The SLam Calculus:
Programming with Secrecy and Integrity

Nevin Heintze Jon G. Riecke
Bell Laboratories Bell Laboratories
nch@bell-labs.com riecke@bell-labs.com
Abstract

The SLam calculus is a typed A-calculus that maintains security information as well as type in-
formation. The type system propagates security information for each object in four forms: the object’s
creators and readers, and the object’s indirect creators and readers (i.e., those agents who, through flow-
of-control or the actions of other agents, can influence or be influenced by the content of the object). We
prove that the type system prevents security violations and give some examples of its power.

1 Introduction

How do we build a system that manipulates and stores information whose secrecy and integrity must be
preserved? The information might, for example, contain employee salaries, tax information or social security
numbers, or it might involve data whose integrity is essential to global system security, such as the UNIX
(TM) /etc/passwd file or a database of public keys.

One solution is to provide a secure persistent store that controls access to each location in the store, e.g.,
it might maintain access control lists that specify who may read and write each location. However, this only
addresses part of the problem: it does not trace the security of information through computation, and hence
is easy to defeat. For example, a privileged user might write a program that reads a secret location and
copies it to an insecure location that everyone can read. Trust is central to the usability of this system. If
you share some secrets with someone, then you must trust their intentions and their competence, since they
may release secrets accidentally as a result of a programming error.

An alternative is to associate security with data objects instead of locations, and track security through
computation at runtime. To do this, each object must come equipped with security information that specifies
access rights, i.e., a capability. However, this is not enough. We must also track the flow of information
as we build new objects from old. For example, if we have a secret string and concatenate it with another
string, then we must also treat the new string as secret. Such a scheme has two flaws. First, explicitly
tracing security information through computation is very expensive. Second, the system must guarantee
that security information is not forged. We can address these issues by statically approximating information
flow, and by using a trusted run-time that only executes programs that have passed the static check. For
example, we can view a program as a black box so that its output is at least as secret as each of its inputs.
Similarly, we can view program output as having no higher integrity than each of its inputs. This approach
of tracing information flow has been thoroughly explored in the security literature [3, 4, 5, 6, 7).

Unfortunately, in classic information flow systems, data quickly floats to the highest level of security.
For example, consider a program that takes as input a string x representing a user id and another string y
representing the user’s password, and whose output is some object z built from x and y. Then the security
level of the entire object z must be the security level appropriate for user passwords, even though the
password information may be only a small component of z, or may not appear at all.

In this paper, we investigate how assumptions at the programming language level can address this lim-
itation and provide fine grained control of security. We focus on the role of strong typing. We assume
that all programs are compiled with a trusted compiler that enforces our type discipline, i.e., there are no
“back-doors” for inserting and executing unchecked code and there are no operations for direct access and

modification of raw memory locations. We also assume that the persistent store understands and preserves
the types of objects. For example, in UNIX the /etc/passwd file is stored as a string; in our system, we
shall implement and store this data structure as a list of records where each record contains, e.g., a user
name, user id, and password hash. By exposing this structure, we can attach different levels of security to
the different components of an object, and thereby express security information more accurately and flexibly.

We present a core functional programming language called the Secure Lambda Calculus (or SLam calcu-
lus). The types of this language contain not only standard typing information, but also security information.
This security information takes four forms: readers, creators, indirect readers and indirect creators. Intu-
itively, an agent must be a reader of an object in order to inspect the object’s contents. An agent is a
creator of any object it constructs. An agent is an indirect reader of an object if it may be influenced by the
object’s contents. An agent is an indirect creator of an object if it may influence the object’s construction.
For example, consider the statement

if (x > 25) then y := 1 else y := 2.

Here, partial information about x is available via variable y. If agent A can read y but not x, then A can still
find out partial information about x and so A is an indirect reader of x. If the statement itself were executed
by agent B, then B would require read access to x. B would also be a creator of y’s content. Moreover, if x
was created by a third agent C, then C would be an indirect creator of y’s content.

Readers and indirect readers together specify an object’s secrecy (who finds out about the object),
whereas creators and indirect creators specify integrity (who is responsible for the object). Readers and
creators together capture access control, while indirect readers and indirect creators capture information
flow. In conjunction with higher-order functions and a rich underlying type structure (e.g., records, sums),
these four security forms provide a very flexible basis for controlled sharing and distribution of information.
For example, higher-order functions can be used to build up complex capabilities. By specifying the set of
readers and/or indirect readers of these functions—where the ability to read the function is the right to apply
it—we can additionally restrict the capability so that it can only be shared by a specified group of agents.
(Note that our assumptions ensure that all an agent can do with the function is apply it; in particular, there
is no way to open up a function and gain access to its closure or other internals.)

Why is it convenient to have both access control and information flow in the type system? To illustrate
the utility of having both, suppose we have just two security levels, H (high security) and L (low security),
and a type called users that is a list containing strings whose direct readers are H, and whose indirect readers
are L. If we ignore creators and indirect creators, and write direct readers before indirect readers, the type
definition might look something like this in a Standard ML-like syntax [10]:

type users = (list (string,H,L),L,L)

Now suppose we want to look up names in a value of type users, and return true if the name is in the list.
We might write the code as follows:

fun lookup ([]:users) name = false : (bool,L,L)
| lookup ((x::rst):users) name =
if x = name
then true
else lookup rst name

Our type system guarantees that only high-security agents can write the lookup function, or indeed any code
that branches on the values of the strings in the list. Low-security agents can call the lookup function, but
cannot, get direct access to the strings held in the list. Information flows from the strings into the boolean
output, but since we have labeled the indirect readers of the strings to be low security, the program is still
type safe. If we had only indirect readers, the output of lookup would have to be a high-security boolean.
More generally, if an agent is an indirect reader of an object but not a direct reader, then any information
that agent finds out about that object must be via another agent who is a direct reader. Readers determine
how much of an object is revealed to indirect readers, but they cannot reveal information to agents who are
not indirect readers. At one extreme, a (direct) reader can reveal all information about an object to the
indirect readers. We trust the object’s readers to reveal only appropriate information about the object to
indirect readers.

We present the SLam calculus in stages. In Section 2, we define the purely functional core of the SLam
calculus, restricting the security properties to reader and indirect-reader security. The operational semantics
explicitly checks for security errors. We prove that well-typed programs never cause security errors, and
hence the checks may be omitted. Sections 3 and 4 extend the core calculus with assignments (using an
effects-style extensions to the type system [17]), concurrency, and integrity. Section 5 concludes the paper
with a discussion of other work and limitations of the system.

