Detecting Format String Vulnerabilities with Type Qualifiers*

Kunal Talwar

{ushankar,kunal jfoster,daw

UmeshShankar

Jefrey S. Foster
}@cs.berkeley.edu

David Wagner

University of California at Berkeley

May 11,2001

Abstract

We presentinew systenfor automaticallydetectingor-
mat string securityvulnerabilitiesin C programsusing
a constraint-basetype-inferenceengine. We describe
new techniquedor presentingheresultsof suchananal-
ysisto the userin a form thatmakesbugseasierto find
andto fix. The systemhasbeenimplementedandtested
onseveralreal-world softwarepackagesOurtestsshav
thatthe systemis very effective, detectingseveral bugs
previously unknawn to the authorsandexhibiting a low
rate of falsepositivesin almostall cases.Many of our
techniquesare applicableto additionalclassesof secu-
rity vulnerabilities aswell asothertype-andconstraint-
basedsystems.

1 Intr oduction

Securingsystemghatinteractwith maliciouspartiescan
beatremendoushallengelndeedsystemsawrittenin C
are especiallydifficult to securegiven C’s tendeng to
sacrificesafetyfor efficiengy. Oneof themoresubtlepit-
falls facingimplementords the so-calledformat string
vulnerability Sincethe discovery of this failure mode
in the pastyear security experts have identified for-
mat string vulnerabilitiesin dozensof widely-deplged
security-criticalsystemg?2, 4,5, 8,9, 10, 11, 22, 23, 24,
25, 27,30, 35, 43], andattaclershave begun exploiting
thesesecurityholeson a large scale[10, 27], gaining
root acceson vulnerablesystems.It seemdikely that
mary legagy applicationsstill containundiscaeredfor-
matstringvulnerabilities.

Formatstring bugsarisefrom designmisfeaturesn the
C standardibrary combinedwith a problematicimple-
mentationof variable-agumentfunctions. Considera
typical usageof formatstrings:

printf("%s",

buf); (correct)
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dation CAREER Award No. CCR-0093337,NSF CCR-9457812,
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Thefirst algumentto printf() is aformatstringthat
specifiesthe numberandtypesof the otherarguments.
No checkingis done eitheratrun-timeor compile-time,
to verify thatprintf() wasindeedcalledwith thecor
rectnumberandtypesof aguments.Thusthefollowing
innocuous-lookingsimplification of the above call can
bedangerous:

printf(buf); (maybeincorrect!)
If buf contains a format specifier (e.g., “%s),
printf() will naively attemptto readnoneistentar

gumentsoff the stack,mostlikely causingthe program
to crash. The C standardlibrary containsa number
of other similar primitives that put the programmerat
risk for formatstring bugs. Otherexamplesincludethe
message-loggingyslog()  function,aswell asset-
proctitle() , which setsthe X window nameasso-
ciatedwith the currentprocess.

A perhapsunexpected consequencef format string
bugsis thatthey canbe devastatingto security When
a knowledgeableadwersaryhascontrol of the value of
theformatstrings involvedin a formatstring bug, they
canusesto write to arbitrarymemorylocations.For ex-
ample, including the “%r specifierin a format string
causesprintf  -like functionsto storethe numberof
charactergrintedsofarinto alocationpointedto by the
associate@rgument.Whencombinedwith othertricks,
this often leadsto a completecompromiseof security
Techniquedor exploiting format string bugshave been
describecelsavhere[30]; for the purpose®f this paper
the detailsareunimportant.

The main contritution of this paperis to describea sys-
tem for automaticallydetectingformat string bugs at
compile-time. Our systemappliesstatic, type-theoretic
analysistechniquesfrom the programminglanguages
literatureto thetaskof detectingpotentialsecurityholes.
We have implementedur systemasa tool built on top
of anextensibletypequalifier frameavork [19]. We have
testedour tool on a numberof real-world softwaresys-
tems,in the processindependentlyre-discoering se/-
eralformatstringbugsthatwereunknavn to theauthors
atthetime.



while  (fgets(buf, sizeof buf, f)) {
Ireply(200, buf);

}

void Ireply(int n, char *mt, ..) {
vsnprintf(buf, sizeof buf, fmt, ap);

}

Figure 1: A format string vulnerability found in

wuftpd 2.6.0,paraphrasetbr brevity.

Beforedescribingthe ideasbehindour tool in morede-
tail, we discusssomeof the alternatvesto staticanaly-
sis;morearediscussedn Section6.

Onenaturalalternatve to staticanalysisis testing. The
main weaknesof testingis coverage—itis extremely
difficult to constructa test suite that exercisesall pos-
sible pathsthrougha program. Unfortunately a secu-
rity auditoris mostinterestedn exactly the pathsthat
arenever followed in ordinaryoperation.For example,
a major sourceof format string bugs comesfrom error
reportingcode(e.g.,callsto syslog() ). Suchcodeis

triggeredonly onrare,exceptionalpaths andit is easyto

overlook suchpaths—andence suchbugs—withrun-
timetesting.With staticanalysispntheotherhand,vul-

nerabilitiescanbeproactively identifiedandfixedbefore
the codeis everrun.

Anotheralternatve to automatedstaticanalysisis man-
ual codereview. Unfortunately humansare not espe-
cially goodat finding format string bugs by inspection.
Figurel shavsarepresentatie example excerptedrom
a recentversionof wuftpd [2, 43]. The codein Fig-
ure 1 readsa line of text from the network and passes

it to Ireply() , Whereit will laterbe usedasaformat
string specifierto vsnprintf() . The correctsyntax
would have beenlreply(200, "%s", buf) , but

the programmeiomittedthe "%s" . As before,this in-
troducesa serioussecurityvulnerability

In real code, the omission of a format string is of-
ten locatedfar away from the placewherethe require-
mentfor a trustedformat string specifierbecomesap-
parent. In the caseof our wuftpd example, the of-
fending call to Ireply() was not even in the same
file asthe eventualuse of vsnprintf() Figure 1
alsoshavswhy naie staticanalysis—e.g searchindor
all occurrencesf printf(s) andreplacingthemwith
printf("%s", s) —doesnotwork in practice.Very
oftenformatstringbugsoccurwithin wrapperfunctions

to printf() , and thesenon-localizedbugs require
moresophisticate@nalysisechniques.

A third alternatie would be to re-implementhe appli-
cationin a safelanguaggsuchasJava). However, such
an approachis likely to be too costly for mostlegacy
applications.

1.1 Type Systemsfor Finding Format String
Bugs

Formatstring vulnerabilitiesoccurwhenuntrustworthy
data(i.e., datathatcould potentiallybe controlledby an
attacler)is usedasaformatstringargument.Therefore,
in our analysiswe treatall programinputsthatcould be
controlledby the adwersaryas “tainted; and we track
the propagtion of tainteddatathrougheachof the pro-
gram’s operations. Any variable assigneda value de-
rived from tainteddatawill itself be marked astainted,
andsoon. If thereis ary executionpathin whichtainted
datawill beinterpretedasa formatstring by somecC li-
braryfunction,we raiseanerror.

Our approactis thusconceptuallysimilar to Perl's suc-
cessfultaint mode[32, 42], but with animportantdif-

ference. Ratherthan using run-time taint propagtion
(which is more easilyimplementedor interpretedan-
guagessuchas Perl, thanfor compiledlanguagedike
C), we applya statictaint analysissothatwe candetect
bugsbeforethe programis everrun.

