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Abstract

We describe a general purpose, probabilistic state ma-
chine model which can be used to model a large class
of nondeterministic (as well as deterministic) computer
systems. We develop the necessary probability theory
to rigorously state and prove probabilistic properties of
modeled systems. Then we give a definition of informa-
tion flow security making use of this formalism. Intu-
itively, information flow security is the aspect of com-
puter security concerned with how information is per-
mitted to flow through a computer system. We prove
that our definition of information flow security implies
an information theoretic definition. Finally, we give a
verification condition for information flow security and
prove that it implies our definition of information flow
security.

1 Introduction

Intuitively, information flow security is the aspect of
computer security concerned with how information is
permitted to flow through a computer system. Recently,
there has been a general belief that information flow se-
curity models should be founded on—or at least justified
by—the field of information theory. This is primarily
due to the fact that nondeterministic systems may ex-
hibit probabilistic covert channels which are not ruled
out by standard computer security models (see [15] for
a discussion of this). To date, there have been several
efforts relating information theory to computer security
[6, 7, 9, 15].

McLean {6] gives a very general treatment of informa-
tion flow security models. However, since his work is in-
tended to provide a means for evaluating security mod-
els (rather than a means for evaluating real systems), it
is difficult to see how to apply it to real systems. For
example, his definition of security (which he calls FM)
is given in the form of an equation involving conditional
probabilities, where his probability space includes user
inputs. Since the probability of a given user input oc-
curring is typically unknown, it is unclear (and McLean
makes no claims either way) whether his definition is
generally verifiable.

On the other hand, the efforts of Millen [7], Moskowitz
[9], and Wittbold and Johnson [15] have applied stan-
dard information theoretic concepts to concrete exam-
ples. However, their examples tend to be so simple that
it is unclear whether their work can be applied to more
complex systems. In particular, none of their example
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systems has a large, general purpose memory (such as
a database system or a file system has) . The example
that comes closest is from (7] where a system with a one
bit memory is analyzed.

In this paper, we attempt to bridge this gap between the
general, but abstract (i.e., McLean) and the concrete,
but limited (i.e., Millen, Moskowitz, and Wittbold and
Johnson). Although the present paper is mainly con-
cerned with the special case where no leakage of clas-
sified information is tolerated (i.e., the capacity of all
covert channels must be zero), the framework is in-
tended to be general enough to deal with the more gen-
eral case where the tolerance for information leakage is
given by a rate such as n bits per second. We hope to
pursue this more general problem in future work.

We begin by describing a general purpose, probabilistic
state machine model. Our model has a finite—but po-
tentially very large—set of states (as do real computer
systems) and a set of communication channels which
provide the only interface to the external environment.
Our system transition function T, is general enough to
describe internal (i.e., internal to the system being con-
sidered) probabilistic choices. This model can be used
to model a large class of nondeterministic (as well as
deterministic) computer systems.

Then, in Section 3, we develop the probability theory
needed to state and prove probabilistic properties (such
as information flow security) of computer systems. We
separate internal probabilistic behavior (i.e., internal
probabilistic choices) from external probabilistic behav-
ior and then make the relationship between the two ex-
plicit. In this way, we can model the system’s prob-
abilistic behavior and the environment’s probabilistic
behavior separately and then state and prove proper-
ties involving joint probabilities of the two. In order
to avoid ambiguity and careless errors, we define our
probability space (actually an infinite set of probabil-
ity spaces) and probability measure (again an infinite
set of them) rigorously and then prove (in Appendix A)
that what we call our “probability measure” is in fact a
probability measure.

In Section 4 we present our definition of information
flow security and give a theorem that lends support to
its strength. In Section 5 we state and prove a relation-
ship between our definition of information flow security
and an information theoretic definition of channel ca-
pacity. And finally, in Section 6 we give a verification
condition for information flow security. A proof that



our verification condition implies our definition of infor-
mation flow security is given in Appendix B.

Throughout this paper, we partition the set of system
communication channels into two sets of channels H and
L representing the channels connected to high processes
or users) and the channels connected to low processes
or users), respectively. The motivation for this work (as
in [2, 4, 7, 9, 14, 15]) is the need to prevent information
flow from high inputs to low outputs.

2 System Model

Our system model is a nonstandard finite state machine
model. There is a finite set of inputs, a finite set of
outputs, a finite set of states, and an initial state. The
nonstandard features are a finite set of communication
channels and a probabilistic transition function. We also
have a rather unusual interpretation of the inputs and
outputs. We discuss these ideas in more detail below.

Our model is similar to Millen’s synchronous state ma-
chine model [8] in style and motivation. His treatment
of time and his use of channels, inputs, and outputs are
in essence identical to ours. The two models difler in
some minor details but can be used to model the same
class of computer systems. The only difference between
the two models that is essential to our work is that our
model has a probabilistic transition function rather than
merely a nondeterministic transition function. This ad-
ditional detail about the system transition function will
allow us to reason about the probabilistic behavior of
the system.

Regarding our interpretation of outputs, we think of a
finite set of signals that the system can produce and
that are discernable by the environment. We call these
signals “outputs” but the set of outputs should not be
interpreted as containing only outputs in the conven-
tional sense. For example, we will need a distinguished
output null, which can be thought of as the system per-
forming no action. (Note that “no action” can be used
as a signal to the environment.) Also, if for example
the external environment can discern when the system
accepts an input from a bounded buffer (as in an ex-
ample from [5]), then the action of accepting an input
would be considered a system output. On each transi-
tion of the system and on each communication channel,
the system produces one output. Note that it is possi-
ble (and maybe even likely) that most outputs on most
channels will be null (i.e., most systems do not produce
interesting outputs on each communication channel on
every transition).

We interpret the set of “inputs” in the same way as for
outputs. In particular, any signal (including null—the
lack of an action) that the environment can produce
and that is discernable by the system, is considered an
“input”. Again, on each transition of the system and on
each channel of the system, the environment produces
one input.

We interpret the system transitions as occurring once
for each tick of the system’s internal clock. We assume
that the system’s internal clock runs independently of
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any other processing by the system. In this way, the
transitions of the system mark the passing of time and
we will use this fact to deal with covert timing channels.

Systems that are implemented by probabilistic algo-
rithms (an increasingly popular practice; see for exam-
ple [10, 11]) may make internal, probabilistic choices be-
tween various events. We assume (as in [3]) that these
internal probabilistic choices are made using a pseudo-
random number generator and that all choices are made
independently of one another. To model internal proba-
bilistic choices, the system transition function gives for
any time t, the probability of the system producing an
output vector b; (Note: an output vector contains one
output for each communication channel) and movin
to state s;, given that the system was in state s;—1 ang
the tlanvironment produced the input vector a;—, at time
t-1.

Now we introduce a little notation to set out our system
model precisely.

Notation: Let X and Y be finite sets. Then X[Y] de-
notes the set of all one-dimensional arrays of X indexed
by Y (i.e., each a € X[Y] is an array with length equal
to the cardinality of Y where each item in the array is
an element of X). We will sometimes refer to arrays
as “vectors” or “sequences” depending on the context.
For example, suppose O is the set of outputs and C is
the set of communication channels. Then O[C] is the
set of all output vectors. As another example, suppose
S is the set of states. Then S[1..t] is the set of all state
sequences from time 1 through time .

We will also need to make use of two-dimensional arrays
(i.e., matrices). We will use the straightforward gener-
alization as follows; suppose X, Y, and Z are finite sets.
Then X[Y, Z] is the set of all two-dimensional arrays of
X indexed by Y x Z.

