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This paper presents a certification mechanism for 
verifying the secure flow of information through a pro- 
gram. Because it exploits the properties of a lattice 
structure among security classes, the procedure is suf- 
ficiently simple that it can easily be included in the 
analysis phase of most existing compilers. Appropriate 
semantics are presented and proved correct. An impor- 
tant application is the confinement problem: The 
mechanism can prove that a program cannot cause 
supposedly nonconfidential results to depend on confi- 
dential input data. 
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1. Introduction 

Compute r  system security relies in part  on informa- 
tion flow control, that is, on methods of regulating the 
dissemination of information among objects through- 
out the system. An information flow policy specifies a 
set of security classes for information,  a flow relation 
defining permissible flows among these classes, and a 
method of binding each storage object  to some class. 
An operat ion,  or series of operat ions,  that uses the 
value of some object ,  say x, to derive a value for 
another,  say y,  causes a flow from x to y.  This flow is 
admissible in the given flow policy only if the security 
class of x flows into the security class of y.  

Prior work on the enforcement  of flow policies has 
concentrated on run-time mechanisms. One type of 
mechanism enforces a given flow policy by controlling 
processes '  read and write access rights to objects: no 
process may acquire read access for an input object ,  or 
write access for an output  object,  unless the security 
class of every input flows into the security class of every 
o u t p u t - e v e n  if some outputs depend on only a subset 
of the inputs. A D E P T - 5 0  [30], the Case system [29], 
the M I T R E  system [3, 23], and the Privacy Restriction 
Processor [26] are of this type.  These mechanisms are 
generally easy to implement  because they make no 
at tempt  to examine the structure of a program.  A 
second type of (more complex) mechanism accounts for 
program structures in order  to determine flows be- 
tween specific input and output objects.  Fenton 's  data 
mark machine [10], the mechanism of Gat  and Saal 
[13], and the surveillance mechanism of Jones and 
Lipton [19] are of this type.  The surveillance mecha- 
nism employs a program transformation to insure that 
all flows are properly accounted for at run time. A 
detailed discussion of all these mechanisms can be 
found in [7]. 

This paper  presents a compile-t ime mechanism that 
certifies a program only if it specifies no flows in viola- 
tion of the flow policy. Besides the aesthetic attraction 
of establishing a program's  security before it executes,  
a certification mechanism has important  advantages.  It 
can be specified directly in terms of language struc- 
tures, which facilitates its comprehension and its proof  
of correctness. It  greatly reduces the need for run-time 
checking. I t  does not impair a program's  execution 
speed. (See also [23]). 

Prior certification does not completely eliminate the 
need for. run-t ime checking. Run-t ime support  is 
needed to raise the tolerance against hardware mal- 
functions and other threats to the integrity of certified 
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programs.  I t  is needed to verify that computed ad- 
dresses remain in the ranges assumed for them during 
certification. It  is needed to control covert channels, 
which allow flows outside the storage objects of the 
system. 

2. Lattice Model of Information Flow 

We give a brief review of the flow model on which 
the certification mechanism is based [6, 7]. The model 
generalizes earlier work as reported in [3, 9, 10, 11, 
23, 26, 29, 30]. 

2.1 Policy Description~and Properties 
A flow policy can be represented by (S, -->), where S 

is a given set of security classes and--> is a flow relation 
specifying permissible flows between pairs of classes. 
Each storage object  x - - e . g ,  constant,  scalar variable,  
array, or f i le-- is  assigned (bound) to a security class, 
denoted by underbar,  _x. The notation x -->_y thus means 
that a flow from object  x to object  y is permissible in 
the flow policy. We will suppose the binding of each 
object to a security class is static and can be determined 
from the declarations contained in a program.  

Under  the reasonable assumptions that there is a 
finite number  of security classes, that the flow relation 
is reflexive ( i . e .x  --> x is always permissible),  and that  
the flow relation is transitive (i.e. x --> y --> z implies x 

z) ,  we may suppose that (S, _7_~) is  a lattice. Th~  
means that,  corresponding to any pair of classes, there 
are unique upper  and lower bound classes. If  (S, ---~) is 
not a lattice, it may be t ransformed into one by adding 
new classes as necessary without changing the flows 
among the original classes [8]. The lattice propert ies 
are exploited to construct an efficient certification 
mechanism. 