We modeltainting by extendingthe existing C type sys-
temwith extra typequalifiers. The standardC type sys-
tem alreadycontainsqualifierssuchasconst ; we add
a new qualifier, tainted , to tag datathat originated
from anuntrustworthy source.We labelthe typesof all
untrustednputsastainted,e.g.,

tainted int  getchar();
int  main(int argc,
tainted  char *argv[]);

The first annotationspecifieshatthe returnvaluefrom

getchar()  shouldbe consideredainted. The second
specifiesthat the command-lineargumentsto the pro-

gramshouldbetreatedasataintedvalue.

We constructtyping rulesso that taint informationwill
be propagtedappropriately Givena smallsetof initial
tainting annotationswe infer a typing for all program
variablesindicatingwhethereachvariablemight be as-
signeda valuederived from a taintedsource.If ary ex-
pressiorwith atainted  typeis usedasaformatstring,
we warntheuserof the potentialsecurityhole. Thisuse
of typeinferencefor automatedletectiorof securityvul-
nerabilitiesin legacy applicationss, to our knowledge,
novel, and we conjecturethat it may find applications



elsavhereaswell.

We would like to emphasizéhat, althoughin this paper
we presentype qualifiersin the context of finding for-
matstringbugsin C programsjn factour implementa-
tion is expresslydesignedo beextensibleto otherkinds
of type qualifiers,andindeedtheideaof atype qualifier
systemcanbeappliedto moststandardype systems.

A key advantageto usingtype qualifiersis thatthey ex-
tendtheexisting typesystemn abackwards-compatible
way. Our tool comeswith default type annotationgor
thestandardC library functions,which allows usto ana-
lyze legacy codefor format string vulnerabilitieswith
little annotationeffort from the code reviewer and no
modificationto applicationsourcecode. At the same
time, type qualifiersprovide away for developersto ex-
pressmore detailedassertionsbouttrust relationships
in theprogram andthereforegprogrammersvhoarewill-
ing to spendtime adding application-specificannota-
tions canreapthe extra benefitsof this additionalinfor-
mation. In otherwords,type qualifiershave the benefi-
cial propertythatthe value one obtainsfrom thetool is
proportionalto the effort invested.

Type systemshave several advantagesover other pro-
gramanalysigechniques:

1. Types are a familiar way to annotateprograms.
We wantto malke it convenientfor programmerso
addinformationto their programsabouttaintedin-
putsandmust-not-be-taintedariables.Type-based
methodsmeetthis goal, becausg@rogrammersre
accustomedo expressingnvariantsusingtypes.

2. Typesare a familiar way to expressthe output of
our analysis. To be useful, when errors are re-
ported,ourtool needgo explain why theerroneous
codewasrejected.Giving a typing on the relevant
programvariablesis away to expresghis outputin
aform thatprogrammerganreadilyunderstand.

3. Typetheoryis well understoodTherearemary ef-
ficient algorithmsknown in the programminglan-
guagescommunityfor inferring and manipulating

types.

4. Typesprovide asoundbasisfor formal verification.
Oncewe have found andeliminatedbugsfrom our
code,it is usefulto havetoolsto verify thatthereare
noformatstringbugsleft. Becausét is well-known
how to build a soundtype system(i.e., onewhere
all programghattypecheckwill beguaranteedree
of formatstringbugs),typesprovide a singlefoun-
dationthat canbe appliedboth to bug-findingand
to softwareverification.

Parser

Prelude Files
Preprocessed Source
Qualifier Lattice

Constraint Generation/Solving

Constraint Database Emacs GUI

Figure2: The architectureof the cqual system.The
C sourcecode and the configurationfiles are parsed,
producingan annotatedAbstract Syntax Tree (AST).
cqual traversesthe AST to generatea system (or
databasedf type constraintswhich aresolved on-line.
Warningsare producedwheneer an inconsistentcon-
straintis generated.The analysisresultsare presented
to the programmetin an emacs-base@&UI, which in-
teractvely queriesthe constraintsolver to help the user
determinehe causeof ary errormessages.

In summarywe focusour attentionontype-basedneth-
ods primarily becausaypesprovide a uniform, under
standablénterfaceto ourtool.

Although our work relies heavily on theoreticaltech-
niquesfrom the programmindanguagesommunity we
emphasizé¢hatour efforts areaimedat providing aprac-
tical tool. Thus,we setout to build a tool thatis easy
to use,efficient on commonhardware, effective at find-
ing typical format string bugs,andunlikely to generate
mary falsealarms.

2 Background

Ourtool is built on top of cqual , a C implementation
of an extensibletype qualifier framework [19]. In this

sectionwe describethe underlyingtheoryanddesignof

cqual , which hasbroadapplicability asan extension
of theC typesystem.

2.1 SystemAr chitecture

Figure 2 shaws the structureof the cqual tool. The
maininputto thetool is thepreprocesse@ codetheuser
wishesto analyze.The useralsoprovidestwo typesof
configuratiorfilesto customizecqual to theparticular
checkingtask. The lattice file describeghe type quali-
fierstheuseris interestedn (Sections2.2and 2.3). The
preludefiles containannotatedunctiondeclarationshat
overridethedeclarationsn the sourcebeinganalyzed.

Given preprocessedC code and configuration files,



cqual performstype inferenceon the program(Sec-
tion 2.4). Finally, theresultsof thetypeinferencephase
are presentedo the userinteractvely using Program
AnalysisMode (PAM) for emacqSection3).

Theconfiguratiorfiles make cqual usablé€‘out-of-the-
box; i.e.,without makingary changego the sourceex-
ceptpreprocessingWe were ableto analyzeall of our
benchmarlprogramswith thesamestandargreludefile
and,in virtually all casesno directchangego theappli-
cationsourcecode. Typically, afew application-specific
entrieswereaddedto a speciallocal preludefile, to im-
prove accuray in the presenceof wrappersaroundli-
braryfunctions(thoughthe GUI indicatesvhich onesto
add). This goesa long way toward makingcqual an
easilyusabletool.

2.2 Type Qualifiers and Subtyping

Tofind formatstringbugs,we useatypequalifiersystem
with two qualifiers,tainted  anduntainted . We
mark the typesof valuesthat can be controlledby an
untrustedadwersarywith tainted . All othervalues
aregiventypesmarkeduntainted . Thisis similarto
theconcepf taintingin Perl[32, 42].

Intuitively, cqual extendsthetypesystenmof C to work
over qualifiedtypes which arethe combinationof some
numberof type qualifierswith a standardC type. We
allow type qualifiersto appearon every level of atype.
Examplesof qualifiedtypesareint , tainted int ,

untainted  char x (apointerto anuntaintedcharac-
ter),andchar x untainted (anuntaintedpointerto
acharacter).

The key ideabehindour framework is that type quali-
fiers naturallyinducea subtypingrelationshipon qual-
ified types. The notion of subtypingmostcommonly
appearsin object-orientedorogramming. In Java, for
example,if B is a subclasof A (which we will write
B < A), thenanobjectof classB canbeusedwherever
anobjectof classA is expected.

Considerthe following exampleprogram:

(1) void f(tainted int);
untainted int a;
f(a);

In program(1), f , which expectstainteddata,is passed
untainteddata. In our system this programtypechecks.
Intuitively, if afunctioncanacceptainteddata(presum-
ably by doingmorechecksonits input), thenit cancer
tainly acceptuntainteddata.

