leak’” into low-level outputs. We
next consider a candidate for such a property.

B. Deducibility Security

A multilevel process is a system which takes in infor-
mation of different security levels, processes it and out-
puts information of different security levels. Note that this
description can equally well describe a trusted process, or
an entire computer system, or a network of computer sys-
tems. A general framework for defining security for such
systems, called deducibility security, is found in Suther-
land [9]. We give an informal description of a special case
of Sutherland’s model.

We assume that all the sensitive information contained
in a process enters the process in the form of discrete in-
puts labeled with a security level indicating their sensitiv-
ity, and that information leaves the process in the form of
labeled outpurs.! The word event will be used to refer to
an input or an output.

For each security level / we will call the events of level
less than or equal to / the view for that level, and all other
events we will say are hidden from that level. By the as-
sumption that access control is enforced on the untrusted
parts of the system, we can know that users of level [are
unable to see any events outside their own view. The hid-
den events for a level / are the inputs made by users of
higher (or incomparable) level. Under these circum-
stances, we will say that a multilevel process is deduci-
bility secure if for each security level / and for every se-
quence of events possible in some history of the process:

The information contained in the events in the view
for level | does not reveal anything about informa-
tion in inputs hidden from level .

'We are ignoring the possibility that new sensitive information might be
created inside the process. To consider this possibility would go beyond
the present paper.

To formalize this statement, it is necessary to say what
it means for one set of observations (the sequence of
events in the view of some level) not to reveal anything
about some other source of information (the sequence of
inputs hidden from the level). In Goguen-Meseguer’s
noninterference policy [3], this was formalized by saying
(in our terminology) that if one removes all the hidden
inputs the observations in the view remain unchanged.

This is not as general as one would like, since it is only
meaningful for deterministic systems (ones where what is
observed is completely determined by the inputs). A more
general definition is to say that any possible set of obser-
vations is consistent with any possible sequence of hidden
inputs. (That is, it is impossible for a user of level / to
“‘rule out’’ any sequence of hidden inputs.) We choose
this more general definition, since we intend to apply it
in cases, such as concurrency, where there is nondeter-
minism.

Deducibility security prevents leaks due to Trojan
Horses. If an entire system is deducibility secure includ-
ing any Trojan Horses that may be lurking around, and it
initially has no classified information in it, then no un-
authorized user of that system will ever learn any classi-
fied through the system. In other words, any system which
allows illegal information flow through the system is not
deducibility secure. The informal argument goes as fol-
lows:

Suppose that a low level user learns through the
system some piece of high level information on the
system. This means that the user’s view of the sys-
tem behavior, call it b, has revealed that some con-
dition C holds for the system, and the fact that this
condition holds is classified information. Since we
are only considering systems which do not create any
new classified information internally, if C holds,
then there must have been an earlier moment at
which high level information was put into the sys-
tem by high level users; some action must have been
taken by the high level user which caused condition
C to hold.

Therefore, behavior b allows the low level user to
infer C, which allows him to infer that high level
users performed some action. So the high level be-
havior do nothing can be ruled out. Since some high
level behavior can be ruled out, the system is not
deducibility secure.

If deducibility security prevents all leaks due to Trojan
Horses, then what more could one want in a definition for
multilevel security? Well, in practical terms, one does not
verify everything, one only verifies certain ‘‘security rel-
evant’’ portions of the system. Is it possible that a user
can combine information obtained from two different
components of a system in order to learn information that
he could not receive from either component in isolation?
The answer turns out to be yes, as the next section shows.

1) Deducibility ~Security Is Not Preserved by
Hookup: A multilevel system may have many interacting

MC CULLOUGH: HOOKUP THEOREM FOR MULTILEVEL SECURITY

trusted processes, so it is not sufficient to guarantee that
each process is secure in isolation; it is necessary to also
show that several processes working together cannot con-
spire to violate security. In other words, for trusted pro-
cesses, it is necessary to have a definition of security that
is composable. While deducibility security may be a good
overall definition of security for an entire system, it un-
fortunately is not composable. In this section we will
demonstrate this result by showing two processes which
alone are deducibility secure, but which when ‘‘hooked
up’’ form a composite system which is not secure.

In the following example, we will consider systems with
only two levels: high and low.

Conventions and Notations for Systems: To illustrate
the possible behavior of systems, let us introduce a pic-
torial notation for the traces, or possible histories, of sys-
tems. We depict a trace of a system by giving a timeline
running vertically, with the future of the system toward
the top and with the past of the system toward the bottom.
Horizontal vectors directed toward or away from the time
line of a system represent inputs to and outputs from that
system, respectively. We will use unbroken lines to rep-
resent low inputs and outputs, and broken lines to repre-
sent high inputs and outputs. To represent two systems
operating in parallel, we show their timelines together.
A message sent from one machine to another will be shown
as a horizontal arrow pointing away from the time line of
the sending system and toward the time line of the receiv-
ing system.