The symbols Q and ® denote,  respectively, the 
associative and commutat ive  least upper bound and 
greatest lower bound operators  of the lattice (S, ---~} [4, 
28]. The least upper  bound is defined so thatx~ ---~y for 
i = 1 , . . . ,  m is equivalent to the re la t ionxl  G .  • • Q x m  

y .  It  can be envisaged as requiring that flows from 
various operand classes must pass through a single 
common class en route to a given result class. The 
greatest lower bound is defined so tha tx  ---~.2~ for j  = 1, 
• . . ,  n is equivalent to the re la t ionx ---~_Yl ®" " • @_Yn. It  
can be envisaged as requiring that flows f rom a given 
operand class must pass through a single common class 
en route to various result classes. There is a highest 
class H ,  which is the least upper  bound of all classes, 
and a least class L,  which is the greatest  lower bound of 
all classes. 

All unnamed programming language constants are 
members  of  L.  This assumption is reasonable since the 
flow of an ordinary constant,  say "99 , "  into a variable,  
sayx ,  puts in x no information about  any other object• 
Only when "99"  is known to be the value of an objec ty  
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for whichy -4* x must its flow be prevented;  but this is 
done by restr i~ing the flow from y ,  not from "99 . "  

Figures 1 and 2 illustrate lattices that arise fre- 
quently in practice. Figure 1 is a linear "priority lattice" 
o n n c l a s s e s 0 , 1 , . . . , n -  1, w h e r e L = 0 a n d H = n -  
1. This lattice applies to the simple confinement prob- 
lem with classes nonconfidential (0) and confidential 
(1) [10] and to the common military security problem 
with classes unclassified (0), confidential (1), secret 
(2), and top secret (3) [30]. Figure 2 shows a more 
complex "proper ty  lattice" representing the immediate  
inclusions among all 2 n subsets of n = 3 propert ies  
represented as bit vectors. It generalizes easily to any 
value of n and is used in systems where information may 
flow only to a security class having at least the same 
propert ies as the originating class [3, 23, 29, 30]. 

2.2 Flow 
Information flows from object x to object y ,  de- 

noted x ~ y,  whenever information stored in x is 
transferred to, or used to derive information trans- 
ferred to, object y.  A program statement  specifies a 
flow x ~ y if execution of the statement could result in 
a f lowx ~ y .  

Flows are explicit or implicit. An explicit flow x ~ y 
occurs whenever  the operat ions generating it are inde- 
pendent of the value of x. Assignment statements, I /O 
statements,  and value-returning procedure calls gener- 
ate explicit flows. An implicit flow x ~ y occurs when- 
ever a s tatement  specifies a flow from some arbitrary z 
to y ,  but execution depends on the value of x. Con- 
sider, for example,  the statements 

y := 1; i fx  = 0 t h e n y : = 0 ,  

where x is either 0 or 1. On termination of these 
statements,  x = y whether  or not the then clause was 
executed. Hence the if statement  causes an implicit 
flow x ~ y. In general,  all conditional structures gener- 
ate implicit flows. 

It should be noted that the relation ~ is transitive, 
that is ,x  ~ y  ~ z impliesx ~ z. I fx  ~ y  because some 
function having x as an operand stores its result in y ,  
the flow is direct; otherwise it is indirect. An assignment 
"y :-- f ( . . . ,  x, . . . ) "  thus causes flow x ~ y directly, 
while the pair "z := f ( . . .  , x . . . .  ), y := g ( . . .  , z . . . .  )"  
causes flow x ~ y indirectly. 

2.3 Security Requirements 
A program p is secure if and only if no execution of 

p results in a flow x ~ y unless x --> y. A necessary and 
sufficient condition for the security of p is then 

x ~ y  for some execution o f p  only i fx  -->_y. (1) 

Unfortunately condition (1) is generally undecidable. 
Any procedure purpor ted  to decide it could be applied 
to the statement 

iff(x) halts then y := 0 
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Fig. 1. Linear priority lattice. 