We will pick out a particular element of an array usin
elements from the index set. For example, if b € O[C%
is an output vector and ¢; € C is a particular channel,
then b[C]_T is the single output for c;. Similarly, if vy €
S[1..t]) is a state sequence, then 4[1] will mean the first
state in the sequence, v[2] will mean the second state in
the sequence, etc..

For any set X, we denote the power set of X (i.e., the
set of all subsets) as P(X).

We denote the set of all positive integers by Nt

Given two real numbers z and y, we denote the closed
interval from z to y (i.e., the set of all real numbers be-
tween (and including) z and y) by [z,y]. In particular,
we will be making %requent use of the closed interval

[0,1].

For any set of channels A € C, we will use null, to
denote the constant vector consisting of null inputs (or
outputs depending on context) on all channels in A.

Now we can define our system model.

Definition 2.1 A system T is given by a siz tuple
(C,1,0,8,50,T) where




C is a finite setl of communication channels;
I is a finite set of input signals;

O is a finite set of outpul signals;

S is a finite set of internal system states;
s0 is the initial state; and

T:SxI[C]x S xO[C] — [0,1] is the function that de-
scribes how the system moves from state to state while
engaging in input and oulput events. T should be inter-
preted as follows: given that the sysiem is in state s € S
at some point in lime, and that the input at that time,
on all communicalion channels is the vector a € I[C],
then for any state s € S and for any oulput vector
b € O[C], the probability of the system producing b and
transitioning to slate s’ is T(s, a,s',b). The input vector
for the system’s first transition (i.e., the transition that
takes place at time 0), is assumed to be nullC (i.c., the
environment cannot produce any input before time 1).

To support the above interpreiation of T, we require of
all systems ¥ = (C,1,0,5,T) that for all s € S, and
for all a € I[C), the function P, 4 : P(S x O[C]) — [0, 1]
defined by

P, q(z) = Z T(s,a,s',b)

(s',b)Ex

1o be a probability measure.

This system model is general enough to model a very
large class of computer systems. For example, depend-
ing on how we interpret the communication channels,
we can model a single process executing (among other
processes) on a multitasking operating system (where
the communication channels would be provided by the
operating system in the form of an interprocess com-
munication mechanism) or an actual piece of hardware
(where the communication channels would be physical
wires).

For our purposes (i.e., information flow security), we will
assume that the communication channels provide the
only interface to the external environment (i.e., a sys-
tem cannot communicate with the environment in any
other way). In the case of a process executing on a mul-
titasking operating system, this assumption amounts to
the assumption that the operating system acts as a sep-
aration kernel [12].

3 Probability Theory

In this section we develop an infinite set of probability
measures to be used in stating and proving probabilistic
properties (e.g., in our case, information flow security)
of computer systems. We define a probability measure
P, for each time ¢, where the sample space for P; is
the set of all possible “executions” of the system up
to time ¢. P, is determined by the particular system
under consideration and the probabilistic behavior of
the environment. This will all be set out precisely below.
We prove in Appendix A that for any time ¢, P; is a
probability measure.
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Definition 3.1 Given a finite set of output signals O,
containing at least the distinguished element null, for
any set of channels A, and any positive integer t, let
Oix: = O[A,1..%] be the set of all possible system out-
put histories on channels in A during times 1 through
t. Note: some of these output histories may occur with
probability 0 (i.e., be essentially impossible) for a given
system.

For convenience, we adopt the convention that for any
set of channels A, O, is the empty history (i.e., the
history of length zero) of the channels in A. The empty
history represents the history of the system before it
does anything.

Definition 3.2 Given a finite set of input signals I
containing at least the distinguished element null (here
meaning that the environment performed no action), a
sel of channels A, and a positive integer t, let I, =
I[A, 1..t) be the set of all possible environment input his-
tories on channels in A during times 1 through t.

As for output histories, we will write I o for the empty
input history on the channels in A. The empty input
history represents the history of the environment before
the environment has a chance to do anything.

Definition 3.3 Given a finite set of internal system
states S and a positive integer t, let Sy = S[1..t] be
the set of all possible histories of internal system states
during times 1 through t.

Definition 3.4 For every positive inieger t, let Qy =
Ic: x Oc, x Sy be a sample space for outcomes of the
system (i.e., an outcome is a triple (a, B,7) where o is
an inpul history, B is an output history, and v is an
internal state history) up to timet.

Note that since O, I, and S are finite, for any t, we
have that Oc, Ic,, and S; are finite; and therefore,
Q is finite. Therefore, P(£;) possesses the necessary
properties for it to be a suitable event space for our
probability measure (i.e., (P(§2:),U, N) forms a o-field).

We make the following assumption, which essentially
constitutes the assumption that the only information
about the system and its environment that is directly
accessible to the high (low, resp.) environment is the
inputs and outputs that have previously occurred on
the high (low, resp.) channels. Le., if the high environ-
ment obtains information about the low environment,
it must obtain it indirectly through its interaction with
the system; similarly if the low environment obtains in-
formation about the high environment, it must obtain
it indirectly through its interaction with the system.

Assumption 3.1 Let H and L be disjoint sets of chan-
nels representing the channels connected to high pro-
cesses and the channels connected to low processes, re-
spectively. For any time t € N*, any input his-
tory @ € Igt—1, and any outpul history f € Op,-1,



Hiap : P(I[H]) — [0,1] is a probability measure that
completely describes the probabilistic behavior of the en-
vironment external to H at time t, given the input his-
tory a and the oulput history B, prior to time t. We
call the set of Hy o p’s (i.c., the complete description of
the behavior of the environment external to H) H.

For any timet € N+, any input historya € I s, and
any output history B € OL1—1, we make the analogous
assumption for Ly g - : ’P(II[L] — [0,1] and the behavior
external to L. Also, we call the set of Ly a5’s L.

Since the only element of Iy is nully and the only
element of Op o is nully we will use Hy(s) as a short-
hand for H, pull,, nully Similarly, we will use L;(s)
as a shorthand for Ll,nullL,nullL'

Note that the above assumption allows for the possibil-
ity that the environment external to H (L, resp.) has
memory of what it has already done, as well as memory
of what the system has already done on channels in H
(L, resp.). Therefore, this assumption is general enough
to allow for the possibility that the environment is act-
ing according to some strategy that involves feedback
from the system (as in an example from [15]). This as-
sumption also allows for multiple processes external to
H (and likewise for L) to be working cooperatively with
shared memory.

Now we introduce a little more notation.

Notation: Given an input vector a € I[C] (or a se-
quence of input vectors a € Ic,, resp.), and a set of
channels A C C, let 7x(a) (or m(a)b, resp.) be the pro-
jection of a (or a, resp.) onto the channels in A.

Given a sequence o of length ¢, for any i < ¢, let a_,; be

the subsequence of « from the first element up through

Eand including) the i** element. Further, we will use
() (read “front of a”) as shorthand for a—-1.

We can now define a probability measure that allows
us to reason about the probabilistic behavior of both
the system and its environment. The following defini-
tion is consistent with the above assumptions that (1)
the probabilistic behavior of the high environment is
described completely by H; (2) the probabilistic behav-
ior of the low environment is described completely by
L; and (3) the probabilistic behavior of the system is
described completely by T.

We define Pz 1 : P(Q:) — [0,1] inductively, as fol-
lows.