A Counterexample: Consider a system, called @,
which has the following set of traces: each trace starts
with some number of high-level inputs or outputs fol-
lowed by the low-level output stop followed by the low-
level output odd (if there has been an odd number of high-
level events prior to stop) or even (if there has been
an even number of high-level events prior to stop). The
high-level outputs and the output of stop leave via the
right channel of the process, and the events odd and even
leave via the left channel. The high-level outputs and the
output of stop can happen at any time.

Two possible event sequences of system @ are por-
trayed in the top left corner of Fig. 1.

System @ actually is deducibility secure; regardless of
high-level inputs, the possible low-level sequences are 1)
stop followed by odd or 2) stop followed by even. A high-
level input does not affect these possibilities, because it
is always possible for such an input to be followed by a
high-level output, and the pair would leave the low-level
outputs unaffected.

System ® behaves exactly like system @&, except that:

e its high-level outputs are out its left channel.

e its even and odd outputs are out its right channel.

e stop is an input to its left channel, rather than an out-
put.

System ®, system @, is deducibility secure. A typical
event sequence of system ®& is shown in the upper right
corner of Fig. 1.

If systems @ and ® are connected, so that the left chan-

565

even odd
stop
—_—

Traces of A

Traces of A&B (No External Inputs)

odd even

stop

Traces of A&B (One input)

Fig. 1. Deducibility security is not composable.

nel of & is connected to the right channel of @ then we
have the situation pictured in the bottom of Fig. 1.

Now we see that the combined system is no longer de-
ducibility secure. Since the number of shared high-level
signals is the same for @ and ®, the fact that @ says odd
while ® says even (or vice versa) means that there has
been at least one high-level input from outside. If all high-
level inputs are deleted, then systems @ and ® will nec-
essarily both say even or both say odd. By looking at the
low-level events, a user can deduce something about the
high-level inputs.

Composition allows one to turn small information leaks
into large leaks. Although the example above leaks only
a small amount of information; it is not difficult to devise
schemes for combining several slightly leaky systems to
get a very leaky system. For some examples of how in-
securities can multiply see [7].

II. INTRODUCING RESTRICTIVENESS

An important thing to notice about the failure of com-
posability for deducibility security is that, although a sys-
tem obeying the property ensures that no single high-level
input will affect the future low-level behavior, it does not
guarantee that a pair, consisting of a high-level input fol-
lowed immediately by a low-level input, will have the
same effect on the low-level behavior as the low-level in-
put alone. From Fig. 1, it is clear that system & does not
ensure this latter, stronger form of noninterference. For

566 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 6. JUNE 1990

example, the pair consisting of a high-level input fol-
lowed by stop does not have the same effect as stop alone.

The additional requirement can be intuitively under-
stood as follows. Only some facts about the past of a sys-
tem are relevant for the future low-level behavior of the
system. These relevant facts can be thought of as defining
the “‘low-level state’’ of the system. The requirement of
noninterference is that a high-level input may not change
the low-level state of the system. Therefore, the system
should respond the same to a low-level input whether or
not a high-level input was made immediately before.

Restrictiveness is a property of systems which formal-
izes this requirement.2 In the next sections we formalize
restrictiveness as a property of state machines® and prove
that it is composable.

A. State Machines

A state machine is a way of describing a computer sys-
tem in terms of its internal structure, and its input-output
behavior. To describe a system as a state machine, one
must give the following.

1) The set of possible srates.

2) The set of possible events, the inputs, outputs, and
internal signals of the system.

3) The set of possible transitions.

4) The initial state.

A transition is denoted by

e
09 > 0

where gy is the state of the machine before the transition,
¢ is the accompanying event for the transition, and o, is
the state of the machine after the transition. A sequence
of transitions starting in gy and ending in o,, involving
events [e;, * * * , e,] is denoted by gy =" g,. We
say that g, can accept event e if for some state 0,, dp
—¢ gp.

The Traces: Traces of a state machine are all se-
quences of events y such that for some state o, start
—7 g,, where start is the initial state.

1) Input Total State Machines: A state machine is said
to be input total if in any state it can accept an input. The
significance of this property for our purposes is that for
an input total machine, one can only learn about its state
by watching its outputs; no information is conveyed to the
user by accepting inputs. In contrast, in a system which
is not input total, one learns something about the state of
the system whenever an input is accepted; namely that it
is in an accepting state for that input.

