
Operating R.S. Gaines
Systems Editor

Certification of
Programs for Secure
Information Flow
Dorothy E. Denning and Peter J. Denning
Purdue University

This paper presents a certification mechanism for
verifying the secure flow of information through a pro-
gram. Because it exploits the properties of a lattice
structure among security classes, the procedure is suf-
ficiently simple that it can easily be included in the
analysis phase of most existing compilers. Appropriate
semantics are presented and proved correct. An impor-
tant application is the confinement problem: The
mechanism can prove that a program cannot cause
supposedly nonconfidential results to depend on confi-
dential input data.

Key Words and Phrases: protection, security, infor-
mation flow, program certification, lattice, confine-
ment, security classes

CR Categories: 4 .3 , 4 .35 , 5 .24

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Work reported herein was supported in part by the National
Science Foundation under grants GJ-43176 and GJ-41289 and by
IBM under a fellowship. Authors ' present address: Computer Sci-
ence Department , Purdue University, West Lafayette, IN 47907.

1. Introduction

Compute r system security relies in part on informa-
tion flow control, that is, on methods of regulating the
dissemination of information among objects through-
out the system. An information flow policy specifies a
set of security classes for information, a flow relation
defining permissible flows among these classes, and a
method of binding each storage object to some class.
An operat ion, or series of operat ions, that uses the
value of some object , say x, to derive a value for
another, say y, causes a flow from x to y. This flow is
admissible in the given flow policy only if the security
class of x flows into the security class of y.

Prior work on the enforcement of flow policies has
concentrated on run-time mechanisms. One type of
mechanism enforces a given flow policy by controlling
processes ' read and write access rights to objects: no
process may acquire read access for an input object , or
write access for an output object, unless the security
class of every input flows into the security class of every
o u t p u t - e v e n if some outputs depend on only a subset
of the inputs. A D E P T - 5 0 [30], the Case system [29],
the M I T R E system [3, 23], and the Privacy Restriction
Processor [26] are of this type. These mechanisms are
generally easy to implement because they make no
at tempt to examine the structure of a program. A
second type of (more complex) mechanism accounts for
program structures in order to determine flows be-
tween specific input and output objects. Fenton 's data
mark machine [10], the mechanism of Gat and Saal
[13], and the surveillance mechanism of Jones and
Lipton [19] are of this type. The surveillance mecha-
nism employs a program transformation to insure that
all flows are properly accounted for at run time. A
detailed discussion of all these mechanisms can be
found in [7].

This paper presents a compile-t ime mechanism that
certifies a program only if it specifies no flows in viola-
tion of the flow policy. Besides the aesthetic attraction
of establishing a program's security before it executes,
a certification mechanism has important advantages. It
can be specified directly in terms of language struc-
tures, which facilitates its comprehension and its proof
of correctness. It greatly reduces the need for run-time
checking. I t does not impair a program's execution
speed. (See also [23]).

Prior certification does not completely eliminate the
need for. run-t ime checking. Run-t ime support is
needed to raise the tolerance against hardware mal-
functions and other threats to the integrity of certified

504 Communications July 1977
of Volume 20
the ACM Number 7

programs. I t is needed to verify that computed ad-
dresses remain in the ranges assumed for them during
certification. It is needed to control covert channels,
which allow flows outside the storage objects of the
system.

2. Lattice Model of Information Flow

We give a brief review of the flow model on which
the certification mechanism is based [6, 7]. The model
generalizes earlier work as reported in [3, 9, 10, 11,
23, 26, 29, 30].

2.1 Policy Description~and Properties
A flow policy can be represented by (S, -->), where S

is a given set of security classes and--> is a flow relation
specifying permissible flows between pairs of classes.
Each storage object x - - e . g , constant, scalar variable,
array, or f i le-- is assigned (bound) to a security class,
denoted by underbar, _x. The notation x -->_y thus means
that a flow from object x to object y is permissible in
the flow policy. We will suppose the binding of each
object to a security class is static and can be determined
from the declarations contained in a program.

Under the reasonable assumptions that there is a
finite number of security classes, that the flow relation
is reflexive (i . e .x --> x is always permissible), and that
the flow relation is transitive (i.e. x --> y --> z implies x

z) , we may suppose that (S, _7_~) is a lattice. Th~
means that, corresponding to any pair of classes, there
are unique upper and lower bound classes. If (S, ---~) is
not a lattice, it may be t ransformed into one by adding
new classes as necessary without changing the flows
among the original classes [8]. The lattice propert ies
are exploited to construct an efficient certification
mechanism.

The symbols Q and ® denote, respectively, the
associative and commutat ive least upper bound and
greatest lower bound operators of the lattice (S, ---~} [4,
28]. The least upper bound is defined so thatx~ ---~y for
i = 1 , . . . , m is equivalent to the re la t ionxl G . • • Q x m

y . It can be envisaged as requiring that flows from
various operand classes must pass through a single
common class en route to a given result class. The
greatest lower bound is defined so tha tx ---~.2~ for j = 1,
• . . , n is equivalent to the re la t ionx ---~_Yl ®" " • @_Yn. It
can be envisaged as requiring that flows f rom a given
operand class must pass through a single common class
en route to various result classes. There is a highest
class H , which is the least upper bound of all classes,
and a least class L, which is the greatest lower bound of
all classes.

All unnamed programming language constants are
members of L. This assumption is reasonable since the
flow of an ordinary constant, say "99 , " into a variable,
sayx , puts in x no information about any other object•
Only when "99" is known to be the value of an objec ty

505

for whichy -4* x must its flow be prevented; but this is
done by restr i~ing the flow from y , not from "99 . "

Figures 1 and 2 illustrate lattices that arise fre-
quently in practice. Figure 1 is a linear "priority lattice"
o n n c l a s s e s 0 , 1 , . . . , n - 1, w h e r e L = 0 a n d H = n -
1. This lattice applies to the simple confinement prob-
lem with classes nonconfidential (0) and confidential
(1) [10] and to the common military security problem
with classes unclassified (0), confidential (1), secret
(2), and top secret (3) [30]. Figure 2 shows a more
complex "proper ty lattice" representing the immediate
inclusions among all 2 n subsets of n = 3 propert ies
represented as bit vectors. It generalizes easily to any
value of n and is used in systems where information may
flow only to a security class having at least the same
propert ies as the originating class [3, 23, 29, 30].