Now consideranothemprogram:

(2) wvoid g(untainted
tainted int b;
g(b);
In thiscaseg is declaredo take anuntainted int
asinput. Theng is calledwith a tainted int asa
parameterOur systemshouldcomplainaboutthis pro-
gram: tainteddatais beingpassedo afunctionthatex-
pectsuntainteddata.

int);

Putting thesetwo examplestogethey we have the fol-

lowing subtypingrelation:
untainted int < tainted int

As in object-orientegorogrammingif 17 < Ty (readl}

is a subtypeof T5), thenT} canbe usedwherever 15

is expected,but not vice-versa. We write T; < T5 if
T <Ty andT]_ 7& Ts.

2.3 The Qualifier Lattice

The cqual tool needsto know not only how integer
typeswith qualifiersrelatebut alsohow qualifiersaffect
pointer types, pointerto-pointertypes, function types,
and so on. Fortunately standardresultson subtyping
tell us how to extendthe subtypingon integersto other
datatypes[1, 29].

We supplycqual with a configurationfile placingthe
qualifiers(in this casetainted anduntainted )in
alattice[14]. A latticeis a partial orderwherefor each
pair of elementsz andy, the leastupperboundand
greatestower boundof z andy both alwaysexist. Us-
ing a lattice makes the implementationslightly easier
For finding format string bugs, we specifyin the lattice
configuratiorfile thatuntainted < tainted

Given this configurationfile, cqual extendsthe sup-
pliedlatticeon qualifiersto asubtypingrelationon qual-
ified C types.We have alreadyseernoneof thesubtyping
rules:

Q1 <Q2
Ql int < Q2 int

This is a natural-deductiorstyle inferencerule. In gen-
eral, aninferencerule saysthatif the statementabove
theline aretrue, thenthe statementdelow theline are
alsotrue. This particularinferencerule is readasfol-
lows: If Q1 < Q2 in thelattice (), andQ- arequal-
ifiers), then @, int is a subtypeof @5 int (note
the overloadingof <). For our example,it meansthat
untainted int < tainted int . Thesamekind
of rule appliesto ary primitive type (char , double ,
etc.).




For pointertypes,we needto bealittle careful. Naively,
we might expectto usethefollowing rule for pointers:

Q1 <Q> T <Ty
Q1 ptr(11) < Q2 ptr(1z)

Herethetype @ ptr(7}) is apointerto typeT;, andthe
pointeris qualifiedwith @;. NotethatT; representan
extendedC type, andthusmay itself be decoratedvith
tainted/untaintedjualifiers. In C, the type Q1 ptr(T}1)
might bewritten

typedef T1 *ptr_to t1;
typedef Q1 ptr_to_tl
The rule (Wrong) saysthatif @1 < Q- in the lattice

andT; is a subtypeof Ty, thenwe can concludethat
Q1 ptr(T1) is asubtypeof Q2 ptr(73).

Unfortunatelythisturnsoutto beunsoundasillustrated
by thefollowing codefragment:

(Wrong)

gl_ptr_to_t1;

tainted char *t;
untainted char *u;
t = u /* Allowed by (Wrong) *
*t = <tainted data>;
[* Oops! This writes tainted data
into  untainted buffer  *u */

Accordingto (Wrong),thefirstassignment = u type-
checks,becauseptr(untainted  char ) is a subtype
of ptr(tainted  char ). Then*t becomesan alias
of *u , yet they have differenttypes. Thereforewe can
storetainted  datainto *u by goingthrough*t , even
though*u is supposedo beuntainted.

This is a well-known problem, and the standardsolu-
tion, which s followed by cqual , is to usethe follow-
ing rule:

Q1 <Q2 L = T2
Q1 ptr(m1) < Q2 ptr(7s)

Thekey restrictionhereis thatm, = 7. Intuitively, this
restrictionsaysthatany two objectsthatmaybe aliased
mustbe givenexactly thesametype? In particular if 7;

andr, aredecoratedvith qualifiers,the qualifiersmust
themselesmatchexactly, too.

2.4 Typelnference

Sofarwe have concentrate@n the type cheding prob-
lem: given a programfully annotatedvith type speci-

Lavausestherule (Wrong)for arrays.In Java, if Sis asubclas®f
T, thenS[] is asubclas®f T[], whereX][] is anarrayof X’s. Javagets
away with this by insertingrun-time checksat every assignmeninto
anarrayto make surethetype systemis notviolated. Sincewe seeka
purelystaticsystemJava’s approachs not availableto us.

fierson all expressionsgonfirm thatthe typesarecon-
sistent. Typecheckinga programis straightforvard. For
example theassignment = y typechecksf andonly
if thetypeof y is a subtypeof thetype of x. The func-
tion callf(x) typechecksf andonly if thetypeof x is
asubtypeof thetypeof theformal parameteof f . More
detailedrules,andaproof of soundnesganbefoundin
[19].

The type checkingsystemdescribedso far, however, is

not usefulin practice. The problemis thatit requires
all typesto beannotatedvith qualifiers:for our running

example, all typeswould needto be marked as either
tainted oruntainted  atevery level of eachtype.

Clearly this is an undesirablepropertyfor two reasons.
First, we areinterestedn finding bugsin legacgy code
thatdoesnot have ary type qualifier annotations.Sec-
ond, evenif we arewriting a programwith type qual-

ifiers in mind, addingand maintainingannotationson

every typein the programwould be prohibitively expen-

sive for programmers.

The solutionto this problemis typeinference In this

model, the userintroducesa small numberof anno-
tations at key placesin the program,and cqual in-

fers the typesof the other expressiondn the program.
cqual generatedresh qualifier variables (variables
which rangeover type qualifiers)at every positionin a
type,constrainedby ary annotationspecifiedn thepro-

gram. cqual analyseshe programandgeneratesub-
typing constaints—i.e., inequalitiesof the form 77 <

T, for qualifiedtypesT; andT5.

A solutionto a setof subtypingconstraintsis a map-
ping from qualifier variablesto qualifierssuchthat all
of the constraintsare valid accordingto our subtyping
rules. Thus,in our system,we solve the constraintdy
assigningevery qualifiervariableto eithertainted  or
untainted

In our type inferencealgorithm, qualifier variablesare
introducedat every positionin a type. We write quali-
fier variablesin italics, and namethem after the corre-
spondingprogramvariables.Theith argumentof func-
tion f hasassociatedjualifier variablef_argi, andthe
returnvalueof functionf hasqualifiervariablef_ret.

Sincequalifiersareimplicitly introducedon all levels of
a type by the type inferencealgorithm, to namethem
we modify the nameof the outermostjualifierof atype.
For example, given the declarationchar *x , cqual

generateswo qualifiervariablesthevariablex qualifies
the referencex itself, andthe variablex_p qualifiesthe
location*x . Moreover, the programmemay also ex-
plicitly introducenamedqualifiervariablesinto the pro-



char
char

tainted char *getenv(const
int  printf(untainted const

*name);
*mt,  ..);

char *s, *t;
s = getenv("LD _LIBRARY_PATH");
t = s;

printf(t);

geterv_ret p = tainted
printf_arg0_p = untainted

geterv_ret<'s
geterv_retp = sp
s<t

sp=tp

t < printf_arg0

t_p < printf_arg0_p

Figure3: An exampleof constraingenerationTheleft columnis acodefragmentitheright columngivestheinferred

constrainton the qualifiervariables.

gram;in this casethey begin with adollarsign(“$”) in
the sourcecodeto distinguishthemlexically from other
tokens.