The type soundness theorems provide a direct proof that our type system enforces reader and creator
security. However, the situation for indirect readers and indirect creators is less satisfactory. The operational
semantics tracks this security information through computation, but this part of the definition is quite
complex. What we seek is an independent confirmation of the soundness of our definitions. For example, if
a global variable x has security information that says agent A is neither a reader nor indirect reader, then
agent A’s behavior should be independent of the value of x. No matter what value we give to x, A’s behavior
should not change. In the security literature, this property is called noninterference [18]. Borrowing ideas
from Reynolds [15], we formalize this by using an equivalence relation to represent what agent A can know
about x (in this case nothing, so the equivalence relation relates all values), and then check to see whether
A’s behavior respects this equivalence relation on x. We prove such a noninterference theorem for the core
calculus in Section 2 using a denotational argument. This style of proof, while common in the languages
literature, is novel to the security world. This proof technique seems to carry over to the extensions of the
basic calculus. The notion of noninterference is problematic in a concurrent setting, a problem we discuss
further in Section 3.

2 The Core Calculus

We illustrate the core ideas of our calculus using a language with functions, recursion, tuples, and sums,
restricting the security properties to readers and indirect readers. We extend our treatment to a language
with assignment and concurrency in Section 3, and to creators and indirect creators in Section 4.

2.1 Types and terms

The types of the SLam calculus essentially comprise those of a monomorphic type system—with products,
sums, and functions—in which each type is annotated with security properties. We could add booleans,
integers and strings, but the essential typing properties of these types are already covered by products and
sums. Define security properties k, types t, and secure types s by the grammar

Kk u= (rir)
t o= unit|(E4+¢t) | (Ext)| (1)
s == (t, k)

where r (readers) and ir (indirect readers) range over some collection of basic security descriptions. For
example, a simple multi-level security system might have security descriptions L (low), M (medium) and H
(high), with ordering L C M C H. Alternatively, a UNIX-like security system would begin with a collection
of groups and users, and an ordering such that anything is less than root, and g C u if user u is in group
g.- In general, we assume that r and ir range over some collection S of basic security descriptions with
ordering C. We assume (S, C) is a lattice (i.e., a partially ordered set with meets, joins, a top element T and
bottom element). Higher in the lattice means “more secure”; T is the most secure element. Intuitively,
each element of S represents a set of agents or users; for this reason we refer to elements of S as security
groups. For the purposes of presenting our static type system, we assume that S is static (each element
represents a fixed set of agents). This is unrealistic because security changes over time (e.g., new users and
groups are added, users are added to and removed from groups). We discuss this further in Section 5.

We maintain the invariant that any security property (r,ir) satisfies ir C r. In other words, r should
be more restrictive (it represents a smaller set of agents) than ir. If a value v has security property (r,ir),
then only the agents described by r may directly read a value; and only agents in ir may find out (partial)
information about v. That is, r tracks access to an object, whereas ir tracks information flow.

The SLam calculus is a call-by-value language, and hence terms are contain a set, of values that represent
terminated computations. The sets of basic values and values are defined by the grammar

bv = ()| (inj; v) | (v,v) | (Az :s.€)

v o= by

The security properties on values describe which agents may read the object, and which agents may indirectly
depend on the value. The terms of the SLam calculus are given by the grammar

e == x|v|(inj e (ee),|(ee)|(proj;e)r | (uf:s.€)| (protect;, e)|
(case e of inj, () = e | inj,(z) = €),

The term (pf : s. e) defines a recursive function, and the term (protect;, e) increases the security property
of a term. Bound and free variables are defined in the usual way: variables may be bound by A, u, and case.

The security group r appearing on the destructors—application, projection, or case—represents the
security group of the programmer of that code. It is the compiler’s job to check that the annotations on
programs are consistent with the author’s security. For example, the compiler must prevent arbitrary users
from writing programs with destructors annotated with root. As evaluation proceeds, terms with mixed
annotations arise. Note that root can write programs that can be run by anyone, but once started, can
access files and data structures as root. Such a “setuid” program would be a function

f =z :(t,(L,L)). body involving root annotations)).

Anyone can write an application (f v),., because L C r, but the body runs at root and can access data that
r cannot access. When the application (f v), is reduced, the resultant body will have v substituted for z. If
v is an abstraction, with destructors annotated r, the resultant body will mix r and root annotations.

2.2 Operational Semantics

The relation e — €' represents a single atomic action taken by an agent. The definition uses structured
operational semantics [13] via evaluation contexts [8]. The set of evaluation contexts is given by

E z= [][(Ee)|(vE)|(proj; E), | (inj; E)x | (E,e), | (v, E), | (protect;. E) |
(case E of inj, (z) = e1 | inj, () = e2),

Note that this defines a left-to-right, call-by-value, deterministic reduction strategy.

The basic rules for the operational semantics appear in Table 1. In the rules, we use an operation for
increasing the security properties on terms: given x = (r,ir), K eir' is the security property (r Uir', ir Uir').
Abusing notation, we extend this operation to values: bv, e ir denotes the value bvyes-. These rules reduce
simple redexes. The rules lift to arbitrary terms via the rule

e— e
Ele] — E[e']

which shows how to reduce all terms except terms which have type or security errors. Note that the
operational semantics is essentially untyped: the types on bound variables, upon which the type checking
rules of the next section depend, are ignored during reduction. The security properties on values and
destructors are, of course, checked during reduction; this corresponds to checking, for instance, that a pair is
the value being taken apart by a projection. Note also that, after a value has been destructed, the indirect
readers of the value are used to increase the secrecy of the result (via protect). This tracks information
flow from the destructed value to the result.

2.3 Type System

The type system of the SLam calculus appears in Tables 2 and 3. The system includes subtyping and the
subsumption rule. The subtyping rules in Table 2 start from lifting the C relation on security groups to the

Table 1: Operational Semantics.

((Az @ s.€)pir V) — (protect;, e[v/z]) ifrCr

(proj; (vi,v2)(, ;) — (protect;, v;) ifrCo'

(case (inj; v)(rir) of inj, (z) = e1 | inj,(z) = e2)» — (protect;, e;[v/z]) ifrCr'

(uf :s.e) = e[(Ax s ((wf :s.€) 2)r)riny/f] if s = (51 = s2, (r,ir))
(protect;, v) - veir

Table 2: Subtyping Rules for Pure Functional Language.

51 <5y s3<83 k<K
s1 < s3 (unit, k) < (unit, ')
k<K' s <s] k<K s <s]
((s1 + 52),6) < ((s] + 53),K) ((s1 X 82),6) < ((s] x 83),K')

k<K s <s1 sy<s)
((s1 = 82),6) < ((s} = s3),K")

Table 3: Typing Rules for Pure Functional Language.