2.2 Flow
Information flows from object x to object y , de-

noted x ~ y, whenever information stored in x is
transferred to, or used to derive information trans-
ferred to, object y. A program statement specifies a
flow x ~ y if execution of the statement could result in
a f lowx ~ y .

Flows are explicit or implicit. An explicit flow x ~ y
occurs whenever the operat ions generating it are inde-
pendent of the value of x. Assignment statements, I /O
statements, and value-returning procedure calls gener-
ate explicit flows. An implicit flow x ~ y occurs when-
ever a s tatement specifies a flow from some arbitrary z
to y , but execution depends on the value of x. Con-
sider, for example, the statements

y := 1; i fx = 0 t h e n y : = 0 ,

where x is either 0 or 1. On termination of these
statements, x = y whether or not the then clause was
executed. Hence the if statement causes an implicit
flow x ~ y. In general, all conditional structures gener-
ate implicit flows.

It should be noted that the relation ~ is transitive,
that is ,x ~ y ~ z impliesx ~ z. I fx ~ y because some
function having x as an operand stores its result in y ,
the flow is direct; otherwise it is indirect. An assignment
"y :-- f (. . . , x, . . .) " thus causes flow x ~ y directly,
while the pair "z := f (. . . , x), y := g (. . . , z)"
causes flow x ~ y indirectly.

2.3 Security Requirements
A program p is secure if and only if no execution of

p results in a flow x ~ y unless x --> y. A necessary and
sufficient condition for the security of p is then

x ~ y for some execution o f p only i fx -->_y. (1)

Unfortunately condition (1) is generally undecidable.
Any procedure purpor ted to decide it could be applied
to the statement

iff(x) halts then y := 0

Communications July 1977
of Volume 20
the ACM Number 7

Fig. 1. Linear priority lattice.

S = { 0 , 1 n - 1}

i--->j iffi --<j

iC) j = max(i , j)

i Q j = min(i , j)

L = O , t t = n - 1

Description

n

t
n -- 1

t

t
1

t
0

Precedence graph

Fig. 2. Property lattice for n = 3.

S = {000,001 111}
A ~ B i f fOR(A, B) = B
A ~) B = OR(A,B)
A ® B = A N D (A , B)

L = O00, H = 111

 1i1-
l l 0 ~ 1 0 1 ~ X ~ 0 1 1

1!0, ,0 0, 0!1
" 0 0J

Description Precedence graph

and thus provide a solution to the halting problem for
an arbitrary recursive function [24]. (In a related study,
Harrison, Ruzzo, and Ullman have shown that, without
severe restrictions, protection systems contain intracta-
ble, if not undecidable, accessing questions [16]).

The undecidability is removed if we replace (1) with
the security condition

x ~ y is specified by p only i fx ---~ y. (2)

The previous if s tatement can clearly be tested for this
condition. However , security condition (2) gives less
precision in program certification than (1). For exam-
ple, consider the program

if x = 0 then if x :~ 0 t h e n y := z

and a flow relation that disallows only z ~ y. This
program is secure by (1) since no execution of it can
result in z ~ y, but it will not be certified by a mecha-
nism based on (2) since it specifies z ~ y. There is no
reason to believe that loss of precision is avoidable;
Jones and Lipton, for example, have shown that it is
not even possible to construct a mechanism that rejects
exactly the insecure executions of a program [19].

The certification mechanism to be presented is
based on condition (2). It determines whether a given
program specifies invalid flows, irrespective of whether
the program can ever execute them.

3. The Certification Mechanism

When the security classes of variables are declared
in a program and are static, it is easy to incorporate the

506

certification process into the analysis phase o f ' a com-
piler. The mechanism will be presented in the form of
certification semantics - a c t i o n s for the compiler to per-
form, along with usual semantic actions such as type
checking and code generat ion, when a string of a given
syntactic type is recognized. This procedure differs
from an information tracing procedure given by Moore
[25]; ours verifies program flows against a standard,
whereas Moore ' s seeks primarily to construct a flow
graph.

When external objects, such as files and separately
compiled procedures, are bound to a program, the
linker must verify that the actual security class of each
such object corresponds properly to the security class
declared formally for it in the program. This must be
done before a program is executed.

The certification mechanism exploits lattice proper-
ties for efficiency. The transitive flow relation implies
that sequences of secure direct flows are secure and
hence the semantics need only certify the direct flows
implied by each syntactic type. The least upper and
greatest lower bound propert ies greatly simplify the
amount of information needed to track the origins and
destinations of flows. Suppose xl, • • . , Xm are sources
of information for some receiving object y , as in an
assignment s ta tement "y := f (x l , . . . , xm)" or in an
output s ta tement "output xl , • • • , xm to y . " Rather
than certify xi ~ y separately for each i, the compiler
may form A --= xl--Q. • • G Xm as the source objects are
recognized, and verify simply A ~ y - o n l y a single
internal variable representing the maximal class of the
source objects is needed. Now, suppose ya Yn are
to receive information derived from some source object
x, as in an input s tatement "input Y l, • • • , Yn from x , "
or in a structure generating implicit flows from an
object x in a conditional expression to objects yj in that
structure's scope. Rather than certify x --~ y~ separately

fo r each j , the compiler may f o r m B = Yl ®" " " ®_Yn as
the receiving objects are being recognized and verify
simply x --> B - o n l y a single internal variable repre-
senting the minimal class of the receiving objects is
needed.