S = { 0 ,  1 . . . . .  n - 1} 

i--->j iffi --<j 

iC)  j = max( i , j )  

i Q j  = min( i , j )  

L = O ,  t t = n  - 1 

Description 
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t 

t 
1 

t 
0 

Precedence graph 

Fig. 2. Property lattice for n = 3. 

S = {000,001 . . . . .  111} 
A ~ B  i f fOR(A,  B) = B 
A ~) B = OR(A,B)  
A ® B = A N D ( A , B )  

L = O00, H = 111 

 1i1- 
l l 0 ~ 1 0 1 ~ X ~ 0 1 1  

1!0, ,0 0, 0!1 
" 0 0J 

Description Precedence graph 

and thus provide a solution to the halting problem for 
an arbitrary recursive function [24]. (In a related study, 
Harrison,  Ruzzo, and Ullman have shown that,  without 
severe restrictions, protection systems contain intracta- 
ble, if not undecidable, accessing questions [16]). 

The undecidability is removed  if we replace (1) with 
the security condition 

x ~ y  is specified by p only i fx  ---~ y. (2) 

The previous if s tatement  can clearly be tested for this 
condition. However ,  security condition (2) gives less 
precision in program certification than (1). For exam- 
ple, consider the program 

if x = 0 then if x :~ 0 t h e n y  := z 

and a flow relation that disallows only z ~ y. This 
program is secure by (1) since no execution of it can 
result in z ~ y,  but it will not be certified by a mecha- 
nism based on (2) since it specifies z ~ y. There  is no 
reason to believe that loss of precision is avoidable;  
Jones and Lipton, for example,  have shown that it is 
not even possible to construct a mechanism that rejects 
exactly the insecure executions of a program [19]. 

The certification mechanism to be presented is 
based on condition (2). It determines whether  a given 
program specifies invalid flows, irrespective of whether  
the program can ever execute them. 

3. The Certification Mechanism 

When the security classes of variables are declared 
in a program and are static, it is easy to incorporate the 
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certification process into the analysis phase o f ' a  com- 
piler. The mechanism will be presented in the form of 
certification semantics - a c t i o n s  for the compiler  to per- 
form, along with usual semantic actions such as type 
checking and code generat ion,  when a string of a given 
syntactic type is recognized. This procedure differs 
from an information tracing procedure  given by Moore  
[25]; ours verifies program flows against a standard,  
whereas Moore ' s  seeks primarily to construct a flow 
graph. 

When external objects,  such as files and separately 
compiled procedures,  are bound to a program,  the 
linker must verify that the actual security class of each 
such object corresponds properly to the security class 
declared formally for it in the program.  This must be 
done before a program is executed. 

The certification mechanism exploits lattice proper-  
ties for efficiency. The transitive flow relation implies 
that sequences of secure direct flows are secure and 
hence the semantics need only certify the direct flows 
implied by each syntactic type. The least upper  and 
greatest lower bound propert ies  greatly simplify the 
amount  of information needed to track the origins and 
destinations of flows. Suppose xl,  • • . ,  Xm are sources 
of information for some receiving object  y ,  as in an 
assignment s ta tement  "y := f ( x l ,  . . .  , xm)" or in an 
output s ta tement  "output  xl ,  • • • , xm to y . "  Rather  
than certify xi ~ y separately for each i, the compiler  
may form A --= xl--Q. • • G Xm as the source objects are 
recognized, and verify simply A ~ y - o n l y  a single 
internal variable representing the maximal class of the 
source objects is needed.  Now,  suppose ya . . . . .  Yn are 
to receive information derived from some source object  
x,  as in an input s tatement  "input Y l, • • • , Yn from x , "  
or in a structure generating implicit flows from an 
object x in a conditional expression to objects yj in that 
structure's scope. Rather  than certify x --~ y~ separately 

fo r  each j ,  the compiler  may  f o r m  B = Yl ®" " " ®_Yn as 
the receiving objects are being recognized and verify 
simply x --> B - o n l y  a single internal variable repre- 
senting the minimal class of the receiving objects is 
needed.  

The presentation of the full mechanism has been 
divided into four parts: (a) assignment, I /O,  and simple 
control structures; (b) general control structures and 
complex data structures; (c) procedure  calls; and finally 
(d) exception handling. 