[Var] Te:ska:s [Unit] T'F ()x : (unit, k)

[Sub] Lr eF:If - ;,S al [Rec] Fll—‘—, {u:fS::.ee:)f palll is a function type

Lol g Wl R e

N =t

[Inj] IS (injfel)_,ie: (Z + 82, K) [Protect] I (prol;el_cii; Se) Dseir
Cke:(sy+s2,(rir)) Dyx:sibe:s ,

Cr

[Case] 'k (case e of inj, (z) = e1 | injy(x) = €2), 1 s @ir

< relation on security properties. Define
(ryir) < (r'yir') iff rCor'ir Cir'.

The subtyping rules formalize the idea that one may always increase the security property of a value.

The typing rules appear in Table 3. Abusing notation, we write (¢,%) e ir to denote the secure type
(t,k o ir). The rules for type-checking constructors are straightforward. For type-checking destructors, the
rules guarantee that the destructor has the permission to destruct the value (apply a function, project from
a pair, or branch on a sum). Note that like the operational semantics, the security of the destructed value is
promoted to reflect the indirect readers of the destructed value. This type system satisfies Subject Reduction
and Progress (see Appendix for proofs).

Theorem 2.1 (Subject Reduction) Suppose 0t e:s ande —e'. Then Qe :s.
Theorem 2.2 (Progress) Suppose O e : s and e is not a value. Then there is a reduction e — €.

These theorems show that, for well-typed, closed expressions, one may omit the security checks in the
operational semantics without compromising the security of expressions.

The subject reduction result provides a fairly direct proof that our type system enforces reader security.
Objects are created with their reader annotation set to some specific security group and this annotation is
preserved throughout the program. Specifically, reader annotations may only be changed by protect, whose
effect is to increase security, i.e., set more restrictive access to the object.

However, the situation for indirect readers is more subtle. For example, we would like to prove that
if is a high security variable (with respect to indirect readers) and e is a low security expression that
contains z, then no matter what value we give to z, the resulting evaluation of e does not change (assuming
it terminates). More generally, we want to show that if an expression e of low security has a high security
sub-expression, then we can arbitrarily change the high security sub-expression without changing the value
of e. However, this property does not hold in general. First, it does not hold if e evaluates to a value that
contains abstractions. Hence, we restrict the type of e so that it contains only unit, sums and products (call
these ground types). Second, it does not hold if e evaluates to a value whose subcomponents have higher
security than e. Hence, we further restrict the type of e so that security properties decrease as we descend
into its type structure e.g., ((unit, (L, L))+ (unit, (L, L)), (H, H)) (call these transparent types). To formally
state property, we shall use contexts: C[-] denotes a context (expression with a hole in it); Cle] denotes the
expression obtained by filling context C[-] with expression e. We also define a special equivalence relation to
factor out termination issues: e ~ e’ if whenever both expressions halt at values, the values (when stripped
of security information) are identical. We can now state:

Theorem 2.3 (Noninterference) Suppose O & e : (¢t,(r,ir)), O & Cle] : (t',(r',ir")), t' is a transparent
ground type and ir Z ir'. If €' is an expression where O & €' : (¢, (r,ir)), then Cle] ~ C[e'].

For simplicity, we have restricted this theorem to closed terms e; it can be generalized to open terms. The
proof uses a denotational semantics of the language and a logical-relations-style argument, and is given in
the Appendix. The proof is particularly simple, especially when compared with other proofs based on direct
reasoning with the operational semantics (cf. [18]).

3 Assignment and Concurrency

The calculus in the previous section is single threaded and side-effect free. This is inadequate to model

the behavior of a collection of agents that execute concurrently and interact (e.g., via a shared store or file

system). To model such a system, we extend the basic calculus with assignment (via ML-style reference

cells), generalize evaluation to a multi-process setting, and add a “spawn” operation to create new processes.
We first extend the definition of basic values bv and expressions e by

bv = - | P

e u= ---|(refs e), | (write e e), | (read e), | (spawn e),

where [? is a location (we assume an infinite sequence of locations at each type s; whenever a new location
is needed, we use the next available location in the sequence). We modify the definition of types ¢ to include
reference types and also to change arrow types so that they carry a latent “effect” ir, representing a lower
bound on the security of cells that may be written when the function is executed.

k= (rir)

z= unit| (s+5)|(sxs)]| (s = s) | (refs)
We extend evaluation contexts appropriately:
E = .-.|(refs E), | (write E e), | (write v E), | (read E),
Recall that L denotes the bottom (most insecure) security group. Abusing notation, define ir(E) by

1 if B =[]
ir(E) =< iiruir' if E = (protect;. E') and ir(E') =ir'
ir(E") if, for instance, E = (E' e),

We use the notation E;,. to denote an evaluation context with ir(E) =ir. A state is a finite partial function
from typed locations [° into values.

The starting point of the operational semantics for the extended calculus is the collection of simple redex
rules given previously in Table 1. Again we lift these rules to arbitrary terms via

e—ée
Ele] — E[e']

where E is understood to be the extended definition of contexts given above. Using this basic notion of
e — €', we now define reduction for side-effect operations and thread spawning. Specifically, Table 4 defines
a reduction relation (e1,...,en;0) = (€},...,€,,4;0'), where o is a state.

Subtyping in the system with effects is exactly the same as before, except that the rule for function types

now becomes
k<K' ir'Cir s} <s; s2<s}

((s1 = 52),5) < (5 < sb),)
and the rule for reference types is
k<K
(ref s,k) < (ref s, k')

Note that subtyping on reference types only affects top-level security properties. Table 5 presents the typing
rules for the extended calculus. This type system is essentially the previous system with an effect system lay-
ered over the top of it in the style of [17]. This effect system tracks potential information leakage/dependency
that may be introduced by reference cells. Each context carries with it a security group ¢r that is a lower
bound on the security of the reference cells that may be written in that context; as expected, this security
group is carried over onto arrow types.

Analogs of the Subject Reduction Theorem 2.1 and Progress Theorem 2.2 can be established for this sys-
tem; the proofs are quite similar to the proofs in the Appendix. Unfortunately, noninterference is problematic
in concurrent setting (see [9] for a discussion). Consider a system with two agents A, B and C, and suppose
that there is some variable x that contains information that should be kept secret from agent C'. The first
agent, A, generates a random number, and puts it into a variable tmp that everyone can read. Agent B waits
for a while and then just copies the contents of x into tmp. Agent C' reads tmp and immediately terminates.
Now, although C' cannot tell with certainty that it has captured the contents of x or some random garbage,
it clearly finds out more about x than it should. However, since the possible set of behaviors of C' (i.e., the
possible values C' generates) is independent of the initial value of x, the use of equivalence classes would lead
us to the conclusion that this system is secure.