The presentation of the full mechanism has been
divided into four parts: (a) assignment, I /O, and simple
control structures; (b) general control structures and
complex data structures; (c) procedure calls; and finally
(d) exception handling.

3.1 Assignment, I/O, and Simple Control Structures
We consider a programming language that supports

only the e lementary data types integer, Boolean, and
file. Extensions to other types are straightforward.
Ari thmetic and Boolean expressions are formed from
variables and constants as in Pascal [31]. The control
structures specify assignment, input and output with
files, selection (by an if s ta tement) , and iteration (by a
while s tatement) . A program comprises a list of decla-
rations, including security class declarations, followed

Communications July 1977
of Volume 20
the ACM Number 7

Fig. 3. A program and its certification.

1 begin
2 i,n: integer security class L;
3 flag: Boolean security class L;
4 f l , f2 : file security class L;
5 x , sum: integer security class H;
6 f3,f4: file security class H;
7 begin
8 i : = 1 ;
9 n : = 0 ;

10 sum := 0;
11 while i --< 100 do
12 begin
13 input flag from f l ;
14 output flag to f2;
15 input x from f3;
16 if flag then
17 begin
18 n :=n + 1;
19 sum := sum + x
20 end;
21 . i : = i + 1
22 end;

23 output n, sum, s u m / n t o f 4
24 end
25 end

Program

1---> i (L'--> L)
O-.~ n (L ' -~ L)
O ~ sum (L ~ H)

f l ~ flag (L ~ L)
-~ag--;-p (L---, L)
f3 - -* x (H---~ H)

n (~ l - -* n (L---> L)
sum Q x ~ sum (H ~ H)

~ '--~ n Q sum (L ~ L)
_ 1 - - 7 i (£ = L)
i® lO0--,fla~ ® $ 2 ® x ®

n (~ Sum C) i (L ~ L) -
n ~)su'm-~Qsum G n --->f4 (H-'-> H)

Certification Checks

by the executable statements. An example program is
given in Figure 3(a).

Table I gives the syntax and certification semantics
for this language. To avoid ambiguities in the seman-
tics, multiple occurrences of the same syntactic type are
distinguished (e.g. (x), (X)l, and (x)~). The security
class O f a syntactic type ix) is denoted by ix). A com-
piler variable, CERTIFIED, is initialized to true and
set to false if the compiler ever detects a flow specifica-
tion violating the flow relation. A program is certified
as secure if and only if CERTIFIED = true after the
entire program has been analyzed. The reader is re-
ferred to Gries [15, Sec. 12.2] for an exposition of
additional semantic actions, e.g. code generation, that
must be defined to complete the compiler.

Figure 4 illustrates the certification of a simple
assignment "c := a*2 + b" . The overall parse can be
represented as a syntax tree for the statement. The
security classes (in p~rentheses) are shown opposite
each subtree. The semantic actions in effect propagate
the security classes of expressions up the tree and verify
the flow when the assignment Operator is accounted for
at the top.

Figure 3(b) shows the certification actions for the
example program. When the selection and iteration
statements ave recognized (lines 20 and 22), the im-
plicit flows from the cbntrolling expressions (the @ of
the operand classes) to the variables receiving flows in
their scopes (the ® of all such variable classes) are
checked. The example program is certified.

The correctness of the certification semantics is

507

straightforwardly established. Let x1, . . . , X m denote
the operands (source objects) in an (exp) or an (outlist),
and Yl , Yn the results (receiving objects) in an
(inlist) or (stmt). From Table I, it is easy to deduce that

(exp) = (outlist) = xl Q" • "Q Xm,
(inlist) = (stmt)=_yl ® . . '®Yn-

(p l)
(p2)

We wish to prove:
THEOREM. A p r o g r a m is certi f ied only i f it is secure.
The proof is an induction on the structure index i of

a given program p; i is simply the number of (stmt)
nodes in a syntax tree f o r p . As a basis, consider i = 1.
There are three cases for the single simple (stmt) consti-
tuting p .

(1) Suppose (stmt) = "(var) := (exp)." Let
x l , . . . , X m denote the operands of (exp); by (p l) ,
(exp) =_xl Q . • • @ x The program is certified only if
(exp) --> (var) (rule 20) and thus only when it is secure.

(2) Suppose (strut) = "input (inlist) from (file)."
Lety~ ,(~n denote the variables in (inlist); by (p2),
(inlet) =y~ • • • ®y n . The program is certified only if
(file) --> (inlist) (rule 2-3) and thus only when it is secure.

(3) Suppose (strut) = "output (outlist) to (file)."
Le tx l , x,n be all the objects in (outlist); by (p l) ,
(outlist) =Xl Q" • ' QXm. The program is certified only
if (outlist) ---> (file) (rule 26) and thus only when it is
secure. Thus the theorem holds for all programs of one
simple statement.

As an induction hypothesis, assume that the theo-
rem holds whenever the program's structure index sat-

Communications July 1977
of Volume 20
the ACM Number 7

Table I. Basic Certification Semantics.