By restricting our attention to input total processes, we
achieve a technical simplification for our theory of secu-
rity: information enters a system through its inputs, and
leaves a system through its outputs. We will make input

2Goguen and Meseguer’s notion of noninterference formalized this no-
tion for deterministic state machines. For the class of machines they con-
sidered, restrictiveness and noninterference in their sense agree.

3In [6] a similar property was defined solely in terms of the traces of a
system; states were not involved.

totality a condition for a state machine to be restrictive,
but this is not intended to imply that only such machines
are secure. Rather, restrictiveness as a definition of se-
curity only applies to input total machines.

B. Security for State Machines

Once again, we will only consider the case of two se-
curity levels, low and high. To prevent a low-level user
from discovering information he is not allowed to know,
we first need to specify the high-level state information,
and event information. We can summarize this informa-
tion through the use of two equivalence relations, one on
states and one on event sequences.

If 0, and o, are two states, then we say o; = o if the
states differ only in their high-level information. In other
words, if to each state variable we assign either the se-
curity level high or low, then g, = o, if the values of all
low-level variables are the same in the two states.

If v, and v, are two sequences of events, then we say
that v, = 7, if the two sequences agree for low-level
events. For example, if the event a is low, and the event
b is high, then the following three events are all consid-
ered equivalent:

la, b, b, a] = [b, a, b, a] = [b, b].

A low-level user’s view of the system, the state infor-
mation he may know, and the events he may see, is com-
pletely determined by the equivalence relations on states
and event sequences (both of which we will denote by
=).

III. RESTRICTIVE STATE MACHINES
A state machine is defined to be restrictive for the view
determined by = if:
1) It is input total.
2) For any states g, of, and o,, and for any two input
sequences 3; and (3,, if

a) o, > o
b) o, = g,
o) By =B
then for some state o5
a) o, >% o}
b) 05 = of.
3) For any states oy, o, and o,, and for any output

sequences 7, if

a) g, " o}
b) 6, = 0,
then for some state o3 and some output sequence 7,
a) oy =" 03
b) 05 = o
<) v2 = Vi
Rules 2 and 3 say, roughly, that ‘‘equivalent states are

affected equivalently by equivalent inputs, produce equiv-
alent outputs and then remain equivalent.’’ This is a non-

MC CULLOUGH: HOOKUP THEOREM FOR MULTILEVEL SECURITY

interference assertion; that high-level inputs and high-
level information cannot affect the behavior of the system,
as viewed by a low-level user. Restrictiveness thus gen-
eralizes the Goguen-Meseguer definition of noninterfer-
ence to nondeterministic systems. (For the particular kind
of deterministic machines that Goguen and Meseguer
considered, restrictiveness and noninterference reduce to
the same property.)

One should note that an immediate consequence of 2 is
that if 8, is a high-level input sequence, then it must not
affect the state at all. Also, in rule 3, it is easy to show
by induction that it is enough to consider cases in which
71 (but not necessarily v,) consists of a single event.

IV. HookiING Up MACHINES

If @ and B are two machines, then hook them up by
sending some of the outputs of & to be inputs to ®, and
vice versa. These common events will then be commu-
nication events, which will be treated like output events
for the composite machine. The inputs of the composite
machine are the inputs of either component machine which
are not supplied by the other. The states of the combined
machines are pairs < g, v >, where o is a state of @, and
v is a state of ®.

The Events: An event of the composite machine is any
event from either component machine. For any sequence
of events y from the composite machine, we will let y 1
E¢q be the sequence of events in y engaged in by machine
@, and y T Eg be the sequence of events engaged in by
®. Because of the shared communication events, some
events from gamma will occur in y 1 Eg and in vy 1 Eg.

The Transitions: <o, v> =" <g¢', v’ > is a valid
transition for the composite machine if and only if o
=T8¢ 57 and y —>E® 7 are valid transitions of the com-
ponent machine. This notion of hookup, or parallel com-
position, is taken from CSP [4]. It assumes that the only
correlation between state transitions of the two compo-
nents is through the shared communication events.

Security: The equivalence relations for the composite
machine are inherited from those of the component ma-
chines:

* g, v> =
= g’',

*y=~y'ifandonlyif y T Eg = y' 1 Egand v 1 Eg
= ’Y’ T E(B'

<o',v'>ifandonlyif » = »' and ¢

A. Restrictiveness is Composable

If state machines @ and ® are restrictive, then a com-
posite machine formed from hooking them up is restric-
tive.

The composite machine is input total. 1f 8 is any se-
quence of inputs for the composite machine, and < o, v>
is any starting state, then 8 1 Eg4 is a sequence of inputs
for @, and 8 1 E is a sequence of inputs for . Since @
and @& are input total, there are states ¢’ and »’ such that
o —f1E¢ g7 and y —B1Es ' Therefore, < g, p> —°
<dg',v' >.