Definition 3.5 Given a system ¥, and high and low
environment behaviors H and L, resp., for all w €
P(),

Psuypaw) =
Hi({mu(a[1])})-
Ll({WL(a[ll)}8~
T T(SO,I,}U(HCB‘V 1)],€ A1),
(u,p'-y)enl b ’7 b
0, otherwise.

For allt > 2 and for allw € P(8),

Pruyii(w) =
Pz,n,L,¢_1({(C(°t),CE[’LC(Y))B'
gt,rn(((a))r"ﬂ(((ﬁ))( w”f(fiﬁgt)}). :
S TGN i s,
(o, B,7)E: 'f (a) ﬂr 7) € w;

0, otherwise.

Thus, Ps u,1.:(w) is the sum over all system executions
(a,B,7) € w of the probability of (a,,7) occurring,
where the probability of (a, 8,7) occurring is obtained
by multiplying the following together: the probability
of the environment producing «[1] (as given by H and
L), the probability of the system producing S{1] and
¥{1] (as given by T), the probability of the environment
producing a[2] (again given by H and L), the probabil-
ity of the system producing ${2] and ¥[2] (again given
by T), ... the probability of the environment producing
aft] (again given by H and L), and the probability of
the system producing B[t} and ¥{t] (again given by T).

To make our expressions more compact, we will use P,
or Py as a shorthand for Pg u,1,: when no ambiguity
results.

We can now prove that P; is a probability measure.

Theorem 3.1 For any system L, high and low envi-

ronment behaviors, H, L, and timet € Nt Pgyyp,
is a probability measure.

Proof: see appendix A. O

Although proving this result does not prove that
Pg 1 1,1 is the probability measure corresponding to our
intuition, it may give us a some confidence in the defini-
tion. We can gain additional confidence in the definition
by proving such facts as Py(y([t]NA[t] | ¥[t—1]Naft—1]) =
T(7[t -1 yalt— 1]! 7[t]) ﬂ[t])

4 Definition of Information Flow Secu-
rity
In this section, we give a definition of “information flow

security” in terms of the probability theory developed
above.

Recall from probability theory that an event is a set
of outcomes (for our purposes, an outcome is a system
history triple (o, 3, 7) € §;). Suppose we have an event
z € P(Q:). We say that z occurs on a particular trial
of the system if the outcome of the trial (up to time t)
is in z. Also, P;(z) is the probability that on any given
trial of the system, the outcome of the trial up to time
t will be in z.

There are three particular types of events that we will
be making frequent use of. For convenience, we define
these three types of events here.



Definition 4.1 For every posilive inleger t, and for
any set of channels, A = {c1,c2,...¢,}, define In-Seq-
Eventy ; as follows.

In-Seg-Eventy + =

{s€ ?J(Q,) | )
(31'61,1) 2.61,27 .. ‘I'Cx,t—ly
cleg -1,

1'C:,].) 'C),z’ s

fen,lrben,2r - ten,t=1 € I
(V(a, /Bv'Y) € Ql)
[(e,8,7) € 8 <=
(VeeN)(Vjel.t-1)
[ee, 5] =1ic,3]) }

Each event in In-Seq-Event, ; represents the occurrence
of a particular input history (i.e., the i, ;’s) on the chan-
nels in A up to and including time ¢t — 1 (Note: not up

to time t—this is due to the intended application of this
definition).

Note that for any set of channels X, In-Seq-Event)  is
the singleton set {;}. In other words, an event in
In-Seq-Event, 1 represents the occurence of a particular
input history on A up to time 0; the only such event
is that “nothing happened before time 1” since noth-
ing can happen before time 1 and all outcomes in Q;
are members of the event specifying that “nothing hap-
pened before time 1”.

Note: we call this set “In-Seq-Event” because each of
its elements is characterized by a unique predicate on
the sequence of inputs on the channels in A.

Definition 4.2 For every positive integer t, and for
any set of channels, A = {c1,¢a,...cn}, define Out-Seq-
FEvent, ; as follows.

Out-Seq-Eventy ; =

{seP()|
(3 001,1)0c1,27 ce .0y t=-1,

Ocy,150¢5,2y - -+ Ocg t—~1,

0cp,1)0¢,,25 - - «Ocp,t—1 € 0)
(V(ex, B,7) € )
[(a,8,7) € 5 <=
(VeeA)(Vjel.t—1)
(Ble, 5] = oc 311 }

Definition 4.3 For every positive integer t, and for
any set of channels, A = {c1,c2,...¢cqa}, define Final-
Out-Event) ; as follows.

Final-Out-Event)y ; =
{s €P() |
0cy0cy) - - - Oc,, € O)
(V&C'vﬂ,‘r) € Qt)
(a,8,7) € s =
(Ve e )
(Ble,t] = oc]] }
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Now we can give our definition of information flow se-
curity.

Definition 4.4 Given a system £ = (C,I1,0,S,50,T),
a set of high channels H and a set of low channels L
such that H and L are disjoint and HU L = C, we
say H4+ L (read H does not flow to L) if and only if
for any high and low behaviors H and L, anyt e N T,
any ay € In-Seq-Eventy ,, any By € Out-Seg-Eventy ,,
any ay, € In-Seq-Event; ,, any Br € Out-Seq-Event .,
and any l; € Final-Out-E’ventL,t, ’

PlarNBLNag NPy)>0=>
Pt(lt|aLnﬂLnQHﬁﬂ}1)=Pg(1,|aLﬂﬂL)

The basic intuition of this definition is that the probabil-
ity of a low output may depend on previous low events,
but not on previous high events. In effect, this pre-
vents low vsers from gaining any information about the
high environment’s behavior by observing low outputs.!
Below, we give a theorem that supports this intuition.
Further, in the next section we will show that this in-
tuition 1s also supported by an information theoretic
formulation of information flow.

Wittbold and Johnson define the notion of nondeducibil-
ity on strategies [15]. We can define nondeducibility on
strategies in the terminology of this paper as follows.

Definition 4.5 Given a system £ = (C,1,0,S,50,T),
a set of high channels H and a set of low channels L
such that H and L are disjoint and HUL = C, Z s
nondeducible on strategies if for any timet € N +, any
e € P(:) such that e 1s characterized by a predicate on
the inputs and outpuls occuring on low channels up to
time t (i.e., e is an event that is observable to the low

1Given that (as stated in section 1) our goal is to prevent
information flow from high inputs to low outputs, one might think
(and in fact for some time the author thought) that the weaker
condition P(ar NBr Nay) > 0= Pl | ap NBLNay) =
Pi(l¢ | o N BL) would be sufficient. However this is not the
case. For example, [15, example 2.3] satisfies this weaker condition
but contains a covert channel. Intuitively, the problem with the
weaker condition is as follows. The nondeterministic transition
function T may be legitimately used to obscure the high input
from the low output (e.g., as in an encryption device). However,
if the high environment gains knowledge (via its output from the
system) of the (nondeterministically generated) value to be used
in obscuring its input ahead of time, then it can modify its input
value accordingly and successfully transmit information to the low
environment. Including the previous history of high outputsin the
lefthand conditional probability ensures that internally generated
probabilistic behavior that is crucial to the security of the system
cannot be observed by the high environment and compensated for
in its input.