Syntax rule Certification semantics

Declarations
1 (type) ::= integer I Boolean lille
2 (idlist) ::= (ident) I (idlist), (ident)
3 (decl) ::= (idlist) : (type) security class

(security class)
4 (declist) ::= (decl) I (declist); (decl)

Expressions
5 (addop) ::= + l - I V
6 (mulop) ::= * l / I / k
7 (relop) ::= < l - < I = I 4= I -> I >
8 (va r) : := (ident)
9 (file) ::= (ident)

10 (fac to r) : := (vat)
11 (factor) ::= (cons)
12 (factor) ::= ((exp))
13 (factor) ::= - (factor)l
14 (term) ::= (factor)
15 (term) ::= (term)l (mulop) (factor)
16 (aexp) ::= (term)
17 (aexp) ::= (aexp)l (addop) (term)
18 (exp) ::= (aexp)
19 (exp) ::= (aexp)~ (relop) (aexp)2

Assignment
20 (stmt) ::= (var) := (exp)

Input
21 (inlist) ::= (var)
22 (inlist) ::= (inlist)l, (var)
23 (stmt) ::= input (inlist) from (file)

Output
24 (outlist) ::= (exp)
25 (outlist) ::= (outlist)~, (exp)
26 (stmt) ::= output (outlist) to (file)

Compound
27 (stlist) ::= (stmt)
28 (stlist) ::= (stlist)~; (stmt)
29 (stmt) ::= begin (stlist) end

Selection
30 (stmt) ::= if (exp) then (stmt)l

[else (stmt)2]

Iteration
31 (stmt) ::= while (exp) do (stmt)l

Program
32 (prog) ::= begin (declist); (stmt) end

for each (ident) in (idlist) associate (security class) with (ident) in the symbol table entry
for (ident)

(var) ::= (ident)
(file) := (ident)
(factor) := (var)
(factor) := L (the least class)
(factor) := (exp)
(factor) := (factor)~
(term) := (factor)
(term) := (term)~ @ (factor)
(aexp) := (term)
(aexp) := (aexp)l @ (term)
(exp) := (aexp)
(ex___pp) := (aexp)l @ (aexp)2

(stmt) := (y_~)
if not ((exp) --~ (va___£))

then CERTIFIED := false

(inlist) := (va__..rr)
(inlist) := (inlist)~ ® (var)
(stmt) := (inlist)
if not ((file) ~ (inlist))

then CERTIFIED := false

(outlist) := (exp)
(outlist) := (outlist)l • (exp)
(strut) := (file)
if not ((outlist) ~ (fil_ee)).

then CERTIFIED := false

(stlist) := (stmt)
(stlist) := (stlist)l ® (stmt)
(stmt) := (stlist)

(stmt) := (stmt)l [® (stmt)z]
if not ((exp) --~ (stmt))

then CERTIFIED := false

(stmt) := (stm..._3t),
if not ((exp) ~ (stmt))

then C-E-'RTIFIED := false

if CERTIFIED then certify (prog) else report security violation. (CERTIFIED is
initialized to true and set to false if a violation is detected)

isfies 1 --< i < J and consider a p rogram p for which i =
J. There are two cases:

(1) p is a c o m p o u n d s ta tement of the form (stmt) =
"begin (stlist) end . " The semantics assume that (stmt) is
certified whenever (stlist) is (rule 29). Since (stlist)
denotes a sequence of s ta tements each with index not
exceeding J - 1, and since the transitivity of the flow
relation implies that any sequence of secure flows is
secure, (stmt) is secure when (stlist) is.

(2) p is a selection or i terat ion s ta tement o f the

508

form (stmt) = " if (exp) t h e n (stmt)l [else (stmt)2]" or
" w h i l e (exp) do (stmt)l ." Let Xl, • • • , Xm be the oper-
ands of (exp); by (p l) , (exp) = x l Q . . . Q X m . Le t
y~, • • • , Yn be the objects receiving flows specified by
(stmt)~ [and (stmt)2]; by (p2) and rule 30, (stmt) =
(stmt)~ [(stmt)2] = _y~ ® " " ® _y,. By induct ion (stmt)l
[and (stmt)2], having structure indices not exceeding J
- 1, are certified only if secure. H o w e v e r , rules 30 and
31 certify (stmt) only if_xl Q" • • @Xm--~yl ®" " " ®Yn,
and thus only when the selection or i teration s ta tement

Communications July 1977
of Volume 20
the ACM Number 7

is secure. This completes the correctness proof of the
certification semantics.

3.2 General Control and Data Structures
The method of certifying the if and while statements

can be extended to any selection or iteration structure
expressible as a single statement. This includes, for
example, the Pascal repeat, for, and case statements
[31]. The principle is to identify the operands
x l , . . . , x,~ of the controlling expression and the ob-
jects ya, . . . , Yn receiving flows within the scope of
the structure and then verify tha tx , Q . . - ® x m ~ Yl
® . . . ® y , .

This technique can be extended to control struc-
tures arising from arbitrary goto statements. However ,
certifying a program with unrestricted gotos requires a
control flow analysis of the program to determine the
objects receiving flows within the scope of a conditional
expression. (This analysis is unnecessary if gotos are
res t r i c t ed-e .g , to loop e x i t s - s o that the scope of
conditional expressions can be determined during syn-
tax analysis.) Following is an outline of the analysis
required to do the certification. All basic blocks (single-
entry, single-exit substructures) are identified. A con-
trol f low graph is constructed, showing transitions
among basic blocks; associated with block b~ is an
expression e~ that selects the successor of b~ in the
graph. (How to do this is detailed in [1, 22]). The
security class of block bi is the greatest lower bound of
the security classes of all objects receiving flows in bi (if
there are no such objects, this class is H). The immedi-
ate forward dominator IFD(b~) is computed for each
block b~; it is the closest block to b~ among the set of
blocks which lie on all paths from bi to the program
exit. Define Bi as the set of all blocks on some path
from b~ to IFD(bi). The security class B~ is the greatest
lower bound of the classes of blocks in B~. Since the
only blocks directly conditioned on the selector expres-
sion e~ ofb~ are those in B~, the program is secure if each
block b~ is independently secure and e~ ~ B~ for all i.
Full details of this procedure, with examples, are given
in [6].

The mechanism can also be extended to handle
complex data structures. We shall consider arrays and
records to illustrate the method; Table II shows the
semantics. We assume that, just as they are of the same
data type, the elements of an array are of the same
security class. The certification semantics specify that,
as an array reference is processed, the classes of the
subscripts should be joined with that of the array,
yielding a class (array ret) = (iden t)Q (sublist) (rule
35). This is sufficient as long as the array reference is a
source object in an expression. If, however, the array
reference is a receiving object, e.g. on the left side of an
assignment statement, the relation (sublist) ~ (ident)
must also be verified because information about the
subscripts flows into the array in this case--e .g, after
the assignment "a[i] := 1" is made on an all-zero array,

Fig. 4. Certification tree of an assignment statement.