3.1 Assignment, I/O, and Simple Control Structures 
We consider a programming language that supports  

only the e lementary  data types integer, Boolean,  and 
file. Extensions to other types are straightforward. 
Ari thmetic  and Boolean expressions are formed from 
variables and constants as in Pascal [31]. The control 
structures specify assignment,  input and output with 
files, selection (by an if s ta tement) ,  and iteration (by a 
while s tatement) .  A program comprises a list of decla- 
rations, including security class declarations, followed 
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Fig. 3. A program and its certification. 

1 begin 
2 i,n: integer security class L; 
3 flag: Boolean security class L; 
4 f l , f2 :  file security class L; 
5 x , sum:  integer security class H; 
6 f3,f4: file security class H; 
7 begin 
8 i : = 1 ;  
9 n : = 0 ;  

10 sum := 0; 
11 while i --< 100 do 
12 begin 
13 input flag from f l ;  
14 output flag to f2; 
15 input x from f3; 
16 if flag then 
17 begin 
18 n :=n + 1; 
19 sum := sum + x 
20 end; 
21 . i : = i + 1  
22 end; 

23 output n, sum,  s u m / n  t o f 4  
24 end 
25 end 

Program 

1---> i (L'--> L) 
O-.~ n (L ' -~  L) 
O ~ sum ( L ~ H) 

f l  ~ flag (L ~ L) 
-~ag--;-p (L---, L) 
f3 - -*  x (H---~ H) 

n (~ l - -*  n ( L---> L ) 
sum Q x ~ sum (H ~ H) 

~ '--~ n Q sum (L ~ L) 
_ 1 - - 7 i ( £ = L )  
i® lO0--,fla~ ® $ 2 ® x  ® 

n (~ Sum C) i  (L  ~ L ) -  
n ~)su'm-~Qsum G n  --->f4 (H-'-> H) 

Certification Checks 

by the executable statements. An example program is 
given in Figure 3(a). 

Table I gives the syntax and certification semantics 
for this language. To avoid ambiguities in the seman- 
tics, multiple occurrences of the same syntactic type are 
distinguished (e.g. (x), (X)l, and (x)~). The security 
class O f a syntactic type ix) is denoted by ix). A com- 
piler variable, CERTIFIED,  is initialized to true and 
set to false if the compiler ever detects a flow specifica- 
tion violating the flow relation. A program is certified 
as secure if and only if CERTIFIED = true after the 
entire program has been analyzed. The reader is re- 
ferred to Gries [15, Sec. 12.2] for an exposition of 
additional semantic actions, e.g. code generation, that 
must be defined to complete the compiler. 

Figure 4 illustrates the certification of a simple 
assignment "c := a*2 + b" .  The overall parse can be 
represented as a syntax tree for the statement. The 
security classes (in p~rentheses) are shown opposite 
each subtree. The semantic actions in effect propagate 
the security classes of expressions up the tree and verify 
the flow when the assignment Operator is accounted for 
at the top. 

Figure 3(b) shows the certification actions for the 
example program. When the selection and iteration 
statements ave recognized (lines 20 and 22), the im- 
plicit flows from the cbntrolling expressions (the @ of 
the operand classes) to the variables receiving flows in 
their scopes (the ® of all such variable classes) are 
checked. The example program is certified. 

The correctness of the certification semantics is 
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straightforwardly established. Let  x1, . . . ,  X m denote 
the operands (source objects) in an (exp) or an (outlist), 
and Yl . . . .  , Yn the results (receiving objects) in an 
(inlist) or (stmt). From Table I, it is easy to deduce that 

(exp) = (outlist) = xl Q" • "Q Xm, 
(inlist) = (stmt)=_yl ® . .  '®Yn- 

(p l )  
(p2) 

We wish to prove: 
THEOREM. A p r o g r a m  is certi f ied only  i f  it is secure.  
The proof is an induction on the structure index i of 

a given program p;  i is simply the number of (stmt) 
nodes in a syntax tree f o r p .  As a basis, consider i = 1. 
There are three cases for the single simple (stmt) consti- 
tuting p .  