On the other hand, the definition as stated is too strong. For
example, a system that probabilistically generates a random num-
ber n (via the transition function T'), outputs n to a high channel,
and then outputs n to a low channel is intuitively secure (with
respect to our requirements) but does not satisfy our definition of
security. We hope to address this concern in future work.



environment), any low environment behavior L, and any
two high environment behaviors H and H',

Pui(e) > 0= Purg(e) >0

Intuitively, nondeducibility on strategies ensures that
the high environment’s behavior cannot influence the
possibility of a particular low event occurring. With
the mathematical machinery developed in this paper
thus far, we can state a stronger, probabilistic version
of nondeducibility on strategies that ensures that the
high environment’s behavior cannot influence the prob-
ability of a particular low event occurring. We believe
that this probabilistic version rules out aﬁ probabilistic
covert channels in addition to the covert channels ruled
out by standard nondeducibility on strategies.

Definition 4.6 Given a system T = (C,1,0,5,50,T),
a set of high channels H and a set of low channels L
such that H and L are disjoint and HUL = C, T
is probabilistically nondeducible on strategies if for any
timet € Nt, any e € P(Q;) such that e is characlerized
by a predicate on the inputs and outputs occuring on low
channels up to time t, any low environment behavior L,
and any two high environment behaviors H and H',

Pris(e) = Pura(e)

The following theorem lends support to the claim that
our definition of security prevents low users from gaining
any information about the high environment’s behavior.

Theorem 4.1 Given a system T = (C,1,0,S,0,T),
a sel of high channels H and a set of low channels
such that H and L are disjoint and HUL=C, if H» L
then T is probabilistically nondeducible on sirategies.

Proof: omitted due to page limitation. O

Corollary 4.1 Given a system T = (C,1,0,5,50,T),
a set of high channels H and a set of low channels L
such that H and L are disjoint and HUL=C, if HH L
then T is nondeducible on strategies.

Proof: follows trivially from theorem 4.1 and defini-
tions 4.5 and 4.6. O

5 Relationship to Information Theory

The goal of this section is to show that H+» L implies
that the capacity (in information theoretic terms) of the
channel from H to L is zero. Unfortunately, due to the
generality of our system model (e.g., it has memory ie.,
an internal state), inputs from the receiving end o the
channel (i.e., L) and feedback to the sending end of the
channel (i.e., H)), there is no existing information the-
oretic formulation of its channel capacity. For example,
Shannon’s original formulation of channel capacity is for
discrete memoryless channels (with no inputs from the
receiver and no feedback to the sender) [13]. So, in this

section, we motivate and formulate a definition of the
channel capacity for our system model. In future work,
we plan to justify our definition of channel capacity by a
coding theorem analogous to Shannon’s coding theorem
for discrete memoryless channels.

We begin with a standard definition from information
theory—that of the mutual information between two
systems of events (see for example [1]). Intuitively, the
mutual information between two systems of events is
the average amount of information that is gained about
one system of events by observing the other system of
events.

Definition 5.1 Let S; = {El,Eg,...,Em} and S; =
{Fy, Fy,..., Fp} be sets of mutually disjoint events. The
mutual information between Sy and S is defined as:

IR P(E; N F)
I(S:;S7) = P(E; N F;)1 Bl Sl Bl LA
(Sis)=3 2 PENE) o8 (FzsrEs)

Mutual information is the basic information theoretic
definition that is used to determine a communication
channel’s capacity. In the typical application of this
definition, the Ei’s model inputs to the communication
channel being analyzed, and the Fj’s model outputs
from the channel. This interpretation of the E;’s and
the Fj’s follows from the common assumption that each
output (or output block) is associated with (i.e., derived
from) a single input (or input block). This assumption
is true when the communication channel being analyzed
is memoryless (viz., memoryless in the sense that after
a given input has been transmitted, the channel does
not make any further use of that input), which is com-
monly the case for communication channels. In fact,
this is the assumption made by Shannon in his origi-
nal definition of the capacity of discrete channels with
noise [13]. However, the covert channels that we are
concerned with may or may not be memoryless. In gen-
eral, a high input may affect a low output at any later
time (i.e., a general purpose computer system may have
mem)ory of previous inputs for an indefinite period of
time).

To account for the fact that we need to analyze sys-
tems with memory and feedback, we interpret the E;’s
as histories of high inputs and outputs from time 0
through time t — 1 (i.e., S1 = In-Seq-Eventy: x Out-
Seg-Eventy ;) and the Fj;’s as low outputs at (only) time
t Si.e., S, = Final-Out-Eventy ;). In this way, we can
calculate the mutual information between the low out-
put at time ¢ and the entire history of high inputs and
outputs from time 0 through time ¢ — 1.

Even with this interpretation, we cannot apply the
above definition of mutual information directly. The
reason is that the recipient of the low outputs has
some additional information—namely the previous his-
tory (i.e., the history from time 0 throu, h time t — 1)
of inputs and outputs on the low channels. This addi-
tional information may increase or decrease the quan-
tity of information that is gained about the previous
history of high inputs by observing the low output at




time t. Fortunately, there is another concept from infor-
mation theory that captures this situation perfectly—
conditional mutual information. Intuitively, the mutual
information between two systems of events, conditioned
on a third system of events, is the average amount of in-
formation that is gained about the first system of events
by observing the second system of events, given that the
third system of events is already known.

Definition 5.2 Let S; {E\,Ea, ..., E1}, S2
{F1,F3,...,Fn}, and S3 = {G1,G3,...,Gn} be sets of
mutually disjoint events. The mutual information be-
tween S; and So, condilioned on S3 is defined as:

1(51;52 IS;;) =

I m n

S P(EinF; N Gy)log

j=lk=1

( P(E;NF; | Gy) )
P(E; | Gi)P(F; | Gi)

i=1

Interpreting the E;’s and the Fj’s as above, and the
Gy’s as histories of low inputs and low outputs from
time O through time ¢t — 1 (i.e., S3 = In-Seg-Eventr X
Out-Seq-EvcntL,,? we can make the following definition
of the “capacity” of the communication channel from
high to low. Intuitively, the capacity of a channel is the
least upper bound on the rate at which information can
be reliably transmitted over the channel.

Definition 5.3 The channel capacity from H to L is
defined as:
C = lim C,

N — 00

where C,, is given by:

I(  In-Seq-Eventy;,
Out-Seg-Eveniy ;;
Final-Out-Evenig ; |
In-Seq-FEventy ;,
Out-Seq-Eventy ;)

Cn

S|

max
H,L

where rplal)‘((X) is the mazimum value of the erpression

X over all possible values of H and L.

Note that the conditional mutual information I appear-
ing in the definition of C, is defined in terms of Py,
which is defined in terms of £, H, and L. Since C, is
maximized over all H and L (i.e., H and L are max-
imized out of the expression), Cy,, and hence C, is a
function of only ¥.

Gallager [1, pages 97-111] gives a probabilistic model
of a “discrete finite state channel” and a definition of
channel capacity for his model. His model differs from
ours in that there is no input from the receiver (i.e., L)
and he considers state machines with a set of possible
initial states (rather than a single initial state). Gal-
lager also proves a coding theorem for his model stating
that information can be reliably transmitted at rates ar-
bitrarily close to a channel’s capacity but not above the
capacity. This coding theorem provides justification for
the “correctness” of his definition of channel capacity.
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Our definition of channel capacity for our model is
closely related to Gallager’s and we believe that an
analogous coding theorem can be stated and proved to
provide justification for our definition. As mentioned
above, we plan to prove such a coding theorem in fu-
ture work. For the time being, the skeptical reader may
convince himself of the plausibility of this definition by
comparing it with [1, equations 4.6.6 and 4.6.7)].