_a @b ~ c?.,~

(stmt)

(var) (c) :=

I
{ident) (c)

L
c

{exp) (a • _b)

I
{aexp) (a ~ b)

(aexp) (a) (addop) {term) (_b)

{term) (a) + {factor) (_b)

{term) (a) {mulop) (factor) (L) {var) (_b)

I I I I
{factor) (_a) • {cons) (L) {ident) (b)

I I I
{var) (a) 2 b

{ident} (a)

I
a

the value of i can be deduced by searching for the first
nonzero element. Since (array ref) = (ident)G (sublist)
is computed for any array reference (rule 35), and since
then (sublist) ~ (ident) implies (sublist)Q (ident) =
(ident), this check reduces to testing whether (array ref)
= (ident) when (array ret) is recognized as receiving a
flow. We have not shown this check in the certification
tables.

As a general rule, certification semantics must gen-
erate code that verifies whether computed addresses
refer to the objects assumed during certification. Thus
the array semantics must verify that the subscripts se-
lect elements in the declared range of the array (rule
35). Without this, a statement like "a[i] := b" might
cause an invalid flow b ~ c, where c is an object
addressed by a[i] when i is out of range.

A record r is a structure comprising fields
xl Xm, the ith element being referenced by the
compound name r.x~. Having a distinct name, each
element can be assigned to a different security class.
The notation Q£ denotesr.x3 Q . • • Q £.Xm; ®r is simi-
larly defined. An operation copying a record from a file
f into r is secure only if f--* ®r. An operation copying a
record r into a file f - i s secure only if Or --* f . An
assignment "r := s" for two records of idefitical--struc-
ture is secure only i fs .xi ~ r.xi for each i. (A stronger,
but not equivalent, r-e-quire-ment ®s --* ®r would be
easier to implement.)

3.3 Procedure Calls
A program p is secure only if it calls certified proce-

dures for which the linkage flows are secure. Let q be a
procedure with formal input parameters xl, . . . , Xm

509 Communications July 1977
of Volume 20
the ACM Number 7

and formal ou tpu t p a r a m e t e r s y l , . . . , Yn. Cons ide r a
call to q in p of the form

call q (a l , a m ; b l , • • • , b n) ,

where a~, . . . , am are t aken as the ac tua l input p a r a m -
e ters and b ~ , . . . , b n as the ac tua l ou tpu t p a r a m e t e r s of
the call . The secur i ty of the call r equ i r e s tha t th ree
condi t ions be ver i f ied:

(a) q is secure ,

(b) at --o x~ for i = 1 , . . . , m , and

(c) y j --~ b j for j = 1 , n.

Should the call s t a t emen t a p p e a r in the scope of condi -
t ional express ions e~, . . . , ek, the impl ic i t f lows f rom
ei , • • • , ek to ob jec t s tha t cou ld rece ive va lues dur ing
execu t ion o f q mus t be ver i f ied . To this end , the com-
pi ler of q must ident i fy all ob j ec t s Cl ct to which q
specif ies f lows; a m o n g them will be the fo rmal ou tpu t
p a r a m e t e r s of q . The secur i ty of the call s t a t e m e n t
r equ i res tha t

(d) e, @" • • @ ek --> Cl (~)" " " (~ Cl.

If (d) is ver i f ied , then by (c) e l Q " • • Q ek - -~yj - -~bj
for each ac tua l ou tpu t b j of q.

Unless p and q are c o m p i l e d toge the r , cond i t ions
(a) - (d) canno t be ver i f ied at the same t ime . H o w e v e r ,
the cer t i f ier can ou tpu t into the s epa ra t e ly c o m p i l e d p
and q i n fo rma t ion used subsequen t ly by a l inker to
cer t i fy the l inkage flows. On recogniz ing a call to q in p ,
the cer t i f ie r ou tpu t s the list of m + n + 1 classes
(al , • • • , am; b~ b~; el Q " • • Q £k). F o r p roce-
d-ure q , it ou tpu t s the list of m + n + 1 secur i ty classes
(x l , Xm; Y l , • • • , . . ~ ; Cj ® " • • ® C_l). By ma tch ing
these lists, the l inker can verify cond i t ions (b) - (d) .

This mechan i sm pe rmi t s cons t ruc t ing a p r o c e d u r e q
which ou tpu t s resul ts of a h igher class than the inputs .
This is conven ien t when q i tself , o r conf iden t ia l infor-
ma t ion used by q to c o m p u t e its resul ts , must be pro-
t ec ted . The flow of in fo rma t ion c o m p u t e d by q can be

res t r ic ted to ac tual ou tputs of high secur i ty classes.
The fo rego ing a p p r o a c h poses a ser ious l imi ta t ion

in des igning a p r o c e d u r e q for handl ing a rb i t r a ry classes
of i n fo rma t ion , as is typical of l ib ra ry p r o c e d u r e s . The
formal inputs x l Xm must be d e c l a r e d in the high-
est secur i ty class H so that at ~ , x~ (i = 1 m) can
be verif ied for all calls. This implies tha t Yl Y,,
must also be dec l a r ed in H since they will be de r ived
f r o m x l , . . . , X m . This in tu rn impl ies tha t no cell o n q
can be ver i f ied unless the cal ler has ass igned
b l , • • • , bn to H , even if a l am a re all in the leas t
class L . The fo rego ing m e c h a n i s m canno t t h e r e f o r e be
used to contruct unres t r ic ted p roc e du re s that yield
low securi ty results f rom da ta in a rb i t ra ry securi ty
classes.