We have not found a satisfactory, general, abstract theorem expressing a noninterference property in the
presence of concurrency. Curiously, though, we expect our lemmas using logical relations to hold in the
setting with side effects and concurrency, and are exploring notions of noninterference using logical relations.

Table 4: Operational Semantics for Effects.

(..., Biile],...;0) = (..., Epile],...;0)

(.., E;[(spawne)i],...;0) = (..., (protect;., €),E;.[()x],...;0)
(..., Eipr[(refs v)i],...50) = (.., B],...;0l° »veir) if I° ¢ dom(o)
(oo Bi[(write 1§, ;) 0)p], .. 50) = (o, By [v],. . 0[l° = v eir']) ifr Cof
(s Eipl(read I, ;,))v], - - -5 0) = (...,Ey[o(®)eir],...;0) ifrcCr
Table 5: Typing Rules for Effects.
Ikie:s s<ég
[Sub] Phiyre:s
[Var] Te:skypx:s
[Unit] L'k () : (unit, k)
(Lam] Ix:sibjme: sy
Chi Az :s1.€)s: (51 &y S2,K)
[Pair] T l_ir €1 - S1 T l_ir € I So
L ki (e1,e2) : (51 X $2,K)
I'Fire:s;
Inj — :
[Inj] Tk (inj; €)@ (81 + $2,K)
[Appl Lhm e (';lf(‘g?,()r ir) Ll €81 pop (ol Uir) Cir"
ir' \€ €)pr . S2 @1r
) T kire:(s1 X s2,(r,ir)) ,
[Proj] ki (proj;), = s; ®ir rr
DChiye:(s14 82, (rir)) T,x:sibyne s PP o
[Case] 'k (case e of inj, (z) = €1 | inj,(x) = e2)p : s ir r &'y (ir' Uir) Cir
Fl‘irrrets ' . . -
[Protect] T o (protect,. ¢) s eir rCor', (ir' Uir) Cir
[Spawn] [P e:s 5
[+ (spawn e), : (unit, k)
[Loc] Lk 152 (ref s, k)
Fkpre:s LN
[ef] [ki (refs e), : (ref s,K) (seir’)=s
. IFieq:(refs,(ryir)) Dhyres:s , N
[Assign] T oy (write e e3)y s rCr', (seir)=s
(Deref] ke (ref s, (r,ir)) .

[t (read €), : s eir

4 Integrity

We now sketch how to add integrity to the basic calculus of Section 2 and the extended calculus of Section 3,
using the concepts of creators and indirect creators. Recall that creators track the agents that directly built
the value, whereas indirect creators track the agents that may have influence over the eventual choice of a
value.

Creators and indirect creators are drawn from the same underlying hierarchy of security groups as readers
and indirect readers. High integrity is modeled by points near the top of the hierarchy, low integrity by points
near the bottom. But there is a twist with respect to subtyping. Recall that for readers, one may always
restrict access to a value, e.g., change the reader annotation to a higher security group. For creators, it works
just the opposite way: one may always weaken the integrity of a value, e.g., change the creator annotation
to a lower security group. More formally, security properties now incorporate creator and indirect creator
information:

k == (r,ir,cic).
The variables r, ir, ¢ and ic range over security groups; we assume that ic C ¢. Subsumption for x becomes
(ryir,c,ic) < (r',ir',c,id) iffr Co',ir Cir', ¢ C e, and ic' Cic

which formalizes the intuition that one may always weaken the integrity of a value.
The operational semantics must now track indirect creators. For example, the rule for case becomes

(case (inj; v)r irc,ic of inj;(z) = e1 | injy(z) = e2),» — (protect,, ;.. ej[v/z]) ifr Co'

Note that the protect operation must take into account indirect creators. The rule registers the reader r’
of the injected value as an indirect creator of the result of the computation. Typing rules that involve the e
operation must be modified. For example, the case rule becomes

Pke:(sy+s2,(rircic) Tz:sibei:s
'k (case e of inj, (z) = e1 | inj,(z) = e3), : s (ir,icMr')

[Case] rCr

We have proven Subject Reduction and Progress Theorems analogous to Theorems 2.1 and 2.2 for this
system. We can also prove a security result for indirect creators that is analogous to Theorem 2.3:

Theorem 4.1 (Noninterference) Suppose O e : (¢,(r,ir)), O F Cle] : (', (r',ir")), t' is a transparent
ground type and ir Z ir'. If €' is an expression where O F €' : (¢, (r,ir)), then Cle] ~ Cle'].

Intuitively, if the indirect creators of the subexpression e do not include that of the entire computation, then
e cannot influence the result of the computation. The proofs of these results use the techniques established
in the Appendix.

Creators and indirect creators can also be added to the calculus of Section 3. Recall that in the case
of readers, the type system must guarantee that information does not leak out via side effects. A similar
property must be guaranteed in the case of creators: we must make sure that indirect creators of the
computation are carried over onto the values written in reference cells. Therefore, judgements I' F;. e : s
must be changed to I' k. ;c € : 5, where ic is a lower bound on the integrity of values that may be written
to reference cells in the evaluation of e. As before, indirect information is placed over — to represent the
latent effects of a computation. The type-checking rules for abstraction and application thus become

F,:L’ .51 Fir’,ic’ €S>

Lam —
[] TChip Az :si.e)e: (5125 s2,K)

. . i,r‘”‘ic” . . !,
[App] ['Fy 6F- 'ES1 (;) 82_,37.”"()1_3« ch;ltf; €5 ey, (ir' Uir) Car”,ic" T (id Mic)
ir! r .92)

We have proven Subject Reduction and Progress Theorems for this system; the proofs follow the structure
of the proofs in the Appendix for the pure case.

5 Discussion

Our work is not the first to use a programming language framework for security. The interpreter for Perl 5.0,
for instance, can be put into a special mode which tracks information flow and rejects programs that may
reveal secret information. Type systems have been used to statically check programs before they are run.
Recent work by Volpano, Smith and Irvine reformulates Denning’s framework as a type system in order to
reason about its soundness [18], and Abadi’s type system for the Spi calculus may be used to reason about
protocols [1, 2]. Type systems have been also used for the related problem of reasoning about trustworthiness
of data. For instance, [12] introduces a calculus in which one can explicitly annotate expressions as trusted
or distrusted and check their trust/distrust status; this system enforces consistent use of these annotations,
although one can freely coerce from trusted to distrusted and vice-versa. Concurrency issues were first
addressed by [4], although there appear to be some difficulties with that approach—see [18].