For example, after the declarationchar *x; we as-
signthe qualifiedtypex_p char * xtox. Similarly,
afunctiondeclaredwith the prototype

tainted char *getenv(char *name);

is assignedhefollowing fully qualifiedtype:

geterv_retp char
getenv( geterv_argO_p char
(wheregeterv_ret p = tainted )

* geterv_ret

If we then encounter an assignment x =
getenv(...) , our type inference algorithm will
concludethat the type of getenv() ’s return value
mustbe a subtypeof thetypeof x, i.e.,

getervretp char * getervret
< xp char * x.

As a consequencewe can infer (using the subtyping
rulesintroducedin Section2.2 and 2.3) that we must
have thefollowing constrainton the qualifiervariables:

geterv_retp=xp=tainted , getervret<x.

In essencepur declarationof getenv()  hasensured
thatwhatever it returnswill belabeledastainted. Note

thatthis might be usedto model,for instancea scenario
whereervironmentvariablesare underthe adwersarys

control.

We give next a moredetailedexample. Figure 3 shavs
a fragmentof codethat manipulategainteddatain an
unsafeway, along with the typing constraintsgener
ated by the type inferencealgorithm. The constraint
geterv_ret p = s_p encodeghe conclusionthat the re-
turn value of getenv() s treatedastainted(as dis-
cussedabove). The prototype for printf() (typ-
ically found in the global preludefile) specifiesthat

* geterv.arg0 name);

printf() must not be called with a tainted format
string agument,by requiringthatits first agumentbe
a subtypeof untainted char *.

Thecalls = getenv("LD
erateghe constraints

_LIBRARY_PATH") gen-

getervret< s
geterv_retp = sp

Notice the equality constraint, arising from our cor-
rectedrule for subtypingpointer types. The assign-
mentt = s generatessimilar constraint.Finally, the
call printf(t) generatesa subtypingconstrainton
the printf_arg0_p becauseprintf s first agumentis
const (seeSection4.4).

Taking the transitive closureof theseconstraints,we
have a chainof deductions

tainted = getervretp=sp=tp

< printf_arg0_p = untainted

implying thatfor this exampleto type check,we would

needtainted < untainted . As explainedin Sec-
tion 2.2, this doesnot hold in our lattice, so this code
fragmentdoesnot type check,indicatinga possiblefor-

mat string bug. This demonstratesow our type infer-

encealgorithmcanbeusedto identify unsafemanipula-
tion of formatstrings.

In our implementation,the subtyping constraintsare
solved on-line asthey are generated.If the constraint
systemever becomesinsatisfiableanerroris flaggedat
the first illegal expressionin the code. This allows us
to pinpointthe location of unsafeoperationson tainted
data. The inferencethen continuesafter ary errors,
thoughin this casethe quality of the remainingerror
messagesanvary tremendously

We obsere that efficient algorithmsfor this type infer-
enceproblemare known. Given a fixed-sizequalifier
lattice and n constraintsof theform ! < ¢, ¢ < I, or



tainted char *getenv(const char *name);
int  printf(untainted char *fmt, ..);
/¥ Point 1 *
char *f3(char *s) { return s; }
/* Point 2 *
char *f2(char *s) { return  f3(s); }
/* Point 3 *
char *f1(char *s) { return  f2(s); }
int  main()
{
char *s, *unclean;
[* Point 0 *
unclean = getenv("PATH");
s = fl(unclean); /* Point 4 *
printf(s); /* Point 5 *
}

Figure4: An exampleof a taint flow path. The string
unclean s taintedby the call to getenv at PointO,
andultimatelythatdatais passedo printf ~ atPoint5.

1 < ¢, Wherel is a lattice elementand ¢, ¢;, and
g2 are qualifier variables,a solution to the constraints
canbe computedn O(n) time usingwell-known algo-
rithms[21]. Theideais to expresstheseconstraintsas
a directedgraphwith qualifier variablesasverticesand
subtypingconstraintsas directededges: the constraint
v1 < vy inducesan edgefrom vy to v3. The constant
qualifierstainted  anduntainted arealsovertices
in thisgraph,andadirectedpathfromtainted  toun-
tainted correspondso a possibleformat string bug.
We call this patha taint flow path SeeFigure4 for an
example.

3 UserInterface

Thusfar, we have presentedhe theory underlyingour
tool. For a programanalysisto be useful,however, one
needsboth a soundtheoreticalfoundationand an intu-
itive, efficientinterfacefor understandingheresults.

In the folklore of type inference,it is well known that
themorepowerful atypeinferencesystemis, theharder
it is to understandvhy a programcontainsa type error.

For example,type errorsfrom a C compiler which per

formslittle inferenceareeasyto localize. Thecompiler
simply reportsthe line numberwherethe type erroroc-
curred,andthis is almostalwaysenoughto tell the pro-
grammemwhy the erroroccurred.

In our type qualifier system however, type errorsoccur
at the point wherethe type constraintsystembecomes
unsatisfiableandthat point canbe distantfrom the ac-
tual sourceof the problem. Again, considerFigure 4.
In this example,the string unclean is taintedby the
call to getenv at Point 0, and ultimately that datais
passedo printf  atPoint5. Giventhisinput program,
oursystermwill warntheuserof apotentialformatstring
bug at point 5. But programpoints1-5areall involved
in the error, andto understandandfix the error a pro-
grammermay needto examineall five programpoints.
In generaltheseprogrampointscould be spreadacross
multiple files.

Thusreportingline numberswith error messagess no
longer enough. In this section,we describethe tech-
nigueswe useto displaythe resultsof our taintinganal-
ysis to the user We emphasizethat without the GUI
describedn thissection performingtheexperimentsie-
scribedin Sections would have beenextremelydifficult.

3.1 Program Analysis Mode

Ourtoolcqual presentsheresultsof thetaintinganal-
ysis to the programmerusing Program AnalysisMode
(PAM) for Emacq20], aGUI developedatBerkeley that
is designedo addhyperlinksandcolor mark-upsto the
preprocessetixt of the program.

Figure5 shavs ascreenshoof arunof cqual onmuh,
anlIRC proxyapplication.cqual initially displaysalist
of all files analyzedandary errorsthat occurred. The
usercanclick on a filenameto jump to thatfile or click
on an error messageo jump to informationaboutthat
error (seebelow).

Eachidentifier in a file is coloredaccordingto its in-
ferred qualifiers. Taintedidentifiers (thosewhosetype
containsa taintedqualifier somevhere)arecoloredred,
untaintedidentifiersare coloredgreen,and ary identi-
fiersthatcouldbeeithertaintedor untaintedarenot col-
ored. Intuitively, this last setof qualifierscould all be
marked untainted,but it is easieron the userto reduce
thenumberof marked up identifiers.

The usercanclick on an identifier to display its fully
qualifiedtype,with eachindividual qualifier coloredac-
cordingto its taintedness.

3.2 Added Features

Beyond the basic coloring of qualifiers, we designed
several extensionsto make it easyto find and fix po-
tential format string bugs. Marny of thesefeaturesare
applicableto other kinds of qualifiers,and perhapsto
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otherkinds of typeinferencesystemsaswell.