O n e so lu t ion , ana logous to the P L / I G E N E R I C
p r o c e d u r e for d i f fe ren t da t a types [17], is to p r e p a r e a
s epa ra t e ve rs ion of q for each poss ib le c o m b i n a t i o n of
input secur i ty classes. T h e v iab i l i ty of this a p p r o a c h is
ques t ionab le when the re a re m a n y poss ib le c o m b i n a -
t ions of p a r a m e t e r secur i ty classes . A m o r e a t t r ac t ive
solut ion resul ts when q is r e s t r i c t ed in two ways: I ts
ou tpu t p a r a m e t e r s a re d e r i v e d sole ly f rom the inpu t
p a r a m e t e r s and i n f o r m a t i o n in the leas t class L ; it is no t
p e r m i t t e d to wr i te in to any o t h e r nonloca l ob jec t s .
(Local ob j ec t s can be wr i t t en if the i r va lues a re e r a s e d
when q r e tu rns .) T h e secur i ty of a call on such a
res t r i c ted p r o c e d u r e is ve r i f i ed w h e n e v e r

(a) a I (~) . • • (~ a m ~ b I ~)" " " (~ b n , and

(b)£1 ® " " _bl @ ' " @_b..

Tab le I I I gives the semant ics for cer t i fy ing these condi -
t ions. No te tha t cond i t i on (b) is ver i f ied by ass igning
the c l a s s b l ®" "" ® b n to the node of the syntax t r ee
a s soc ia t ed with the call s t a t e m e n t so tha t the impl ic i t
f low is h a n d l e d in the s ame way as in o t h e r s t a t emen t s .

A special case of these r e s t r i c t ed p r o c e d u r e s is the
" func t i on" type p r o c e d u r e (e .g . S O R T , L O G , S IN) .

Table II. Certification of Arrays and Records.

Syntax rule Certification semantics
Arrays
33 (sublist) ::= (exp)
34 (sublist) ::= (sublist)l, (exp)
35 (array ret) ::= (ident) [(sublist)]

Records
36 (stmt) ::= input (rec) from (file)

37 (stmt) ::= output (rec) to (file)

38 (stmt) ::= (rec)l := (rec)2

(sublist) := (exp)
(sublist) := (sublist)l @ (exp)
(array ref) := (ident) ~3 (sublist)
generate subscript range checking code

(stmt) := ® (rec)
if not ((file) ~ (stmt))

then CERTIFIED := false
(stmt) := (file)
if not (~ r(}-~) ~ (stmt))

then CERTIFIED := false
if (rec)l and (rec)2 have corresponding elements xl x,

then
if not ((rec)l .x~ -0 (rec)2 .x~ for all i)

then CERTIFIED := false
(stmt) := ® (re_.2)~

else TYPE ERROR := true

510 Communications
of
the ACM

July 1977
Volume 20
Number 7

Table III. Certification of Restricted Procedure Calls.

Syntax rule Certification semantics
39 (inparams) ::= (exp)
40 (inparams) ::= (inparams)l, (exp)
41 (outparams) ::= (var)
42 (outparams) ::= (outparams)l, (var)
43 (strut) ::=

call (ident) ((inparams); (outparams))

44 (fncall) ::= (ident)((inparams))
45 (factor) ::= (fncall)

(inparams) := (exp)
(~) (inparams)l • (exp)
(~ s) := 7-+-~
(~) := (o-fitparams)l ® (va_zr)
if not (inparams) ~ (outparams) then CERTIFIED := false

(stmt) := (outparams)
(fncall) := (inparams)
(~) := (fncall)

Here a procedure f is called during expression evalua-
tion (e.g. by f (a l , am)) and returns with a single
result derived entirely from the input parameters and
constants. Since there are no explicit output parame-
ters, the function call can be treated as any other
expression with operands a~ , a m . Table I I I shows
the syntax and semantics for this case.

3 .4 Except ion Handl ing
Program traps caused by exceptional cond i t i ons -

underflow, overflow, divide by zero, array subscript
range, endfile, and so f o r t h - r e q u i r e special care [12].
They may cause statements subsequently executed to
depend on the variables that caused them. The result-
ing flows will not be detected by the mechanism defined
so far.

The program in Figure 5 will be certified by our
mechanism. A problem arises when sum overflows and
the trap handler terminates the program: The value ofx
can be approximated by M A X / L A S T i , where M A X is
the largest value that can be stored in a register and
L A S T i is the last value o f / e n t e r e d into f i lef . The trap
has effectively caused a flow of class H information (x)
into a class L file (f). Had the p rogrammer indicated
the possible loop termination by replacing the while
expression e with "not overflow s u m , " the invalid im-
plicit flow from s u m t o f would have been detected [5].

One so lu t ion- inh ib i t all t r a p s - c a n be rejected,
for it defeats the purpose of traps. Another solution
would have the compiler test, for each type of trap
possible after each statement, the flow that would arise
should that trap occur. This may be rejected for sheer
inelegance and impracticality.

A practical solution is based on inhibiting all traps
except those for which actions have been defined ex-
plicitly by the program. Such definitions could be made
with a s ta tement similar to one used in PL/I [17]:

on (condition) (ident) do (stmt),

where (conditions) names a trap condition (underflow,
overflow, endfile, etc.), (ident) is the identifier to which
the condition applies, and (stmt) contains no gotos. All
on statements must appear as part of a program's decla-
ration section. When the trap occurs, (stmt) is executed
and control is returned to the point of the trap. Suppose
there is an on statement "on (condition)y do (stmt)l", z

511

is a variable receiving a flow in (stmt)l, another state-
ment (stmt)z in the program contains a reference (either
read or write) t o y , and (exp) is a conditional expression
in whose scope (stmt)2 lies. Since (stmt)~ is potentially
executed immediately after the reference to y in
(stmt)2, the implicit flow (exp) ~ z must be verified. To
avoid having the compiler backpack to the on state-
ment to verify (exp) ~ z, it is simpler to verify a
stronger condition: y ~ z when the on statement is
processed, and (exp) ~ _ y when (stmt)2 is processed.
This requires a modification in the semantics: the class
of any (stmt) is defined as the greatest lower bound of
all x such that x e i t h e r receives a flow, o r is an on
con'dition identifier referenced, in (stmt). Only those
traps for which on statements have been declared will
be enabled by the compiler.