The main novelties of our work are the use of both access protection and information flow, and the
incorporation of higher-order functions and data structures; these are both essential for a development of
practical languages that provide mechanisms for security. This introduces a number of new technical issues
that have not been previously addressed.

The system we have presented is vulnerable to timing attacks. For example we could write

let val t1 : (int, L, L) = getTime()
val tmp = if secureBool : (bool, H, H) then longComputation else shortComputation
val t2 : (int, L, L) = getTime()
val insecureBool : (bool, L, L) = ((t2 - tl1) > timeForShortComputation)

in insecureBool end

where getTime gets the current time, and longComputation is some computation that takes longer than
shortComputation. This program allows us to leak information about the secure value secureBool to
the low security value insecureBool. In short, our type system does not protect the execution time of
computations. Depending on the latency and accuracy of getTime and scheduling issues, this could reliably
leak information at a rate of perhaps 1 bit/ms — 1 bit/sec. This would be disastrous for certain applications:
e.g., we could leak a 100-bit cryptographic key in the order of seconds.

This bandwidth of timing attacks could be reduced by restricting access and accuracy of getTime. Alter-
natively, we could change the type system. The key type rule is one for case statements, where the security
context (the subscript on I in Table 5) is increased as we move into the body of the case statement to reflect
the security of the tested expression. We could constrain these contexts to be equal (i.e., so that we cannot
look at a high security value unless we are already in a high security context), and only allow contexts to be
increased in security at spawn expressions. The idea is that if we are in a low security context and want to
do some computation with a high security value, then we must first spawn off a high security process for this
purpose. We can still leak information between processes by taking more or less of the processor’s resources
(time or space) according to some high security value, but we have significantly reduced the bandwidth of
these attacks. A more speculative approach involves forcing the arms of a case statement to take the same
time and space resources by adding timeout mechanisms and various padding operations. An important
area of future work involves studying the tradeoffs of implementation costs and programming inconvenience
versus reduction in timing attack vulnerability.

As with many other security systems, our approach relies on a TCB (trusted computer base): in our case
trusted type-checking/compilation/runtime infrastructure. A failure in any of these components potentially
breaks the entire security system. It would be possible to factor out some of the critical components by moving
to a bytecode/bytecode-verifier organization (a la Java), although the benefits of doing so are unclear.

We view the SLam calculus as a first step towards providing a language basis for secure systems pro-
gramming. It deals with the essence of computing with secure information, but a number of important issues
remain. First, the type system we have presented is monomorphic. Clearly this is too restrictive: we need to
be able to write code that behaves uniformly over a variety of security groups (e.g., in writing a generic string
editing/searching package). We are currently investigating two approaches to this problem: parametric se-
curity types and a notion of “type dynamic” for security types. The former involves bounded quantification,
and it is not clear we can compute concise, intuitive representations of types; the latter involves runtime
overheads.

10

Second, our type system is static, but the security of objects changes dynamically. For instance, in a
file system, the files that one can read today will probably be different from those one can read tomorrow.
How can we accommodate new files, new objects, new cells, new agents, changing security groups, etc? We
plan to address these issues using a dynamically typed object manager. The basic idea is that access to
shared objects is via the object manager; although each program is statically typed, a program’s interface to
the object manager is via dynamic types (at runtime, a dynamically typed object returned from the object
manager must be unpacked and its security properties checked before the raw object it contains is passed to
the internals of the program).

Third, any practical language based on the SLam calculus must provide ways to reduce the amount of
type information that must be specified by a programmer; the core SLam calculus is an explicitly typed
calculus. Can we perform effective type reconstruction? What kinds of language support should we provide?
For example, it would be useful to introduce a statically scoped construct that defines a default security
group for all objects created in its scope, i.e., like UNIX’s umask.

We are investigating these issues in the context of an implementation of our type system for Java. While
many of the appropriate typing rules for Java can be adapted easily from the SLam calculus, some new
issues arise from exceptions, break, continue, return, and instance0f. The implementation is joint work

with Philip Wickline.

Acknowledgements: We thank Kathleen Fisher, Geoffrey Smith, Ramesh Subrahmanyam, Dennis Volpano,
and Philip Wickline for helpful comments.

References

[1] M. Abadi. Secrecy by typing in security protocols. In Proceedings of TACS, 1997. To appear.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In Proceedings
of the jth ACM Conference on Computer and Communications Security, pages 36-47, 1997.

[3] G. Andrews and R. Reitman. An axiomatic approach to information flow in programs. ACM Trans.
Programming Languages and Systems, 2(1):56-76, 1980.

[4] J. Banatre, C. Bryce, and D. L. Metdyer. Compile-time detection of information flow in sequential
programs. In European Symposium on Research in Computer Security, number 875 in Lect. Notes in
Computer Sci., pages 55-73. Springer-Verlag, 1994.

[5] D. Denning. Secure Information Flow in Computer Systems. PhD thesis, Purdue University, 1975.
[6] D. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):236-242, 1976.

[7] D. Denning and P. Denning. Certification of programs for secure information flow. Commun. ACM,
20(7):504-513, 1977.

[8] M. Felleisen. The theory and practice of first-class prompts. In Conference Record of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, pages 180-190. ACM, 1988.

[9] D. McCullough. Noninterference and the composability of security properties. In 1988 IEEE Symposium
on Security and Privacy, pages 177-186, 1988.

[10] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.
[11] J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[12] J. Palsberg and P. @rbaek. Trust in the A-calculus. In Proceedings of the 1995 Static Analysis Symposium,
number 983 in Lect. Notes in Computer Sci. Springer-Verlag, 1995.

[13] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus
Univ., Computer Science Dept., Denmark, 1981.

11

[14] G. D. Plotkin. (Towards a) logic for computable functions. Unpublished manuscript, CSLI Summer
School Notes, 1985.

[15] J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor, Informa-
tion Processing 83, pages 513-523. North Holland, Amsterdam, 1983.

[16] J. G. Riecke and A. Sandholm. A relational account of call-by-value sequentiality. In Proceedings,
Twelfth Annual IEEE Symposium on Logic in Computer Science, pages 258267, 1997.

[17] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Journal of Functional
Programming, 2:245-271, 1992.

[18] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. Journal of Computer
Security, 4(3):1-21, 1996.