(1) Suppose (stmt) = "(var) := (exp)." Let 
x l , . . . , X m  denote the operands of (exp); by (p l ) ,  
(exp) =_xl Q .  • • @ x  .... The program is certified only if 
(exp) --> (var) (rule 20) and thus only when it is secure. 

(2) Suppose (strut) = "input  (inlist) from (file)." 
Lety~ . . . .  ,(~n denote the variables in (inlist); by (p2), 
(inlet) =y~ • • • ®y n .  The program is certified only if 
(file) --> (inlist) (rule 2-3) and thus only when it is secure. 

(3) Suppose (strut) = "output (outlist) to (file)." 
Le tx l  . . . .  , x,n be all the objects in (outlist); by (p l ) ,  
(outlist) =Xl Q" • ' QXm. The program is certified only 
if (outlist) ---> (file) (rule 26) and thus only when it is 
secure. Thus the theorem holds for all programs of one 
simple statement. 

As an induction hypothesis, assume that the theo- 
rem holds whenever the program's structure index sat- 
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Table I. Basic Certification Semantics. 

Syntax rule Certification semantics 

Declarations 
1 (type) ::= integer I Boolean lille 
2 (idlist) ::= (ident) I (idlist), (ident) 
3 (decl) ::= (idlist) : (type) security class 

(security class) 
4 (declist) ::= (decl) I (declist); (decl) 

Expressions 
5 (addop) ::= + l - I V  
6 (mulop) ::= * l / I / k  
7 (relop) ::= < l -  < I = I 4= I -> I > 
8 ( va r ) : :=  (ident) 
9 (file) ::= (ident) 

10 ( fac to r ) : :=  (vat) 
11 (factor) ::= (cons) 
12 (factor) ::= ((exp)) 
13 (factor) ::= - (factor)l 
14 (term) ::= (factor) 
15 (term) ::= (term)l (mulop) (factor) 
16 (aexp) ::= (term) 
17 (aexp) ::= (aexp)l (addop) (term) 
18 (exp) ::= (aexp) 
19 (exp) ::= (aexp)~ (relop) (aexp)2 

Assignment 
20 (stmt) ::= (var) := (exp) 

Input 
21 (inlist) ::= (var) 
22 (inlist) ::= (inlist)l, (var) 
23 (stmt) ::= input (inlist) from (file) 

Output 
24 (outlist) ::= (exp) 
25 (outlist) ::= (outlist)~, (exp) 
26 (stmt) ::= output (outlist) to (file) 

Compound 
27 (stlist) ::= (stmt) 
28 (stlist) ::= (stlist)~; (stmt) 
29 (stmt) ::= begin (stlist) end 

Selection 
30 (stmt) ::= if (exp) then (stmt)l 

[else (stmt)2] 

Iteration 
31 (stmt) ::= while (exp) do (stmt)l 

Program 
32 (prog) ::= begin (declist); (stmt) end 

for each (ident) in (idlist) associate (security class) with (ident) in the symbol table entry 
for (ident) 

(var) ::= (ident) 
(file) := (ident) 
(factor) := (var) 
(factor) := L (the least class) 
(factor) := (exp) 
(factor) := (factor)~ 
(term) := (factor) 
(term) := (term)~ @ (factor) 
(aexp) := (term) 
(aexp) := (aexp)l @ (term) 
(exp) := (aexp) 
(ex___pp) := (aexp)l @ (aexp)2 

(stmt) := (y_~) 
if not ((exp) --~ (va___£)) 

then CERTIFIED := false 

(inlist) := (va__..rr) 
(inlist) := (inlist)~ ® (var) 
(stmt) := (inlist) 
if not ((file) ~ (inlist)) 

then CERTIFIED := false 

(outlist) := (exp) 
(outlist) := (outlist)l • (exp) 
(strut) := (file) 
if not ((outlist) ~ (fil_ee)). 

then CERTIFIED := false 

(stlist) := (stmt) 
(stlist) := (stlist)l ® (stmt) 
(stmt) := (stlist) 

(stmt) := (stmt)l [® (stmt)z] 
if not ((exp) --~ (stmt)) 

then CERTIFIED := false 

(stmt) := (stm..._3t), 
if not ((exp) ~ (stmt)) 

then C-E-'RTIFIED := false 

if CERTIFIED then certify (prog) else report security violation. (CERTIFIED is 
initialized to true and set to false if a violation is detected) 

isfies 1 --< i < J and consider  a p rogram p for which i = 
J. There  are two cases: 

(1) p is a c o m p o u n d  s ta tement  of  the form (stmt) = 
"begin (stlist) end . "  The  semantics  assume that (stmt) is 
certified whenever  (stlist) is (rule 29).  Since (stlist) 
denotes  a sequence  of  s ta tements  each with index not  
exceeding J - 1, and since the transitivity of  the flow 
relation implies that  any sequence  of  secure flows is 
secure,  (stmt) is secure when (stlist) is. 