Given our definition of channel capacity, we can now
state and prove a theorem relating our definition of in-
formation flow security to our definition of channel ca-
pacity.

Theorem 5.1 Given a system & = (C,1,0,S,50,T),
a set of high channels H and a set of low channels L
such that H and L are disjoint and HUL=C, IfH/4 L
then the channel capacity from H to L is 0.

Proof: Suppose that H+ L for the given ¥, H and,
L. Let H and L be arbitrary high and low environment
behaviors, respectively, and let t € N * be an arbitrary
time. Then, by definition,

I(In-Seq-Eventy s, Out-Seq-Eventy +;
Final-Out-Eventy ; |

Pg(aH NPy NbLNar ﬂﬂL)-
Py(agNBrnbrlarng )
log (Pl(ﬁHngﬁﬁaL:ﬁLl)"lsi(I}’Ll:LnﬁL))

PagNBgnbrNarNPL)-

lo (P,(aunﬁnﬂbx. NarNBL)Py(ar ﬁﬂL))
&\ Pi(annBunaLnBL)Pi(brnarnpL)

)

PagnNPBuNbrNar N B)log (1)

In-Seq-Eventy 4, Out-Seq-EventL‘,)
am,Brbr,aL,fL (
am,BH,bL,aL,BL (
Pi(ag NPy NbNearLNPBL)
E log (Pcﬂbt.loruﬁﬁHnaLnﬁL 2)
am,BHbr,aL,BL Pe(brlarnbe
Now, since H-/ L, we have:
ag,fubr,oL,fL
=0
Since this holds for any H, L, and t, we know that for

any n,

I( In-Seg-Eveniy ,

1 Out-Seq-Eventy ;;
C, =max|— Final-Out-Eventr,; |
HL | n= In-Seq-Eventy ;,
Out-Seg-Eventy, )
=0

Therefore, C = 0. D

6 Verification

It is not immediately obvious that H# L can in princi-
ple (let alone in practice) be verified for nontrivial sys-



tems. In particular showing that H+ L entails verifying
an expression involving P; (which is defined in terms of
H and L) for any high and low behaviors H and L.
Since H and L are sets of probability measures, and
a probability measure has [0, l} as its image, H and L
range over an uncouniable set of possibilities. Hence, we
cannot enumerate all possible behaviors H and L and
verify that the expression holds for each.

Rather than a condition involving P;, what we need
is some condition(s) involving T (i.e., the transition
function that defines the system’s internal probabilistic
choices) that implies the condition involving P;. Since
T is not defined in terms of H and L, we should then,
in principle, be able to verify that H/ L. Such con-
ditions are commonly called verification conditions. In
this section, we give such a verification condition and in
appendix B, we prove that it implies H/ L.

First, we define a convenient shorthand for the product
of the probabilities associated with a sequence of inter-
nal system choices (as given by the system transition
function T).

Definition 6.1 For any t € N 7Y, define T* : Ii_y x
Ot X St — [0, 1] by:

fOT‘ any oy € It—l; any ﬂt € Oh and any vt € Sl;

T'(at-l,ﬁn‘h) =
T(s0, nullc, 7[1], B:(1))-
[Tica T(eli — 1], aeali — 1), m[i], Bele))

Fort = 0, define T* : Ip x Og x So — [0,1] as the
constant function T(c, B,7) = 1, for all a, B, and 7.

Now we need some notation for “composing” sequences.

Notation: For any time ¢, given two input sequences
ot €Ingand ap € I, let agtoar: € Ic, be the
element-wise composition of the two sequences yielding
the input sequence that is the same as ¢ on channels
in H and the same as arp ¢ on channels in L. We will also
use the element-wise composition operator o on output
sequences and state sequences.

For any timet, any set of channels A, any input sequence
axt € Iz, and any input vector a € [ A, let ) 1@a €
I 141 be the concatenation of a onto the end of ay . We
will also use the concatenation operation @ on output
sequences and state sequences.

Theorem 6.1 Given a system T = (C,1,0,S,50,T),
a set of high channels H and a set of low channels L
such that H and L are disjoint and HUL=C, Hf L
if the following condition holds:

For any time t € N*, for any low output vector
by + € O[L] (i.e., the low output vector at t1me t), for
any low input and output histories (up to time t — 1)
api-1 € I -y and Br iy € Opg—1, for any high in-
pui and output histories ag—1 € Ini-1 and -1 €
On -1, and for any “alternate” high input and ouiput

histories o'y oy € Int—1 and P,y € On—1, if

Z ( T (art-1)—t-20 (aH1-1)=t-2, ) >0

L,t—19° PH,t-1
YESi1-1 ﬂ ¥

and

Z T (erp-1)—t-290 (1) ~t-2, ) >0

—100
WESres ﬂL,t 1 ﬂH,g_ly‘y)

then

T agoamet,
2 Z( L e b)) )

b, YES:

v ( T (ari-1)=t-2 0 (@H,t-1)—~t-2, )

-1 0 -
& Bri-10PBHt-1,7

Z Z ( Tt( ar t-1 OQ'H,'_I,
£ (BL,1-1@bL 1) © (B 1—1@bH 1), 7)
H,t YES:

> ( T (apt-1)-t-2 0 (@l 1)—t-2, )

ﬂL,t—l o ﬁ}{,t-1 Y

YESi-1

We will refer to the above condition as the “verification
condilion”.
Proof: see Appendix B. O

To convey some of the intuition behind this theorem,
we give a rough sketch of the proof here. The interested
reader can of course find all of the details in Appendix
B.

In Lemma B.2 (in Appendix B) we show that

TY( =10 QH 1,
z Z ( ?ﬂLLft—ll@lZf,t);(ﬂH,t—l@bH,t))'Y) )

bHu,t YES:

T (T"‘( (aL,t—l)—-t—Z°(°‘H.t-1)-f-2’)

Bri-1°PHt-1,7
Y€S1-1

is (under certain conditions) equal to
Pi(br | art-10 Pri—1 Nape—1 0 BH,t-1)

Therefore, the verification condition says (roughly) that
for any low output vector br ; (at time t), for any low
input and output histories (up to time t —1) ar -1 and
Br,¢—1, for any high input and output histories ag -1
and By ¢-1, and for any “alternate” high input and out-
put histories a’H,,_l and ﬂ’H,,_l,

Pi(bry | ar-1NPri-1 Nam—1N ﬂH,t-ll) =
Pbrs | ap-1NPri-1 Ny 10 By _1)




This can then be used to show (still speaking somewhat
roughly) that for any low output vector bz (at time
t), for any low input and output histories (up to time
t—1) ap -1 and Br ¢-1, for any high input and output
histories ap¢—1 and By -1,

Pi(bp | ar -1 NPLi—1Nage—1 N PHi-1) =
Pbr: | api-1NBLi—y

which says that H#/ L, thus completing the proof.

Note that as desired, this theorem provides us with a
verification condition that is stated solely in terms of
the system’s internal transition function T. Therefore,
it seems that (at least in principle) it is possible to ver-
ify that H- L. Furthermore, the verification condition
looks like 1t is conducive to a proof by induction, in
which case we can further reduce the burden on the sys-
tem verifier by providing a general purpose “unwinding”
of this verification condition into a set of verification
conditions that are even easier to verify.