A Proofs for Pure Functional Language with Secrecy

A.1 Basic Facts
Proposition A.1 Suppose s1 < sy and iry Ciry. Then s; e iry < s, @ irs.
Proposition A.2 For any secrecy property k and type s,

1. keireir' = xeir eir.

2. seireir =seir eir.

A.2 Substitution Lemma
Lemma A.3 IfTtv:s and D,z :s' Fe:s, thenT Fe[v/z]:s.

Proof: By induction on the proof of ',z : s’ - e : s. We consider a few of the most representative cases and
leave the others to the reader.

1. Iz : ' Fy: s where y # z. Obvious.
2. T,z :s'Fx:s where s = s'. Since e[v/z] = v, we are done.

3. D,x:s F (Ay:si.e)g : (s1 = s2,k), where T,z : s,y : s1 F €' : s2 and y # x. By induction,
[,y:s Feé[v/z]: se. Thus, by rule [Lam],

L' (Ay:so.€)glv/a]:s
as desired.

This completes the induction and hence the proof. B

A.3 Subject Reduction Theorem
Lemma A.4 Suppose 0 & e, : sq, and eq — e,. Then O - ep : s4.
Proof: By cases depending on the reduction rule used.

1. (Az : s1.€)p4r v)r — (pProtect,,, e[v/z]). By assumption, @ - e, : s,. Since e, is ((AZ : s1. €)rir V),
this derivation must end in a (possibly empty) series of [Sub] applications that are immediately preceded
by an application of [App]. Hence there exists some s/, < s, and a derivation 0 F e, : s/, whose last
rule application is [App]. By inspection of [App], there exist derivations for:

Db Az :s1.€)pir: (s] — sh,r'"ir'")
DFwv:s)
where " Cr' and sheir’ =s), <s,

12

The derivation § F (Az : s1.€)p4r 2 (8] = sh,r",ir") must end in a (possibly empty) series of [Sub]
applications that are immediately preceded by an application of [Abs]. Hence there exists an s3 where
s3 < (s} — sh,r",ir"), and a derivation) - (Az : s1.€), i : s3 whose last rule is [Abs]. By the [Abs]
rule, there is a derivation:
T:81Fe: sy
where s3 = (s1 — s9,7,14r)

Now, s3 = (51 = so,7,ir) < (s} — sh,r",ir") implies that:
st < s1

so < 8
ir Car”

Combining s} < s; with @ v : s{ implies § F v : s; by the [Sub] rule. Hence we have z : s; e : so
and @ F v : s1, and so by the Substitution Lemma,

O Fefv/x]: ss.

By the [Protect] rule, § - (protect,, e[v/z]) : speir. Now, sy < s} and ir C 4r" and so by Proposition
A,

soeir <sheir'' =s' <s,
Hence, by (Sub), § (protect;, e[v/z]) : sq.

- (proj; (v1,v2) (. ;) — (Protect;, v;), where r Cr'. Since 0 I- e, : 5,4, there must exist s; < s, and
a derivation (F (proj; (v, V2) (i)) * S Whose last rule application is [Proj]. By the [Proj] rule:

rir

0r (1, 02) (0 1 (51 X 83, (r",ir"))
where s;eir" =s! <sqand r"” Cr'

Since 0 & (v1,v2)(,. ;) ¢ (81 X 85, (r'",ir"")), there is a derivation of () = (v1,v2)(,. ;. : s3 ending in a use
of the (Pair) rule, such that s3 < (s} x sb, (r"",ir")). From the (Pair) rule we have derivations:

@ l_ V1 - S1
@ l_ Vg - S2
where s3 = (s1 X s2, (r,ir))

and so by the [Protect] rule, § F (protect;, v;) : s;®ir. Since s3 = (s1 X 82, (r,ir)) < (s xsh, (r",ir")),

s1 < 8
s9 < s
ir Car”

Hence s; o ir < s} e ir” = s!, < s, by Proposition A.1, and so § - (protect;, v;) : s, by (Sub).

. (case (inj; v), i of inj,(z) = e | inj,y(z) = e2)r — (protect;, e;j[v/x]), where r T 7'. Since () -
€a : Sa, there must exist s; < s, and a derivation §) - (case (inj; v)(, ;) of inj; (z) = e, | injy(7) =
e2)r : sh, whose last rule application is [Case]. By the [Case] rule, there is a derivation:

0r (inj; v)pir ¢ (81 + 85, (", ir"))
z:sikei:s
where seir'’ =5 <s,and r" Cr'

Hence, there is a derivation () F (inj; v)(.r) : s3 whose last rule is [Inj] and where s3 < (s7 +
sh, (r'",ir'")). By the [Inj] rule, there are derivations:

DFov:s;
where s3 = (s1 + 82, (r,ir1))

13

This

Since s = (s1 + S2,7,0r) < (8] + sb, (r",ir'")),

51 < s
Sg < sh
ir Car"

Now, § v : s; and s; < s} implies () - v : 5. Hence, we have z : s’ - e; : s and) v : s, and so by
the Substitution Lemma

0t ejv/z].
By the [Protect] rule, § - (protect;, ej[v/z]) : s e ir. Now, ir C ir’ and so by Proposition A.1,

seir<seir’ =g <s,

Hence, by (Sub), O F (protect;, e;j[v/z]) : s,.

. (protect;, ()x) = (xeir- Since O F e, : s, there exists s/, < s, and a derivation () - (protect;, ();) :

st whose last rule is [Protect]. Hence, there is derivation

OF (ks

where seoir =35, <s,

The derivation of § F (), : s must consist of an application of the [Unit] rule followed by some number
of applications of [Sub]. Hence (unit, k) < s. Now, applying the [Unit] rule to ()xeir gives:

O F Oxeir : (unit, x e ir)

Since (unit, keir) = (unit, k) eir and (unit, k) < s, it follows from Proposition A.1 that (unit, keir) <
seir =s! < s,. Hence, D F ()yeir : 5o by [Sub).

. (protect;, (vi,v2).) — (v1,02),,,,..- Since @ F e,, there exists s/, < s, and a derivation (F

(protect;, (vi,v2),) : s, whose last rule is [Protect], and so:

OF (v1,v2), s

where seoir =35/ <s,

Since @ F (vq,v2),, : s, there exists s’ < s and a derivation § F (vi,vs), : s" whose last rule is [Pair].
Hence
w F V1 - S1
D v so
where s’ = (s1 X $2,K)

Now, applying rule [Pair] to (v, v2),,;, gives:

0 F (vy,v2) (81 X 89,k ®ir)

Keir
Since (s1 X s2, Kk 010r) = (81 X 82, k) ®ir = s' eir, and s’ < s, Proposition A.1 implies (s1 X s3,K @ ir) <
seir=s! <s,. Hence O+ (v1,v9) 1 Sq by [Sub].