Taint Flow Paths. Recall from Section2.4 that the
subtypingconstraintsanbethoughtof asinducingadi-

rectedgraphamongqualifiers. A pathin the constraint
graphfrom tainted to untainted indicatesatype
error.

For eachtype error, we provide a hyperlink to a display
of the particularpath from tainted  to untainted
thatcausedhaterror. Sinceeachpathin the constraint
graphtypically correspond$o aflow of datathroughthe
program,this helpsidentify the unsafesequenc®f op-
erationsthatleadto a type error. However, sincethere
aretypically mary suchpaths(andpossiblyevencycles)
in the constraingraph,displayingall of themmayover-
load the user Therefore,to reducethe burdenon the
user wedisplaytheshortessuchpath,ascomputedwith
abreadth-firssearchlIn our experiencethis heuristicis
very importantfor usability.

Figure5 shawvs oneexample. Eachqualifierin the path

onthemuhapplication.

is hyperlinkedto the definition of theidentifierwith that
qualifier, which makes it easyto navigate the source
codeto determinethe causeof theerror.

Unannotated Functions. Our standardpreludefiles
contain annotatedversions of most standardlibrary
functions.Programsef coursecanalsousesystem-and
application-dependetibraries.In orderto have asound
inference the usermustprovide annotatedieclarations
of thesdibraries.

To male it easyfor the userto find and annotatethese
functions,we generatalist of hyperlinksto declarations
of functionsthathave neitherbeendefinedhorhave been
declaredn apreludefile.

A commonidiom in mary programsis to write func-
tions that simply massageheir inputs and then call a
library function. For example,a programmight con-
tain a function log _error(fmt, ) that calls
fprintf(stderr, fmt, ..) . Asdescribedn
Section4.3, for soundnesandto improve the precision



of the analysisthe usershouldadd annotationgo such
wrapperfunctionsaroundpotentially-vulnerabldibrary
calls. To aid in the annotationprocesswe provide a
hyperlinkedlist of unannotatedariableargumentfunc-
tionsto theuser

Hotspots. Althoughmary of thefeatureof thesystem
are gearedtoward reducingfalse positives and, where
there are real bugs, reducingthe numberof resulting
warnings,occasionallythe userwill be facedwith hun-
dredsof warnings.

To help the userdecidewhich warningsto investicate
first, we attempto determin€'hotspots”in thecode.For
eacherror messagewe computethe shortestaint flow
pathandincrementa counterassociatedavith eachqual-
ifier onthe path. We thenpresenthe userwith a hyper
linkedlist of the “hottest” qualifiers,i.e., thoseinvolved
in the largestnumberof (shortest}taint flow paths.The
idea—borneutby our experience—ighataddinga sin-
gle annotatioratanimportantpoint candramaticallyre-
ducethe numberof warnings.

One extensionto this idea, which we have not yet im-
plementedjs to find the hottestconstraintsratherthan
the hottestqualifiers. This may help point the userto a
particularerroneousexpressionin the code,ratherthan
to anidentifier

4 Finding Format String Bugs

In Section2 we describedthe basic workings of the
cqual tool. In this sectionwe discussextensionsto
male the basictool soundin the presencef type casts
and variableagumentfunctions,andto decreasdalse
positives by using the programmes knowledge about
the programbeinganalyzed.

4.1 Leaf Polymorphism

Type inferenceis a powerful tool for computingquali-
fiers givena few annotations.However, wheninferring
typesof functions,we needto introducesomenen ma-
chinery to avoid getting a large numberof false posi-
tives.

To understandhe problem,considerthe following sim-

ple examplecode:
id(char

char x) { return x; }

char t;
char u;

tainted
untainted
char a, b;

a id(t); 1%

b id(u); * 2%
Becauseof call 1, we infer that x is a tainted
char , andthereforewe alsoinfer thata is tainted
Thencall 2 typecheckgbecauseintainted char <
tainted char ), but we infer that b must also be
tainted

While thisis a soundinferenceit is clearly overly con-
senative. Eventhoughthis simpleexamplelooks unre-
alistic, we encountethis problemin practice,mostno-
tablywith library functionssuchasstrcpy . Thisleads
to alarge numberof falsepositives.

The problemarisesbecauseave are summarizingmul-

tiple stackframesfor distinctcallsto id with a single
functiontype—x hasto eitherbe untaintedeverywhere
or taintedeverywhere. The solutionto this problemis

to introducepolymorphismwhich is a form of context-

sensitvity.

A functionis saidto be polymorphicif it hasmorethan
one type. Notice thatid behaes the sameway no
matter what qualifier is on its agumentx: it always
returnsexactly x. Thuswe cangive id the signature
a char id( « char x) forary qualifiera.

Operationallywhenwe call a polymorphicfunction,we
instantiateits type—wemalke a copy of its type,replac-
ing all the genericqualifiervariablesx with freshquali-
fier variables.Intuitively, this correspondsxactly to in-
lining thefunction,exceptthatinsteadof makingafresh
copy of thefunction’s code we make afreshcopy of the
function’stype.

We need a way to write down polymorphic type
signatures—foexample,we shouldbe ableto express
thatif the strcat() function is passeda tainted
secondargument thenits first agumentshouldalsobe
tainted , but notvice versa.We cando this by writing
a polymorphictype with side constraintson the quali-
fiers:

« char *

strcat( « char *dst, [ const char

(wherea > 3)

*src);

More generally we want to be ableto specify a poly-
morphicfunction

a f( g arg0, § argl, ... );
with somearbitraryinequality constraintson the quali-
fier variablesa, 3, d, etc. We definea concisenotation

for expressingtheseinequality constraintsy usingthe
following theorem.



Theorem4.1 Let (P, <) beanyfinite partial order. Let
(2N, C) bethelattice of subsetof N with the setinclu-
sionordering Then(P, <) canbeembeddeéh (2%, C),
i.e., there exists a mapping¢ : P — 2%, sud that
a <b <= ¢(a) C ¢(b) and ¢(z) is a finite sub-
setof N for all = € P.

The theoremis formally proved in the appendix,and
may be viewed asa concreteexampleof the Dedekind-
MacNeille Completion[14].

This theoremenableaus to definethe partial orderim-

plicitly by the namingof the qualifier variableson the
functionagumentsandreturntype. Werepresenaqual-
ifier a in the partial order P by ¢(a), which we denote
asa’'_' separatedtring of the integersin the set. If

¢(a) = {1,2}, thena is represente@s $_1_2. Hence,

the polymorphic declarationof strcat  can now be
written as

$.1.2 char *

strcat( $.1.2 char * $.1 const char *)

which meansthat the qualifier on the returntypeis the
sameasthe qualifieron thefirst agumentandthatthey
are both supertypeof the secondamgument. In other
words, since{1,2} D {1}, the namesof the qualifiers
encodethe implicit inequality constraint$_1.2 > $_1.

Hencefor ary instantiationof strcat() , we have
strcat _ret .p = strcat _arg0 p
> strcat _argl p.

This avoids the needto write subtypingconstraintson
thesidefor eachpolymorphicfunction. Insteadthecon-
straintsare encodedmplicitly in the annotationghem-
seles,which providesa conciseframenork for express-
ing subtypingannotations.