7 Conclusions and Future Work

Since theorem 6.1 gives a verification condition that is
stated solely in terms of the system’s transition func-
tion (rather than in terms of probabilities that depend
on the environment’s behavior), it and theorem 5.1 to-
gether provide a condition that can in principle be veri-
fied (and we believe that with automated support it can
be verified in practice) and that implies that the capac-
ity of all covert channels put together (including storage
channels, timing channels, noiseless channels, and noisy
channels) is zero.

However, there are (at least) two remaining links that
need to be taken care of before this work can be called
complete. First of all, we need to prove that our defini-
tion of capacity is actually an upper bound on the rate
at which information can be transmitted from high to
low. Second, we need to provide a connection between
source code and our system model. We plan to provide
this connection in the form of an operational or denota-
tional semantics for a high level progamming language.
After these two remaining links are complete, it will be
possible to establish that a given piece of source code in-
troduces no covert channels of any kind into a computer
system.
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A The Proof of Theorem 3.1

Proof: We must show that for all # € N * the follow-
ing three conditions hold: (1) for all A € P(£), P.(A)
is nonnegative, (2) P(;) = 1, and (3) for any count-
able set of mutually disjoint events { 4; }, P.({; A:) =
i Pi(Ai). The proof is by induction.

Base case: To show (1), let A € P(Q;) be an arbitrary
event. By definition,

Hl({m(a[l%)})'
TS0 maties (1, 4(1)
Pl(A) - E s 1'nu y Y ’ ’
f(a,B, 45
(a,8,7)EN ! (0 s 7) €
0, otherwise.
Since H; and L, are probability measures, each

of the H,({my(«[l1])}) and Ll({”L(a{UD}) terms
are nonnegative. Also, we know from defini-
tion 2.1 (i.e., the definition of a system), that
T(s0,nulle, 7(1], B(1]) = P,q ny, (7(1], A1) and that
P.o,nullc is a probability measure. Therefore,
T(s0,nullc, v[1], B{1]) is nonnegative. Since all terms
in all summands are nonnegative, Py(A) is nonnegative.

Now we show (2). By definition,
P(1)

Hy({mu(a[1])})-
Li({mc(a1])}):
- ) T(s0, nulle, v[1], A[1]),
if (a,ﬂ,?') € Ql;

0, otherwise.

(a,8,7)€M

Hy({ra(al1])
e T‘(ﬁé’,'.ﬁfﬁ{c{b 11, 811])

Hy({an})
= > Li(fer))
ap€l[H]) T(soynullC77[1]7ﬂ[1])
aLE][L]
BE€EOc,1
Y€51
IRACTN
GHEI[H]
Y L)
- ap€l[L]
3" T(s0,nullg, (1], A1)
BEOC,1
YES1



E Hi({au})
ay€l[H]

Y Li{es))
a €I(L)

3" Py nun. (711, 81)

B€Oc,1
YES1

Since Hy, Ly and P,y 1), are all probability measures,
and each is being summed over its entire sample space,
each summation sums to 1. Therefore, P,(Q;) = 1.

Now to show (3), let { A; } be a countable set of mutu-
ally disjoint events in P(£2;). By definition,

PI(U.'A-')
Hy({ma(al1))})-
Ll({wf(a[u)}g-
-y | TG0 mullo (A,

(a B ‘7)691 lr (a1 ﬂy 7) G U'- A‘;

0, otherwise.

i
T(s0, ;mllc, 7?1], A1),
if (@, B,7) € As;

0, otherwise.

>

i (a,B7)EM

Z:P:(A.')

Therefore, P, is a probability measure.

Induction case: Suppose t > 2. The induction hy-
pothesis is that P;_, is a probability measure.

To show (1), let A € Q! be an arbitrary event. By
definition,

Pz_l({(C(a),C(ﬁ)‘cg“r))})'

Hy ppc (e encon({malalth})-

Lexp(¢anmrc@){mealth}):
By a;

otherwise.

r@A)= >

(a,8,7)€N
0,

Since P;_; is a probability measure (by the induction
hypothesis), P;—1({(¢())}) is nonnegative. Since all of
the other terms are nonnegative (by arguments analo-

gous to the base case), P;(A) is nonnegative.
Now we show (2). By definition,

Py(2)
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Pr_1({(4(a),€(8), ONY)-

Hi xnicanrn@n{malalt)h})-
I DR s 1< S
(@,8,7)€EM if (o, B,7) € ;

0, otherwise.

P ({(¢(@),¢(8), <MY
ft.m(((a)),rH(((ﬂ)%({{“I(I(‘Et[]t)]}))})‘
t,x a)),*L Ly A .

TGEEW o 2, 41, At

Pi_1({(e, 8,7)})

H; xu(a)en(e)({ams})

>

(a,8,7)€S

2

Lixy (o), me()({ar,e})
(cpmems \ T(olt - if ol = 1, 7.8)
TES
an,€I[H]
ap€I[L]
= Y Pa{(a,87))
(@.8,7)€Q—1
3= TGt - 1),aft - 11,7, 8)-
pr€e0(C)
1i€S
> Hizu@run{ensd):
ap,€I[H)
Y Lim@m@e{orsd)
ag «€I[L)

S@n_ce by the induction hypothesis P;.; is a proba-
bility measure, and Hi xy(a),xn(8)s Lt,x(a)x(8) and
P,o null. 3¢ all probability measures, and each is being

summed over its entire sample space, each summation
sums to 1. Therefore, P;(2:) = 1.

Now to show (3), let { A; } be a countable set of mutu-
ally disjoint events in P(2;). By definition,

Pt(U.'Ai)
P 1({(¢(),¢(B),C(¥)D)-
ft.m(c(a»,m«(n))({’fﬂ(vigt)]}))})
t,x(C(a)),*L Ly AR .
- TGS 50, s,
(@.8.7)€R if (a, 8,7) € U; 4Ais

0, otherwise.

Pi1({(¢(@),¢(B), ¢(N))-
Ht.m(((a)).m(((ﬂ))(S"’H(a[t])})'
Ly, xg (c(a)re(con({mL(altD})-
TG SN a0, 51, A1),

lf (ar ﬂ’ 7) € Al';

X X

i (a,B,7)ER

0, otherwise.




= ZP:(A:')

Thus, P, is a probability measure; and by induction, for
alte Nt P isa probability measure. O

B The Proof of Theorem 6.1

We begin by stating and proving two lemmas relating
and P,.

Lemma B.1 Let t € N* be any arbitrary time. Let

(a,8,7) € Q be an arbitrary history of the system up
1o time t. Then,

Pg({(a, B, 7)})

=T*((a), 8,7) - Hi({mu(a[1D}) - Li({7L(a[1])})-
H:ﬂ Hi,fn(a-i-x),I'H(ﬁ-.i-:)(”H(a[i]))’
H:=2 Ll'yn.(a-.'-x)y’fL(ﬂ-..-n)(”L(a[i]))

Proof: The proof is by induction.

Base case: ¢t = 1. Let (a,3,7) € Q) be an arbitrary
history of the system up to time 1. By definition,

Pl({(a! ﬂ! 7)})

Hy({ru(a’[1])})-
PN, s
'if (a','ﬁ',‘y’])’ € {%a',ﬂ, Nk

0, otherwise.