Keir

. (protect;, (inj; v),) — (inj; v)xeir. Similar to the previous case.
. (protect;, (Az :s1.€)x) = (AT : 51. €)xeir- Similar to the previous case.

. (uf:s.e) = e[(Az s ((uf 2 s5.€) 2)p)(riry/ f], Where s = (s1 — s, (r,ir)). Simple and hence omit-

ted.

concludes the case analysis and hence the proof. B

Theorem A.5 (Subject Reduction) Suppose Dt e:s ande —¢'. Then P+ €' :s.

Proof: Note that e = E[e;1], where e; — e» via one of the rules in Table 1, and e’ = Eles]. A simple
induction on evaluation contexts, using Lemma A.4, completes the proof. H

14

A.4 Progress Theorem

Theorem A.6 (Progress) Suppose O & e: s and e is not a value. Then there is a reduction e — €.

Proof: Suppose, by way of contradiction, that there is no reduction of e. Then it must be the case that
e = Eleg], O+ ep : so for some sp, and eg has one of the following forms:

1. eg = (v V'),
2. eg = (proj; v),.
3. ep = (case v of inj, (z) = e1 | inj,(z) = e2),.
We consider the first case and leave the others to the reader. Since eq is well-typed,

8o < S0

D (o), : s
DEwv:(s1— sp,(ra,irs))
DFwv:s

and 72 C r, Note that v must have the form (Az : s1.€g)(r,,ir,), since it has a functional type (this can be
seen by an easy induction on typing derivations).
This gives us enough room to complete the proof. By rule [Abs], we know

(51 — 56) (leirl)) S (51 - 367 (r27ir2))
O b (A :s1. €0) (ry,iry) © (51 = 50, (11,171))
x sy i el s

It follows that 71 C ro T 7, and so the application reduction rule applies. This contradicts the initial
assumption that there is no reduction of e, so there must be a reduction of the term. l

A.5 Noninterference

We can assign a standard denotational semantics to the language by adopting the partial function model
of [14]. Define the meaning of a type expression s, denoted [s], by

[(unit, (r,ir))] = wunit

[(s +2,(ryir))] = ([s]+[2])
[(s >t (rir))] = ([s] x [#])
[(s =&, (rir))] = ([s] = [t])

where (D —, E) is the set of partial continuous functions from D to E. Note that this semantics ignores
the security properties.

The meaning of terms is a partial function. If I' = zy : t1,...,x, : t, is a typing context then [[] =
[t1] % ... % [tn]. (The order is not important here, as we could rely on some fixed ordering of z; : t; pairs.)
In the case that I' is empty, [I'] is the unit object unit. For an environment n € |[I']|, write n(z) for the
projection to the component corresponding to variable z, and n[z — d] for the environment in which the
x component is extended (or overwritten) to d. The definition of the meaning function on terms, like that
of types, ignores the security properties; similar definitions may be found in, say, [14, 16]. The model is
adequate for observing the final answers of programs:

Theorem A.7 (Plotkin) For any typing judgement O = M : s and any environment n, [0 = M : s]n is
defined iff M —* v for some value v.

Our proof of noninterference uses logical relations (see [11] for other uses of logical relations). Define R
to be a family of relations indexed by secure types and indirect readers ir where

1. If s = (¢, (r,ir)) and ir Z ir', then RS, = {(d,e) | d,e € [s]}.

15

2. If t = (unit, (r,ir)) and ir C ir', then R, = {(T,T)}.

w

. If t = (s1 + s2, (r,ir)) and ir Cair', then R, = {(inj;(d), inj;(e)) | (d,e) € R},,i =1,2}.

ir'

4. If s = (s1 X 89, (r,ir)) and ir C ir', then R, = {((d1,e1), (da,e2)) | (di,e;) € RSP}

ir!

5. If s = (s; = s, (r,ir)) and ir Cir', then RS, = {(f,g) | if (d,e) € RS.,, then (f(d),g(e)) € R2™"}.

Here, (f(d),g(e)) € R, means that if f(d) and g(e) are defined, then (f(d),g(e)) € R;,.. Intuitively, the ir’
index specifies the secrecy group of an indirect reader of group ir’. When the secrecy group ir’ is not above
the group of the type itself, the indirect reader does not have permission to find out any information about

the value.

Proposition A.8 1. Each R}, is directed complete, i.e., if {(di,e;) |i € I} C RE, is a directed set, then

(l_l d;, |_| ei) € Rlsr
2. If s < s', then RS, C RS,
Proof: By induction on types.

Theorem A.9 Suppose I'te:s and n,n' € [[']. Suppose that for all x : s" € T, (n(z),n' (x)) € Rf;,. Then
(IT+e:s]n, [T Fe:s]y) e R

ir'”

Proof: By induction on the proof of I' - e : s.
1. T,z : sk x : s. Follows easily from the hypothesis.
2. T+ ()g : (unit, k). Trivial.

3.0 F (Ax:s1. M)y : (s1 = s2,k), where T, : sy F M : t. Suppose k = (r,ir) and (d,e) € R}},.

ir’ By
induction,

([0, : sy F M : sy]n[z = d], [T,z : s1 F M : sy]n'[x +— e]) € R,

ar'*

By Proposition A.8,

([0, z:s1 - M : synfz — d], [T,z :s1 - M : so]n'[x — €]) € RS2,

ir’

Note that
[C,z:s1FM:so]pz—=d=[CF (Az:s1. M)y : (51— s2,6)]n (d)

and similarly for the other expression. Thus,
(ICF Az :s1. M)t (1 s9,6)]m, [T F (A 2 s1. M), : (51— so,6)]n') € REF72),

4. T'F (M N)p : speir, where I' = M : (s; — so,(r,ir)), T F N :s;, and r C r'. Let K = (r,ir). By
induction,

(f:g) = ([[F FM: (81 — 82,I<;)]]7’),|[F M : (51 — 327H)]]77I) c W
(d,e) =([TF N :s1]n, [T+ N:s]n') € R;!

ir!

There are two cases:

(a) ir Cir'. Then (f(d),g(e)) € Ri2*" directly from the definition of Rg:}%sz’”).
(b) ir £ ir'. Suppose sz = (t, (r",ir")). Note that sy e ir = (¢, (r" Uir,ir"” Uir)). It follows that
(ir" Wir) Z ir', and so R$%" is the complete relation. Therefore, (f(d), g(e)) € R52%T

ir’

16

5. 'F(M,N), : (51 X s2,K), where ' - M : sy and ' - N : 55. Let = (r,ir). By induction and the
definition of R, L
(di,do) =([TF M :51]n, [T+ M : s1]n') € R}

ir!