The program in Figure 5 would be (trivially) certi-
fied by this mechanism since it would run with traps
inhibited. Had the p rogrammer made clear his inten-
tions via the statement "on overflow s u m do e :=
false," the program would not be certified.

4. Appl icat ions

4 .1 The C o n f i n e m e n t P r o b l e m
A service procedure is c o n f i n e d as long as the sys-

tem guarantees that it can neither retain a n y customer
information nor encode it into any value transmitted by
a storage object [20, 21]. It is s e l e c t i v e l y c o n f i n e d if this
restriction applies only to confidential customer infor-
mation [5, 10]. Mechanisms enforcing varying degrees
of confinement exist or have been proposed [2, 14, 18,
20, 26, 27].

Our certifier is capable of verifying the partial, or
total, confinement of a procedure (see Section 3.3).
L e t p be a procedure with input parametersx~, . . . , Xc,

x c + l , • • • , Xm, and suppose tha tp is permit ted to retain
information derived from the nonconfidential inputs
x a , . . . , X c , but not from the confidential inputs
Xc+~ , x m . The confinement of p hinges on three
properties: (1) p must be internally secure, (2)p must
not write into any nonlocal object z for which x~ ~ z (c
+ 1 -< i <- m), and (3) p must invoke only confined
procedures. By our definition of security, property (1)
implies that confidential information cannot be en-

Communications July 1977
of Volume 20
the ACM Number 7

coded in supposedly nonconfidential results. Property
(2) ensures that any information output from p is not
derived from confidential inputs. (It does not, how-
ever, prevent p from returning confidential results to
the customer through the output parameters.) Property
(3) requires that p cannot be linked to any other proce-
dure which might violate properties (1) or (2).

4.2 State Variables
Invalid flows ("leaks") can occur in some systems

when an observer may examine system state variables
and deduce information encoded in them [6, 20, 26].
For example, a process could transmit a confidential
value x by locking out files f l fx; an observer
could determine x by counting the number of locked
files. These flows can be regulated by associating secu-
rity classes with all state variables and verifying flows to
and from them as with any other object in the system
[21].

4.3 Data Bank Confidentiality
Suppose a system (or network of systems) has a

large database containing different classes of informa-
tion about individuals. One class might be employment
records, another health records, others credit records,
tax records, criminal records, and so on. Assuming that
all access to the database must be performed by using
certified query and update procedures, controlling
flows is straightforward. Let each user u have a clear-

ance, i.e. a static security classu. I f u submits a query
involving records Xl Xm of the database, the
query procedure would verify xl Q" • • @ Xm ~ u be-
fore accepting the request. Similarly, if usubm~'s an
update request for recordsyl , Yn, the update pro-
cedure would verify u --*Yl ® ' ' " ®Yn before accept-
ing the request.

5. Limitations

Lampson has identified three classes of paths, or
"channels," by which processes can transmit informa-
tion out of their immediate environments [20]. Legiti-
mate channels are the declared formal outputs of the
process; storage channels are other storage objects in
the nonlocal environment of the process; and covert

channels are any other transmission methods not in-
volving values stored anywhere in the system. Since the
first two channels involve information transmitted
through storage objects in the system, their flows can
be verified by our mechanism. The third, however,
employs physical phenomena to connect events within
the computer with those outside; examples include pro-
gram running time, power consumption, noise, and
electromagnetic radiation. Flows along these channels
are beyond the pale of our certification mechanism.
Various run-time mechanisms must be used to deal
with them. Fenton [9, 10] and Jones and Lipton [19],

512

Fig. 5. Program with invalid flow caused by a trap.

p: begin
i: integer security class L;
e: Boolean security class L;
f: f'de security dass L;
x, sum: integer security class H;
begin

sum := 0;
i : = 0 ;
e := true;
while e do

begin
sum :=sum + x ;
i : = i + 1 ;
output i to f

end
end
end

have shown how to construct mechanisms that prevent
an isolated program's running time from depending on
confidential information. After a careful analysis, Lip-
ner has concluded that sealing covert channels associ-
ated with program running time is at best difficult and
may be impossible in systems of shared resources [21].

Acknowledgments . We are grateful for stimulating
discussions with J.S. Fenton, R.S. Gaines, G.S. Gra-
ham, S.B. Lipner, J.K. Millen, and H.D. Schwetman.
We are particularly grateful to C. Ellison and B.W.
Lampson, whose comments on the trap mechanism
were most influential.