(C IR DTN

= Hy({ru(a[1])})- LIS{"L(OI[I])})'
T(s0, nullc, 7{1}, 8[1])

=T (e~0,8,7) - Hi({ma(a[1])}) - Li({xc(a[1)})-
Thics Hirn(amics)mn(paccn)(Tr (alil))-
ics Lixs(amics) e (Bmieny (L (afi)))

Induction case: ¢ > 2. The induction hypothesis is
for any (a,ﬂy 7) € Qt—l;

Pi_1({(e, 8,7}

= Tt_](a_.g._z, ﬂ: 7)
H({(ru(a1)}) - Li({(7L(a(1])})-
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-1 .
H::z Hi’,ﬂ'n(d-i-x ) ®E(Bmsio )(1!’”(0[1]))-

H:;; Li,”l.(“—oi—l )7L (ﬂ-.i—x)("rL (a[i]))

Let (a, 8,7) € £ be an arbitrary history of the system
up to time t. By definition,

P({(e, 8,7}

Pt—l({(C(al):C(ﬂ’)s CY/I))})
L:,m(c(a')).mc(n')é Wf(r(gr[;%t)]}))}

L (C(a')),xy 1] Tl
= N i o,
if (&/,8,9) € {(a,8,7)};

0, otherwise.

= p‘_l({(c(a),C(B),C?))})
t,m(((a))ym(c(ﬁ)& "1(1(‘[;5‘)]}))})‘
TOE SR N 0. 81
Applying the induction hypothesis, we have:
= TN aei-2,¢(B),¢(7))-

Hi({(ru (1)} - Li({(7L(a[1])})-

n:_:.; Hi.’n(a—..‘-x )X H(Bioa )(”H(a[i]))’

).

(a,8' 7)€,

’

[TiZ2 Zirs(aics)rn (oo (Te(ali]))
Hixucanenen{ma(a’ith)):

Lt x¢anmen{me(@’t)})-
T(Y[t - 1), et - 1}, ¥'[t), B'[2])

=T'(¢(a), 8,7) - Hi({ma(a[1])}) - Li({mL(a(1))})-
TTicz Hirn(acics)mn (P ) (T (li])-
iz Lisro(acics)rs (Bson) (T (ali]))

Therefore, by induction the lemma holdsfor allt € N +.
O

Lemma B.2 Lett € N* be any arbitrary time. Let
b,y € O[L] be an arbitrary low output vector (by,
should be thought of as the low output vector at time
t). Let a1 € Ips-y, Bri-1 € Opy-y, ams-y €
Hit-1, and By € Ogy—1 be arbiirary input and
output histories of the low and high channels, re-
spectively. Further, let E(by ;) € Final-Oui-Eventy ,
be the event representing the occurrence of the out-
pul vector by, on the low channels at time t. Simi-
larly, let E(ap:-1) € In-Seq-Evenly s—y, E(Br1-1) €
Out-Seq-Eventy sy, E(amgi-1) € InputSequence-



Fventy;_y, and E(By:-1) € Out-Seg-Eventyy_, be
the events representing the occurence of ap+_1, B

ag-1, and By _1, respectively. Then,

Py( E?aL,t—l) NE(BL:-1)N
E(ag-1) N E(BHp-1)) >0=>

Py(E(bL ) EgaL,t—l) NE(Br:-1)N
E(an-1) N E(BH,1-1))

)

__ b €O[H] 7YES

T (ap-10aH-1

L,t-1,

(BL,t-1@bLs) 0 (,ﬂH,t-l@bH,t); 7)

>

Br,t-10 BH-1
YESt-1 ' ! 7

Proof: The proof is in two cases.
Case 1: t = 1.

T (ar,i—1)—1-2 0 {af,i-1)—t-2,

Pi(E(br,1) | E(er,0) N E(BL,0) N E(as,e) N E(BH,))

Py(E(br,1) N E(are) N E(BLo)N

E(anp) N E(BHo

= Pi(E(aL,0) NEBLo) N E(amo) N E(BH0))

_ P(E(bLy
(N

Hy({mu(al1])}) - Llﬁ{n(alll)})-

T(s0, nullg, ¥[1}, A1),

if (a, 8,7) € E(bL,1);
_ (eBim)ER 0, otherwise.
= 1

2

_ bua€O[H] 7€ES:

Z T(s0,nullc, 4(1],bL,10 bx,1)

- 1

z E T ar00ano,br,10bmH,1,7)

_ by, €O[H) €S

Z T%(oL,0 © @r,0,BL,0 © BH,0,7)

Y€So

Therefore, the lemma holds for t = 1.
Case 2: t > 2.

P‘Eb,t Ea,g_ ﬁEﬂ,t_ﬂ
(BO0 | Blora-s) O o020

Py(E(bpt) N E(ar,i-1) NE(BrL-1)N
E(agi-1)N H -1

- Pt(E(aL,t-l)nE(ﬂL,t—l)n
E(am-1) NE(BH-1))
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( P_y({(ars-10ame_1, \
Br.i-1°BH-1,C(M)})
= | et
tap,e-1)0L,e-1)\\GL,t)})"
:;:gg«{l] \ T(y[t -1 ,(aL,)t—loaH,t—l)[t -1],
b4,4€O[H) 7[th b0 be) J
- YES:
( Pi_i({(aLt-10am,1-1, \
BLt-10 Ba—1,¢(7)}):
E Ht.uu.c-x),ﬁn,t-l)({aH,')})’
ap s€l[L] tape)fr.)({ar,0)})
ety \ TOU T (erisoamenlt— 1),
o \ 71t bi) /
YES:
P i({(ar-10ams-1,
.BL,t—l ° BH,t-l,C(‘Y))})‘
T(y[t = 1), (aLt-10 an-1)[t — 1],
5H:;§g'[H] ‘y[t], brso bﬁ'g)

2

YESe-1

Pt—l({(aL,t—l OQH -1,
Bri-10BHt-1,7)})

Applying Lemma 6.1, we have:

bu,¢€O[H)
YES:

_\

T Y((aL,t-10 OHt-1)—t-2,

Br,i—10 Ba—1,¢(7))
Hi({ans-1{1)}) - Li({er,e-1(1]})
:.-:; Hi,an,t—1~i—1,ﬂn.c—l—oa-x (aﬂ,t—l[i])'

-1 .
H:=2 Li'aL,l—l—i—l BLt—1—i-1 (Q‘L,f—l[zl)'

- afp1-10QH t— -1],
B T

- T (oL, -1 0 0H,t-1)—1-2,

2

Br,t-19°BH-1,7)

Hi({en,e-1[1DY) - Li({er,-11D})-

V€St :;; Hiopmimicy,Bri—12i1 (aH,f—I[i])‘
H:;; Li,"t.,:-x-..'-x.ﬂn.u-:—.‘-n (aL,!—l[i])
T*((ag,e—1 © 0H1-1)—1-2,
Brt-10BH-1,$(7))

T(y[t — 1], (aL,i—10 ag-1)[t — 1],

b €LY\ 3{t], b0 b)

a Z T Y(oL,1-10 AH1—1)—t-2, )
BL,t-10 PHi—1,7)
YES1-1




T'(¢(arL,t-10am_1),
ﬂL,t—l@bL,t o ﬁH,¢—1@bH,t, 7)

bn,1€O0[H]
— YES:
Z T ((ap—1 0 ane-1)—i-2,
Bri-10PBH1-1,7)
YESt—1

Therefore, the lemma holds forallte N*. O
We can now prove theorem 6.1.

Proof (of Theorem 6.1): Assume that the verifica-
tion condition is true. Let ¢ € Nt be an arbitrary time
and let by ; € O[L] be an arbitrary low output vector at
time ¢t. Let E(br ;) € Final-Out-Event , be the event
representing the occurrence of the ouput vector by ; on
the low channels at time 2.