To keep our implementationsimple, we only support
polymorphismfor library functions,i.e., functionswith

no code. To be more precise,ary function may be
declaredpolymorphically but the polymorphic proto-
type will not be typecheckd against its implementa-
tion. This restrictionis not fundamentaltherearewell-

known efficient algorithmsfor more generalpolymor

phism[19, 33]. Our standardpreludefiles containap-
propriatepolymorphicdeclarationgor mostof the stan-
dardlibrary functions.

4.2 Explicit Type Casts

Thetreatmenbf type castan the programs sourcecode
is very importantto the correctoperationof ourtool. In

mostcasesa pointercastis usedto implementgeneric
functions,to emulateobject subtyping,or to otherwise

bypassthe limitations of the C type system. Sincea
pointer castusually preseresthe semanticmeaningof
the databeingpointedto, we wantto presere thetaint-
ednessf datathroughordinary C typecasts.Consider
thefollowing programfragment:

void *y;

char *x = (char *) v;
If y istaintedthenx shouldalsobetainted,eventhough

theirtypesdo not otherwisematch.

Caststo void * are particularly problematichecause
one can castary typeto avoid *. For example,a
programmemightwrite

char **s,  **;

void *v = (void *) s;

t = (char *) v;

Here the type structureof v hastwo levels, while the

type structureof s hasthree. Hencethereis no direct
correspondenceetweerthe qualifiersof thetwo types.

We solwe this problemby “collapsing” qualifiersat a
type cast. If we casta type t to a type u, thenwe
matchup the qualifierslevel-by-level betweent and «
asdeeplyaspossible.For example,whencastingchar
*x to avoid *, we addthe constraintsz < cast
andz_p = castp, wherecastis the namewe usefor
the qualifierson the void *. As soonthe structures
of typest and u diverge, we equateall the remaining
qualifiers. For example, when castinga char **x
to avoid *, we addthe constraintsz < castand
x_p = x_p_p = cast_p. Puttingthis together in the
above exampleif if either*s or**s s tainted,then*v
becomedainted. Whenv is castto char **t | both
*t and**t will becomeainted.

We also allow the knowledgeableprogrammerto in-
dicatethat someprogramdatahasbeenvalidatedand
shouldconsequentipe consideredintainteddespiteits
origins. Suchanannotatiorcanbe expressedn our sys-
temby writing anexplicit castto anuntainted  type.
To enablethis, we do not addary constraintsn caseof
an explicit castcontaininga qualifier For example,in
thefollowing code
void *y;

char *x = (untainted char

AR
the assignmentdoesnot taint x, regardlessof the in-
ferredtaintednessfy.

This featureallows the security-avaredeveloperto im-
plementfunctionsthatparseaninputstringandfilter out
dangerousubstringsvithout departingfrom our frame-
work. We assumehat the programmewill add such
an annotationonly after ensuringthatthe stringis vali-



datedby somerigorouscheckingprocedureThereis no
way to verify this assumptiorautomatically However,
our syntaxis designedo make it easyto manuallyaudit
all suchannotationssincethey cantypically be easily
identified by simply grep ing the sourcecodefor the
keyword untainted

Collapsing the qualifiers at castsis conserative but

soundfor the mostcommoncastsin a program. There
aretwo waysin which our implementatioris currently
unsoundwith respectto casts. First, we have found

thatif we collapsequalifierson structurefields at type

casts,the analysisgenerategoo mary false positves
(too muchbecomegainted). Thusin our implementa-
tion if one aggr@ateis castto anothey we ignore the

castanddo not collapsetype qualifiers.

Secondbecauseave usea subtyping-basedystem the
qualifiercollapsingtrick doesnotfully modelcastdrom
pointersto integers.Considerthefollowing code:

char *x, *y;

int a, b;
a = (int) X; (1)
b = & 2

y = (char %) b; (3)
For line (1), we generatehe constraintst p = = = a.
For line (2), we generatehe constrainta < b. And for
line (3), wegenerat¢heconstraintd = y_p = y. Notice
thatwe have x_p < y_p butwedonothavey p < z_p,
soourdeductionsareunsound.

We leave asfuture work the solutionto theseproblems.
We believe that the best solution will be to combine
techniqueshatattemptto recoser the semantidoehaior

of castswith conserative aliasanalysisfor ill-behaved
castq12, 36, 37].

4.3 Variable ArgumentFunctions

C allows functionsto have a variablenumberof argu-
ments,throughthe varargs languagefeature. However,
thereis no obvious way of specifyingconstrainton the
individual varags: eventheir typeis not fixed. For ex-
ample,in the expressiorsprintf(s, "%s", t) ,if
t is tainted,thenwe wouldlik e our typeinferencealgo-
rithm to forces to betaintedaswell.

We have extendedthe C grammarso that the varags
specifier... " canbe annotatedvith a type qualifier
variable. In the sprintf() example,we would like
thefirst agumentof sprintf() to betaintedif ary of

its varagsis tainted,sowe usethetypedeclaration

int  sprintf($
untainted

1.2 char *,

char * $2 ..));

Consequentlyif ary of sprintf() 's arguments(ex-
cluding the first two) aretainted,we will infer thatthe
first amumentmustbe taintedaswell. More precisely
for eachqualifier ¢ on ary level of a type passedo the

of sprintf() , we addtheconstrainyy < $.1_2.

The type inferencesystemignoresparameterdeyond
thelastnamedargumentof anunannotatedaragsfunc-
tion. Thus for soundnesghe user must annotateall
potentially-vulnerablevarags functions; as mentioned
in Section3.2, we provide a list of unannotatedarags
functionsto the userto help with this task. Ourimple-
mentationalsodoesnot modelvaragsfunctionpointers
fully. Both of theseissuescanbe easilyaddressedand
we planto do soin thefuture.

4.4 const Allows DeepSubtyping

As describedn Section2.3, we usea conserative rule
for pointersubtyping.Thisrule canleadto non-intuitive
reversetaint flow, which oftencause$alsepositives. For
example,considerthefollowing code:

f(const  char *x);

char *unclean, *clean;

unclean = getenv("PATH");

f(unclean);

f(clean); /¥ ’clean’ gets tainted */
Herethegetenv() functioncallimposeghecondition

uncleanp = tainted . Thefirst call to f addsthe
constraintf_argO_p = uncleanp. The secondfunction
call generatetheconstrainf_arg0_p = cleanp, thereby
marking*clean astainted,whichis counterintuitive.

Obsene, however, thatf 'sargumentx is of typeconst
char *,sof cannotmale*x taintedif it is nottainted
in the first place. Consequentlywe modify the con-
straintsin Section2 asfollows: For anassignment

const char *s;
char *t;
s =t

we addthe constraintd < sandt_p < sp, if *s hasa
const qualifier Thisis to be comparedwith the con-
straints.p = t_p which we would otherwisehave im-
posed.In this way we canuse“deepsubtyping’to im-
prove precisionfor formal parametersnarkedconst .

This extra precision which helpsavoid mary falseposi-
tives(especiallyin library functions),is themainreason



we work in a subtypingsystem. Note that we rely on

the C compilerto warnthe programmeboutary casts
which discardthe const qualifier, i.e., we assumehat
avariablethatis const is never castto arything thatis

notconst .