567

Inputs affect equivalent states equivalently. If < gy,
vy >, <of,»1> ,and < gy, v > are states and 8, and
3, are input sequences, then since @ and ® are restrictive,
there must be states o4 and »} such that

1) a) g, >F1E g

b) vy —)BZTE@ Vé.

2) a) o5 = o]

b) », = »j.

Therefore,

D) <oy v> =% <03, 5>,
2) <03, vy> = <ah >,

Equivalent states produce equivalent outputs, which
lead again to equivalent states. As remarked earlier, it is
sufficient to consider outputs of single events. Suppose
then that e is an output, and that

1) <o, v > >%e<ol, v)>
2) <0'], V]> = <0'2, V2>.

An output for the composite machine must be an output
for one of the component machines. We assume then that
e is an output from @; the other case is handled similarly.

Since @ is restrictive, and o, = ¢}, and 0, = 0,, then
for some state ¢ and some output sequence y: o, =7 g3,
and 05 = o}, and y = [e].

Now, since the sequence v is an output sequence, any
events shared by both @ and ® must be inputs to ®. Since
v = [el, it follows that vy T Eg = [e] T Eg . Therefore,
we have:

Doy =
2) v lelTEg Vi

3) yTEg = [e] 1 Eg.

From the fact that ® is restrictive, we get that for some
state »)

1) » —71Es v,

2) vy = v
Therefore, we have that

D) <oy 1> 2" <0}, v)>
2) <o w> = <gf,v>.

V. CONCLUSIONS

In analogy with the Bell-LaPadula model, we can re-
quire that every untrusted process be assigned a security
level, and also require that every output be greater than
or equal to this level (motto: send up), and that every in-
put be less than or equal to this level (motto: receive
down). It is easy to see that every such untrusted process
is manifestly secure; it is necessarily restrictive, if we
make all state information the level of the process. There-
fore, an immediate consequence of the hookup theorem
for restrictive machines is as follows.

If every component of a system is proved restric-
tive, or is untrusted and manifestly secure, then the
entire system is restrictive. Therefore, any Trojan

568 [EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 6. JUNE 1990

Horse in a restrictive system is harmless, as long as
it is only allowed to send up and receive down.

In this paper, we have argued for the need for a formal
definition of security that is applicable for a wide range
of processes, systems, and networks. The Bell-LaPadula
model is not sufficient for this purpose, because while it
defines security in terms of access controls, it does not
provide formal guidance for the security of trusted pro-
cesses. Sutherland’s deducibility security provides a gen-
eral definition of security for total systems, but unfortu-
nately is not composable, and so cannot be applied to
components of a large system. The final property de-
scribed, restrictiveness, is generally composable and so
can be used as a definition of security for small processes
and entire systems.

REFERENCES

[1] D. E. Bell and L. J. LaPadula, ‘*Secure computer system: Unified ex-
position and multics interpretation,’’ Electron. Syst. Division, AFSC,
Hanscom AF Base, Bedford, MA, Tech. Rep. ESD-TR-75-306, 1976.

2] J. A. Goguen and J. Meseguer, ‘‘Security policies and security
models,”’ in Proc. 1982 IEEE Symp. Security and Privacy.

{31 —, ““‘Unwinding and inference control,”” in Proc. 1984 IEEE Symp.
Security and Privacy.

[4] C. A. R. Hoare, Communicating Sequential Processes.
Cliffs, NJ: Prentice-Hall, 1985.

[5] D. McCullough, *‘Foundations of Ulysses: The theory of security,”
Odyssey Research Associates, Ithaca, NY, Tech. Rep., 1988.

Englewood

[6] —. *‘Specifications for multilevel security and a hookup property,”’
in Proc. 1987 IEEE Symp. Security and Privacy.
[71 —., *‘Covert channels and degrees of insecurity,”” in Proc. 1988

Franconia Computer Security Foundations Workshop: The Mitre Cor-
poration.

[8] R. A. Milner, A Calculus of Communicating Systems (Lecture Notes
Comput. Sci., Vol. 92). New York: Springer, 1980.

[9] D. Sutherland, ‘‘A model of information,’” in Proc. 9th Nat. Comput.
Security Conf., 1986.

Daryl McCullough was born in Clarksville, TN,
and grew up in Rome, GA. He received the Bach-
elor’s degree in physics from Northwestern Uni-
versity, Evanston, IL, in 1980, and the Master’s
degree in physics from lowa State University.
Ames, in 1986.

Since 1984 he has worked at Odyssey Research
Associates in Ithaca, NY. There he has worked in
the fields of computer security and program veri-
fication.