Received August 1975; revised April 1976

References
1. Allen, F.E. Control flow analysis. Proc. Symp. Compiler Opti-
mization, SIGPLAN Notices (ACM) 5, 7 (July 1970), 1-19.
2. Andrews, G.R. C O P S - A protection mechanism for computer
systems. Ph.D. Diss., U. of Wash., Seattle, Wash., July 1974.
3. Bell, D.E., and LaPadula, L.J. Secure Computer Systems:
Mathematical Foundations, Vol. 1-III. ESD-TR-73-278, The
MITRE Corp., Bedford, Mass.
4. Birkhoff, G. Lattice Theory. Amer. Math. Soc. Col. Pub. XXV,
Amer. Math. Soc., Providence, R.I., 3rd ed., 1967.
5. Denning, D.E., Denning, P.J., and Graham, G.S. Selectively
confined subsystems. Proc. Int. Workshop on Protection in Oper-
ating Systems, IRIA-Laboria, France, Aug. 1974, pp. 55-61.
6. Denning, D.E. Secure information flow in computer systems.
Ph.D. Th., Comptr. Sci. Dep., Purdue U., W. Lafayette, Ind., May
1975.
7. Denning, D.E. A lattice model of secure information flow.
Comm. A C M 19, 5 (May 1976), 236-243.
8. Denning, D.E. On the derivation of lattice structured informa-
tion flow policies. Tech. Rep. TR-179, Dep. of Comptr. Sci., Purdue
U., W. Lafayette, Ind., March 1976.
9. Fenton, J.S. Information protection systems. Ph.D. Diss.,
Comptr. Lab., U. of Cambridge, England, 1973.
10. Fenton, J.S. Memoryless subsystems. Comptr. J. 17, 2 (May
1974), 143-147.
11. F.enton, J.S. An abstract computer model demonstrating direc-
tional information flow. U. of Cambridge, Cambridge, England,
1974.
12. Goodenough, J.B. Exception handling: Issues and a proposed
notation. Comm. A C M 18, 12 (Dec. 1975), 683-696.

Communications July 1977
of Volume 20
the ACM Number 7

13. Gat, I., and Saal, H.J. Memoryless execution: A programmer's
viewpoint. IBM Tech. Rep. 025, IBM Israeli Scientific Ctr., Haifa,
March 1975.
14. Graham, G.S., and Denning, P.J. Protection-principles and
practice. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press, Montvale,
N.J., pp. 417-429.
15. Gries, D. Compiler Construction for Digital Computers, Wiley,
New York, 1971.
16. Harrison, M.A., Ruzzo, W.L., and Ullman, J.D. On protection
in operating systems. Proc. Fifth Symp. on Operating Systems Princi-
ples, Operating Syst. Rev. (ACM SIGOPS Newsletter) 9, 5 (Nov.
1975), 14-24.
17. IBM. System/360 PL/I (F) Language Reference Manual. Rep.
No. GC28-8201-3, IBM Systems Reference Library, 1971.
18. Jones, A.K. Protection in programmed systems. Ph.D. Th.,
Carnegie-Mellon U., Pittsburgh, Pa., June 1973.
19. Jones, A.K., and Lipton, R.J. The enforcement of security
policies for computation. Proc. Fifth Symp. on Operating Systems
Principles, Operating Syst. Rev. (ACM SIGOPS Newsletter) 9, 5
(Nov. 1975), 197-206.
20. Lampson, B.W. A note on the confinement problem. Comm.
ACM 16, 10 (Oct. 1973), 613-615.
21. Lipner, S.B. A comment on the confinement problem. Proc.
Fifth Symp. on Operating Systems Principles, Operating Syst. Rev.
(ACM SIGOPS Newsletter) 9, 5 (Nov. 1975), 192-196.
22. Lowry, E.S., and Medlock, C.W. Object code optimization.
Comm. ACM 12, 1 (Jan. 1969), 13-22.
23. Millen, J.K. Security Kernel Validation in Practice. Comm.
ACM 19, 5 (May 1976), 243-250.
24. Minsky, M.L. Computation: Finite and Infinite Machines, Pren-
tice-Hall, Englewood Cliffs, N.J., 1967.
25. Moore, C.G. III. Potential capabilities in ALGOL-like pro-
grams. TR 74-211, Dep. Comptr. Sci., Cornell U., Ithaca, N.Y.,
Sept. 1974.
26. Rotenberg, L.J. Making computers keep secrets. Ph.D. Th.,
MAC-TR-115, Project Mac, M.I.T., Cambridge, Mass., Feb. 1974.
27. Schroeder, M.D. Cooperation ofmutually suspicious subsystems
in a computer utility. Ph.D. Th., MAC-TR-104, Project MAC, Sept.
1972.
28 o Stone, K.S. Discrete Mathematical Structures and Their Applica-
tions. Science Research Associates, Chicago, 1973.
29. Walter, K.G., et al. Structured specification of a security kernel.
Proc. Int. Conf. on Reliable Software, SIGPLAN Notices (ACM)
10, 6 (June 1975), 285-293.
30. Weissman, C. Security controls in the ADEPT-50 time-sharing
system. Proc. AFIPS 1969 FJCC, Vol. 35, AFIPS Press, Montvale,
N.J., pp. 119-133.
31. Wirth, N. The programming language Pascal. Acta Informatica
1, 1 (1971), 35-63.

Programming J.J. Horning*
Languages Editor

Shifting Garbage
Collection Overhead
to Compile Time
Jeffrey M. Barth
Univers i ty o f Cal i fornia at B e r k e l e y

This paper discusses techniques which enable
automatic storage reclamation overhead to be partially
shifted to compile time. The paper assumes a
transaction oriented collection scheme, as proposed by
Deutsch and Bobrow, the necessary features of which
are summarized. Implementing the described
optimizations requires global flow analysis to be
performed on the source program. It is shown that at
compile time certain program actions that affect the
reference counts of cells can be deduced. This
information is used to find actions that cancel when the
code is executed and those that can be grouped to
achieve improved efficiency.

Key Words and Phrases: garbage collection, global
flow analysis, list processing, optimization, reference
counts, storage management

CR Categories: 3.80, 4.12, 4.20, 4.34

513

Introduction

Heap storage no longer accessible from program
variables has traditionally been collected either by gar-
bage collection or by a reference count scheme [5].
Garbage collection involves a periodic disruption of
program execution, during which any one of several
well-known scan, mark, and collect algorithms can be
employed. Reference counting, although less disrup-

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

* Note. This paper was submitted prior to the time that Horning
became editor of the department, and editorial consideration was
completed under the former editor, Ben Wegbreit.

Research sponsored by National Science Foundation Grant
DCR74-07644-A01. Author's address: Electronic Research Labora-
tory, College of Engineering, University of California at Berkeley,
Berkeley, CA 94720.

Communications July 1977
of Volume 20
the ACM Number 7