5 Real-World Tests

We testedthe effectivenessf cqual on several popu-
lar C programshatarepotentiallyvulnerableto format
stringattacks.Someof themhadknown vulnerabilities;
othersdid not. In all casesattaclersfrom acrossthe
network have control over somestringinput to the pro-
gram.If thisinputis usedasa formatstring,a carefully
choseninput cancrashthe programor give the attacler
rootaccess.

5.1 Metrics

Theidealbug detectomwould detectall extantbugswith-
outflaggingcorrectcodeasbeingincorrect. Theinitial
outputfrom cqual is alist of warningsthatindicatea
typeerrorsomavherein theprogram.Someof thesecor
respondo realbugs;othersarefalsepositivesstemming
from our conserative taintingapproachandlack of full
polymorphism).Falsengyativesarealsoof interest:we
would like all vulnerabilitiesto shav up as warnings.
One complicatingfactoris that mary warningscanre-
sultfrom the samebug—for example,if mary functions
readingnetwork datacall asinglefunctionthathasafor-
matstringbug, thenall thewarningsmaygo away when
thatbug s fixed.

We chosethefollowing metrics,measuregerprogram:
e How mary known vulnerabilities were detected
andhow mary wentundetected?
e How mary falsepositveswerethere?

e How easywasit to checkwhetherawarningwasa
realbug?

e How longdid theautomaticanalysigake, andwhat
wereits resourceneeds?

e How easywasit to preparegprogramdor analysis?

5.2 TestSetup

Testing was performedon a dual-processo650MHz
Pentiumlll Xeon machinerunning the Linux 2.2.16-
3smp kernel. Only one processorwas usedin test-
ing. The machinehad 2GB of memory Tools usedin

preparatiorandtestingweregcc, versionegcs-2.91.66;
emacs,version 20.7.1; and PAM (ProgramAnalysis
Mode for emacs)yersion3. Someprogramswere pre-
pared(preprocesseddn an UltraSparc-basednachine
runningSolaris7 andgcc2.95.2.

To testour system,we choseseveral widely-useddae-
monswritten in C that were likely to containsecurity
vulnerabilities.We alsoincludedseveral programswith
reportedformatstring bugsin orderto testthe coverage
(falsenggative rate)of our system.Two of thesecases—
mingetty [24] and marsnwe [25]—are particularlyin-
terestingbecausehand audits had revealed potentially
dangeroudunction calls, but owing to the difficulty of
manualverification, no actualbugs had beenreported.
In someothercasessuchascfengine[35] andbftpd [4],
we detectedugsthatwereunknavn to usat thetime of
the experiment but thatwe later discoreredhadalready
beenknown to others.

5.3 Results

Following is a brief descriptiornof theanalysisgesultson
sometestsamples:

cfengine: The first run gave mary warnings;hotspot
analysidedto arealformatstringvulnerabilitypre-
viously unknavn to us. The vulnerability turned
out to be known to others[35]. In addition,there
wereafew warningsunrelatedo taintanalysis.

muh: The first run generatedmary warnings. After
looking at the hotspotsandthe list of unannotated
functions,six library functionwrappersvereanno-
tatedwith polymorphictypesin the local prelude
file. A subsequentun shaved twelve warnings,
one of which was a real vulnerability (known to
otherg[22)).

bftpd: The hotspotsfrom the first run guided us to
mark one function with a polymorphictype. Af-
terthis, thereweretwo warnings,oneof whichwas
a bug of which we werenot previously aware. We
later found that this bug had alreadybeendiscov-
eredby others[4].

mars_nwe: In thefirst run, therewerea few hundred
warnings,but the hotspotssuggestednaking two
functionspolymorphic. Whenthis wasdone,there
wereno morewarnings. Note that othershad pre-
viously reportedquestionabldunction calls where
the auditorwas not ableto determinewhetherthe
property could be exploited [25]; our tool gives
strongevidencethatthey arenot exploitable.



Name Version Description Lines Preproc. Time Warnings Bugs
cfengine 1.5.4 Systemadministratiortool 24k 126k  28s 5 1
muh 2.05d  IRC proxy 3k 103k 5s 12 1
bftpd 1.0.11 FTPsener 2k 34k 2s 2 1
marsnwe 0.99 Novell Netwareemulator 21k 73k 21s 0 0
mingetty 0.9.4 Remoteterminalcontrolutility 0.2k 2k 1s 0 0
apache 1.3.12 HTTPsener 33k 136k  43s 0 0
sshd 2.3.0p1 OpenSSHsshdaemon 26k 221k 115s 0 0
imapd 4.7c Univ. of Wash.IMAP4 sener 43k 82k 268s 0 0
ipopd 4.7c Univ. of Wash.POP3sener 40k 78k 373s 0 0
identd 1.0.0 Network identificationservice 0.2k 1.2k 3s 0 0

Figure6: Resultsof our experimentakvaluationof thetool. Thesizeof the programis measuredinpreprocesseahd
preprocessedn thousand®f lines of code,excludingcomments.Time is the wall clock time for arun of cqual .

Warningscountsthe total numberof warningsissuedby cqual

andBugsis the numberof realvulnerabilitiesfound.

mingetty: No warningsissued.As with marsnwe, an
auditorhad previously reporteda suspiciousunc-
tion call of unknavn exploitability [24]; cqual
madeit easyto verify thatthesecallsweresafe.

apache: In the first two runs, therewere somewarn-
ings dueto inconsistenteclarationsn the prelude
andthe sourcefiles. After theseweresetright, no
warningswereissued.

sshd: The first run suggestedannotationof twelve
varag functions. After theseweremadepolymor
phic, therewereno morewarnings.

imapd, ipopd, andidentd: No warningsissued.

5.4 Evaluation

Our systemreliably found all known bugsin the tested
programsincludingbugswe werenotawareof whenwe
appliedourtool. Codewithout known bugs,andwhich

waslater examinedby handandfoundto be unlikely to

containbugs,yieldedfew falsepositives. Indeed,in our
testsall falsepositivesoccurredn programswith actual
bugsoncevaragsfunctionswereannotatedTheheuris-
tics describedin Section3.2 were extremely usefulin

suchcasesThe annotatiorof varagsfunctionsflagged
bycqual wasusuallyenougho remove mostfalsepos-
itives. The hotspotspinpointedthe actualbug in most
cases. The GUI was invaluablein the analysis,mak-
ing quick detectionandcorrectionof bugspossible.The
sourceof mostbugswasfoundwithin a few minutesof

manualinspectionof unfamiliar code.Thus,our experi-
enceshavsthatfalsepositves—acommondravbackof

mary tools basedon staticanalysis—daot seemto be
aproblemin our application.

Theautomatednalysisusuallytook lessthana minute,

after the GUI's recommendationwere followed,

andnever morethanten minutes.The manualeffort re-
quiredfor eachprogramwas usuallywithin a few tens
of minutes.

Preparatiorof the programsfor analysistypically took

betweenthirty and sixty minuteseach. Note that we

werenotfamiliarwith thelayoutandparticularstructure
of thesourcecodefor ary of thetestprograms Prepara-
tion consistedof modifying the build procesgo output
preprocessediltered source. In practicethis could be

moresystematicallyaddedto the build process.

In summary we evaluatedour tool on a number of
security-sensitie applicationsdemonstratingheability
of ourtool to find securityholesthatwe werenot previ-
ously awareof. We feel thatthis validatesthe power of
our approach.