Note: in the following, we will continue to use the nota-
tional convention that when E(z) is an event represent-
ing the occurrence of a particular part of the system’s
history (e.g., the history of low inputs up to time t), then
z will represent that particular part of the system’s his-
tory. For example, if E(ar ) is the event representing
that the history of high inputs up to time t was some
particular sequence «, then we will freely use ar; to
represent the sequence a.

Now let E(arp 1-1) € In-Seq-Eventy, ¢, E(BLt—1) € Out-
Seg-Eventr ¢, and E(ay—1) € In-Seq-Eventy, be ar-
bitrary histories of the low input, low output, and high
input, respectively, such that Py(E(ar,:—1)NE(BL,1-1)N
E(ag—-1)) > 0. Consider the set ® of all events cor-
responding to possible high output histories up to time
t — 1 given E(ar,-1), E(Br,1-1), and E(ag,—1):

o= { E&ﬂH,t—l;l
BH 1-1) € Out-Seq-Eventy and
P(E(agi-1) N E(BL -1)0
E(ag,-1) N E(BH1-1)) >0}

First, note that the elements of ® are mutually disjoint
and that

( P(E(ari-1) NE(Br,-1)N )

E(api-1)NE(BL:-1))
E(BH,1-1)ED

= P(E(art-1) N E(BL,-1) O E(an,i-1))
Next, note that

P(E(aLi-1)NEBri-1)NE(an,-1)NE(BH,.-1)) >0

implies that

z ( T ((@r,i-1)—t-2 © (@H,t-1)~t-2, ) >0

Brt-1°BH1-1,7
YESt-1

Now, consider any two elements of ®: E(fy,-1) and
E(B¢-1)- By Lemma 6.2,

.Pt(E(bL’g) I E(LYL ,_1) ﬂE(ﬁL"_l)n
E(am1-1) N E(By,e-1))

Tt(OtL t—-10QH t—1

-1@b ’ _1@b
3H,1€0([H] ('BL't 1 L't)o(ﬁH" 1 HJ)v‘Y)

YES:
Z T Y(ar,1-1)=t-20 (aH,t~1)=t-2,
Lt-10BH1-1,7)

YES-1

and

P(E(br:) | E(ap—1) N E(BLi—1)N
ami-1) N EBy,_

T'(afft_lo@%”"_l' ' @b

b1, €O[H] (BL,t-1@bL,1) © (B -1 @bH,1), 7)
Y€ S:
SR g

ﬂL,t—l o ﬂlﬂ,g-la'f

YESi-1

And so, by the verification condition (which holds by
assumption),

P(E(bL,t) | E(arg-1) N E(BLe-1)N
E(an,i-1) N E(By,i-1))

= P(E(br,y) | E{ag,—1) N E(BL,i-1)N
QH,t—l) N IH,i—l)

Since this holds for any two elements of ®, there must
exist some constant C € [0, 1] such that for any z € &,
P:(Cl?(bL,:) | E(ar,-1) 0 E(Bri-1) N E(ags-1) N z)

Now,

W(E(b E - E(BLt- _
(P SR ) =,

for any E(By:-1) € ®

P(E(br )N E(ag,—1) N E(BLi-1)N
Elapgi-1) N E(BH1-1))

Pt(E'(CYL,t—l) N E(ﬂL,t—l)n
E(an-1) N E(BH,1-1))

for any E(Bh,-1) € @

=C,

Pg E( ,g)ﬁE(a = )ﬂE(ﬂ RES )ﬂ
> ( e S )

— Py(E( =1 nE(ﬂ _:-1)0
=c ( ( E((O‘LH.t—Z)n E(éfl,t—l)) )’

for any E(Bu-1) €®



Py(E(br,) N E(ag,:-1)N
- (BB R sy )
= P(E(aL,-1) N E(BL,e-1)N )

C- (
E(ams—1) N E(Br -
E(BH,1-1)€P (em-1) N E(BH,t-1))

= Py(E(brs) N E(aL,-1) N E(BL:—1) N E(ant-1))
=C P(E(aL,-1) N E(BLt-1) N E(an,i-1))

= Py(E(br1) | E(ar,i-1) N E(BL,i-1) N E(ami-1))
=C

Therefore, we know that for any E(ar :-1), E(BLt-1),
E(ag-1), and E(Bu1-1), P(E(ap,-1) N E(Br1-1)
N E(ame-1) N EBui-1)) > 0 = P(E(bry) |
E(api-1) N E(BLi-1) N E(ane-1) N E(Bre-1)) =

l}:églc?e(’bt, t_}LJLE.‘(SL,t—l) N E(BL,1-1) N E(an,s-1)), and

References

[1] Robert G. Gallager. Information Theory and Re-
liable Communication. John Wiley and Sons, Inc.,
New York, 1968.

[2] J. A. Goguen and J. Meseguer. Security policies
and security models. In Proceedings of the 1982
IEEE Computer Society Symposium on Compuler
Security and Privacy, Oakland, CA, 1982.

[3] James W. Gray, IIL. Information sharing in secure
systems. In Proc. Computer Securily Foundations
Workshop III, Franconia, NH, June 1990.

Daryl McCullough. Specifications for multilevel
security and a hook-up property. In Proceedings
of the 1987 IEEE Computer Society Symposium
on Computer Security and Privacy, Oakland, CA,
1987.

[5] Daryl McCullough. Noninterference and the com-
posability of security properties. In Proceedings
of the 1988 IEEE Computer Sociely Symposium
on Compuler Security and Privacy, Oakland, CA,
1988.

[6] John McLean. Security models and information
flow. In Proc. 1990 IEEE Symposium on Securily
and Privacy, Oakland, CA, May 1990.

[7) Jonathan K. Millen. Covert channel capacity. In
Proceedings of the 1987 IEEE Computer Sociely
Symposium on Compuler Securily and Privacy,
Oakland, CA, 1987.

34

[8] Jonathan K. Millen. Hookup security for syn-
chronous machines. In Proceedings of the Com-
puter Securily Foundations Workshop III, Franco-
nia, NH, June 1990.

[9] Ira S. Moskowitz. Noise effects upon a simple
timing channel. NRL Memorandum Report 6740,
Wasl)ningt.on, DC. Submitted 9 July 1990 (To ap-
pear).

[10] Amir Pnueli and Lenore Zuck. Verification of Mul-
tiprocess Probabilistic Protocols. Distributed Com-
puting, 1:53-72, 1986.

[11] William Pugh. Skip Lists: A Probabilistic Alter-
native to Balanced Trees. CACM, 33(6):668-676,
June 1990.

[12] John Rushby. A trusted computing base for embed-
ded systems. In Proceedings 7th DoD/NBS Com-
puter Security Initiative Conference, pages 120-
136, Gaithersburg, MD, September 1984.

[13] C. E. Shannon. A mathematical theory of commu-
nication. Bell Systems Technical Journal, 27:379-
423, July 1948. Republished in: C. E. Shannon and
W. Weaver, The Mathematical Theory of Commu-
n;cation, University of Illinois Press, Urbana, IL
1949.

[14] David Sutherland. A model of information. In Pro-
ceeding of the 9th National Computer Security Con-
ference, Baltimore, MD, September 1986.

[15] J. Todd Wittbold and Dale M. Johnson. Informa-

tion flow in nondeterministic systems. In Proceed-
ings of the 1990 IEEE Computer Society Sympo-
sium on Computer Security and Privacy, Oakland,

CA, 1990.