(e1,e2) = ([T F N :so]n, [T F N : sq2]n’) € R?

ir!

By Proposition A.8, (dy,dz) € R:*" and (e, es) € R:2*". Tt follows that

ir’ ir’

(<d1’ 61>, <d2, 62>) I R(sl X §2,K)

ir!
as desired.
6. I'F (proj; M), :s;eir, where ' - M : s, s = (s1 X s2,7,ir) and r C 7'. By induction,

(di,dy) = ([T F M :]y, [T+ M : s]y') € R,

ir!
There are two cases.

a) ir C ir'. If both d; and dy are defined, by the definition of the relation R?,, d; = (e;, f;) for
! ir J J2d]
(e1,€2) € R]'*" and similarly for (fi, f2). It thus follows that

(I* F (proj; M), : s; e ir]n, [F (proj; M), : s; eir]y') € RES"

as desired.

(b) ir £ ir'. Suppose s; = (t,(r",ir")). Note that s; e ir = (¢, (r" Uir,ir"” Uir)). It follows that
s;®ir
ir!

(ir'" Wir) Z ir', and so RS™" is the complete relation. Therefore, (proji(d,),proji(dz)) € R

ir!

7. Tk (inj; M), : (s1 + s2,K), where I' M : s;. Let k = (r,ir). By induction and the definition of R,

(dy,dy) = ([T + M : s;]n, [T+ M : s;]n') € RS,

ar'

It follows that -
(ing;(dy), ing;(d2)) € R(s1Hs2.5)

ir!

as desired.

8. ' P:seijr, where P = (case M of inj, () = Ny | injy(z) = N2)pr, ' M : (s1 + 82, k), & = (r,ir),
[,z:s;FN;:s,and r C r'. By induction,

(di,ds) = ([0 M : (51 + 52, 8)[n, [T = M : (s1 + 52, 5)]y) € R

ir!
There are two cases to consider.

(a) ir C ir'. If both dy,d, are defined, then by the definition of RE:}HZ’”), each d; = (inj; e;) for
some i and (e1,e2) € R;!,. By induction,
(IT,z :si = N;: slnlz = e1], [T,z : si = N; : s]n'[z = ea]) € RS,

By Proposition A.8, ([T, z : s; = N; : s]n[z = e1], [T,z : s; b N; : s]n'[z — e2]) € R%". Thus,

ir’

([CFP:seir]n [0+ P:seir]y) € R:%"

ir!

as desired.

(b) ir Z ir'. Suppose s = (t, (r1,ir1)). Then (irUiry) Z ir', and hence R$%" is the complete relation.
Thus,
([CEP:seir]n,[L F P:seir]y’) € REST

17

9. TF M :s,where ' M : s' and s’ < s. This case follows from the induction hypothesis and the fact
that RS, C R?,, which is part of Proposition A.8.

10. T'F (uf :s.e) : s, where s = (s; — s2,k). Let g1(z) = [
s Fe:sInlf — z]. We claim that for all n > 0, (¢7(L
Proposition A.8 that

ir'

T,f:skte:snlf — z] and g2(z) = [T, f :
), g% (L)) € R$,, from whence it follows by

ir'

(IT = (uf :s.€):s]n, [T+ (uf :s.€) : s]n') € RS ..

Proceed by induction on n. For the base case, it is easy to see that if L is the everywhere undefined
function, (¢?(L),¢5(L)) = (L,1) € R:,.. For the inductive case, suppose (g7(L),g%(L)) € RE.. If
one is not defined, then (g7 (L), gQH()) € If both are defined, then

u"
(g7 (L), g™ (L) = ([T, f : s Fex syl = gP (LT, frs ke sz = g3 (L)) € R,
by induction, which completes the proof of the claim.

This completes the induction and hence the proof. B

Suppose s is a type. Then s is transparent at security property « if

1. s = (unit, ') and k' < k;

3. s =(s1 X s2,k'), k' <k, and s1, s2 are transparent at security property &; or

(
2. s =(s1 +s2,k'), kK <k, and s1, sy are transparent at security property k;
(
4. s =(

s1 — s2, k'), k' <k, and s1, s2 are transparent at security property k.

s = (t,k) is transparent if s is transparent at .
Lemma A.10 Suppose s = (t, (r,ir)) is a ground type transparent at (r',ir"). If (f1, f2) € RS, then f = f'.

Proof: By induction on t. The base case, when ¢ = unit, is obvious. When ¢t = (s; + s, (r,ir)), since
ir C4r', it follows from the definition of R?, that f; = (inj; e;) for some ¢ and (e, e2) € R;/,. By induction,
e1 = es. Thus, fi = fo.

When t = (81 X 82, (r,ir)), it follows from the definition of R, that f; = (d;,e;) and (di,ds) € RS

and (e1,e2) € R:*". Note that sy e ir = (t,(r1,ir1)) @ ir = (t1,(r1 Uir,ir; Uir)) and similarly for

Sp @ ir = (2, (ra,irg)) @ ir. Since ir; C ir, (iry Uir) = 4r C ir', and similarly (irp Uér) C ér'. Thus, by
induction, d; = dy and e; = ey, which proves that f; = f, as desired. B

Theorem A.11 (Noninterference) Suppose O - e : (¢,(r,ir)), 0 & Cle] : (¢, (r',ir")), t' is a ground,
transparent type, and ir £ ir'. Then for all D+ €' : (¢, (r,ir)), Cle] =~ Cle'].

Proof: To simplify notation, let unit stand for the least secure unit type (unit, (L, 1)) (with lowest security)
and () : unit denote the least secure value of type unit. Consider the open term

y : (unit — s, (L, 1)) F C(yL ()] : &'
It is easy to see that this is a well-formed typing judgement. Consider any () - e; : s for i = 1,2. Let
di = [0+ (Az : unit. e;)(; 1) : (unit — s, (L, 1))].

(unit—s,(L,L1))
ir’

=[y: (unit — s, (L, L)) F Cl(yL)).] : s'][z — di].

It is easy to show that (di,d2) € R , since ir Z ir'. Let

By Theorem A.9, L

(f1, f2) S Rf;,
If f1, fo are defined, then by Lemma A.10, f; = fo. When f; is defined, it is simple to show that there is a
value v; such that f; = [@ F v; : s']. Since vy ~ vs, we are done. B

18