6 RelatedWork

Lexical Techniques. pscan [15] is a simpletool for
automaticallyscanningsourcecode for format string
vulnerabilities. pscan searcheshe input sourcecode
for lexical occurrencesf function calls syntactically
similar to, e.g., sprintf(buffer, variable)
Becausepscan operatesonly on the lexical level, it
cannotreasoraboutthe flow of valuesthroughthe pro-
gram and falils in the presenceof wrappersaroundC
libraries (see,e.g., Figure 1). pscan alsocannotdis-
tinguish betweensafecalls whenthe format string is a
variableandunsafecalls—it flagsary call wherea for-
matstringis non-constant.

Othershave exploited lexical sourcecode analysisto
find securitybugs([7, 38]. The mainadwantagef lex-
ical analysisare that it is extremely fast, it can find
bugsin non-preprocessesourcefiles, andit is virtu-



ally languageindependent. However, becausdexical
tools have no knowledgeof languagesemanticsmary
errors—suchas those involving aliasing or non-local
control paths—cannadbedetected.

Taint Analysis. Ouruseof tainting,inspiredby Perl’s
taint mode[32], bearssomeresemblancéo a Biba in-
tegrity model[6] andthusis distantlyrelatedto previ-
ouswork onenforcinginformationflow policiesthrough
typing [29, 39, 40]. However, becauseve do not have
to dealwith maliciouslyconstructedcode,we avoid the
needto solve mary of the mostvexing challengege.g.,
covertchannelsjn enforcinginformationflow policies.

Type Qualifiers. The basicframavork for type qual-
ifiers, aspresentedn Section2, is dueto Fosteret al.

[19] andhasbeenusedto build Carillon, atool for find-

ing Y2K bugsin C programg16]. As describedn Sec-
tion 4, we developedseveral refinementgo make taint-

ing analysispractical: improved handlingof castsand
variable-agumentfunctions; the notationfor polymor

phic type signatures;and the improved userinterface.
However, the onefeaturepresentin previous tools that
is missingfrom our systemis automatedype inference
of polymorphictypesfor all functions.We areplanning
to incorporatepolymorphicrecursion[33] in the future
to remedythis.

Static Bug Detection. Many authorshave notedthat
static analysiscan be a usefultool for detectingbugs.
For instance,LCLint [18] usesdataflav analysisto
searchfor commonerrorsin C programsgngleretal’s
Meta-level Compilation[17] staticallysimulateshe be-
havior of auserdefinedfinite statemachineandhasbeen
successfuét finding mary new bugs;andthe Extended
Static Checkingsystem(ESC)[26] usestheoremprov-
ing to verify thevalidity of annotatedlava sourcecode.

Thesesystemshave beenvery successfulat detecting
mary commonbugs. However, they arenot well suited
to detectingformat string vulnerabilities, for two rea-
sons. First, they focus primarily on local properties,
whereadormat string vulnerabilitiesoften arisedue to

global mishandlingof strings. Second,mary of them
(e.g.,ESCand,to alesserdggree,LCLint) requireex-

tensve annotationgrom the user which we would like

to avoid. Ourtype-basedechniquesaddresghesechal-
lengeddirectly.

Run-time Techniques. Another defenseagainst for-
mat string vulnerabilitiesis to dynamically prevent ex-
ploits through appropriatemodificationsto the C run-
time [3], compilet or libraries. libformat |, alibrary
designedto halt executionof ary programthat might

be susceptibleto a format string bug, follows this ap-
proach:it interceptscallsto printf  -like functionsand
abortsthe applicationif the format string specifiercon-
tains%nandtheformatstringis in awritable portion of
the addresspace34]. However, this approachs frag-
ile, sincethe libformat mechanismmustbe keptin
perfectsynchronizatiorwith thelibc  implementation
of all printf  -like functions.

FormatGuard.a compiler modification, injects codeto
dynamicallycheckandrejectall printf  -like function
callswherethe numberof agumentsdoesnot matchthe
numberof “9% specifierd13]. Of courseonly applica-
tionsthatarere-compiledusing FormatGuardwill ben-
efit from its protection.Also, onetechnicalshortcoming
of FormatGuards thatit doesnot protectuserdefined
wrapperfunctions(see e.g.,Figurel).

Moreover, a commonlimitation of both libformat
and FormatGuardis that programswith format string
vulnerabilitiesremainvulnerableto denialof serviceat-
tacks.Nonethelessanimportantadwvantageof theserun-
timetechniquess thatthey arecheapandrequirealmost
no humanintenention. Thus,we feel thatrun-timeand
static measuresare both useful and complementeach
otherwell.

7 Conclusions

We have describedhtool for automatedletectiorof for-
matstringvulnerabilitiesn legacy sourcecode.We have
shavn thatourtool hasvery low falsepositive andfalse
negative ratesandis usefulin practiceat detectingeven
securityholesthat wereunknawn to us. Therefore we
feel that our work represents strongsteptoward a us-
ablebug-detectiorsystem.

Thekey techniquewve exploit is type qualifierinference,
appliedto the problemof statictaint analysis. This ap-
proachallowed usto scaleto large programswith hun-
dredsof thousand®f lines of codeandto presentanin-

tuitive userinterfaceto the programmer Consequently
we conjecturethatthesetechniquesnay find usein fu-

tureapplicationsaswell.
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A Proofof Theorem4.1

TheoremA.1 Let(P, <) beanyfinite partial order Let
(2N, C) bethelattice of subsetof N with the setinclu-
sionordering Thenthere existsa mappings : P — 2%,
suh thatVa,y € Pe <y <= ¢(z) C ¢(y) and
¢(z) is afinite subsebf N for all = € P.

Proof : We prove thetheoremby inductionon | P|.
BaseCase Let |P| = 1. Thentheclaimtrivially holds.
InductionHypothesis Lettheclaim holdfor all P such
that|P| < k.

InductionStep: |P| =k + 1.

Let (P, <) be a partial ordersuchthat |P| = k + 1.
Since P is finite, P hasa minimal element,say a.
Considerthe partial order (P \ {a}, <). Clearlythisis
apartialorderand|P \ {a}| = k. Henceby induction
hypothesisthereexists ¢ : P\ {a} — 2N, suchthat
Vo,y € P\{al,z <y < o) C 4(y) and
¢(z) is afinite subsetof N for all x € P\ {a}. Let
n = max;{i € Ugep\(a}}¢(2)}. Define¢’ : P — 2M
asfollows.

{n+1} ifr =a
¢ (x)=<¢ o(x)U{n+1} ifr£aandz<a
o(x) otherwise

Sincea waschosento be a minimal element,the only
relationsinvolving a are of the form ¢ < =z, andfor
thesepy definition,¢’(a) = {n+1} C ¢(z)U{n+1} =
¢'(z). Forall z suchthata £ x, wehave ¢’ (a) = {n +
1} € &(z) by choiceof n. For relationsnot involving
a, the shav belaw thatthe setcontainmentelationsare
presered. Let ¢(z) C ¢(y). Sinced’(y) 2 ¢(y), the
casewhen¢’(z) = ¢(z) is trivial. Soassumep(xz) C
o(y) and¢’(z) = ¢(x) U {n + 1}. Thisimplies that
a < z,andz < y, andthereforea < y. Thus¢’'(y)
would bedefinedas¢(y) U {n + 1}, andhencep’(z) C
¢'(y).Thustheinductionstepholds. [