(2) p is a selection or  i terat ion s ta tement  o f  the 
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form (stmt) = " if  (exp) t h e n  (stmt)l [else (stmt)2]" or  
" w h i l e  (exp) do (stmt)l ."  Let  Xl, • • • , Xm be the oper-  
ands of  (exp); by ( p l ) ,  (exp) = x l  Q . . . Q X m .  Le t  
y~, • • • , Yn be the objects  receiving flows specified by 
(stmt)~ [and (stmt)2]; by (p2) and rule 30,  (stmt) = 
(stmt)~ [(stmt)2] = _y~ ® " "  ® _y,. By induct ion (stmt)l 
[and (stmt)2], having structure indices not  exceeding J 
- 1, are certified only if secure.  H o w e v e r ,  rules 30 and 
31 certify (stmt) only if_xl Q"  • • @Xm--~yl  ®"  " " ®Yn,  
and thus only when the selection or  i teration s ta tement  
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is secure. This completes the correctness proof  of the 
certification semantics. 

3.2 General Control and Data Structures 
The method of certifying the if and while statements 

can be extended to any selection or iteration structure 
expressible as a single statement.  This includes, for 
example, the Pascal repeat,  for,  and case statements 
[31]. The principle is to identify the operands 
x l , . . .  , x,~ of the controlling expression and the ob- 
jects ya, . . . ,  Yn receiving flows within the scope of 
the structure and then verify tha tx ,  Q . . - ®  x m ~ Yl 
® . . .  ® y , .  

This technique can be extended to control struc- 
tures arising from arbitrary goto statements. However ,  
certifying a program with unrestricted gotos requires a 
control flow analysis of the program to determine the 
objects receiving flows within the scope of a conditional 
expression. (This analysis is unnecessary if gotos are 
res t r i c t ed-e .g ,  to loop e x i t s - s o  that the scope of 
conditional expressions can be determined during syn- 
tax analysis.) Following is an outline of the analysis 
required to do the certification. All basic blocks (single- 
entry, single-exit substructures) are identified. A con- 
trol f low graph is constructed, showing transitions 
among basic blocks; associated with block b~ is an 
expression e~ that selects the successor of b~ in the 
graph. (How to do this is detailed in [1, 22]). The 
security class of block bi is the greatest lower bound of 
the security classes of all objects receiving flows in bi (if 
there are no such objects, this class is H).  The immedi- 
ate forward dominator IFD(b~) is computed for each 
block b~; it is the closest block to b~ among the set of 
blocks which lie on all paths from bi to the program 
exit. Define Bi as the set of all blocks on some path 
from b~ to IFD(bi). The security class B~ is the greatest 
lower bound of the classes of blocks in B~. Since the 
only blocks directly conditioned on the selector expres- 
sion e~ ofb~ are those in B~, the program is secure if each 
block b~ is independently secure and e~ ~ B~ for all i. 
Full details of this procedure,  with examples, are given 
in [6]. 

The mechanism can also be extended to handle 
complex data structures. We shall consider arrays and 
records to illustrate the method; Table II shows the 
semantics. We assume that, just as they are of the same 
data type, the elements of an array are of the same 
security class. The certification semantics specify that,  
as an array reference is processed, the classes of the 
subscripts should be joined with that of the array, 
yielding a class (array ret) = ( iden t )Q (sublist) (rule 
35). This is sufficient as long as the array reference is a 
source object in an expression. If, however, the array 
reference is a receiving object,  e.g. on the left side of an 
assignment statement,  the relation (sublist) ~ (ident) 
must also be verified because information about the 
subscripts flows into the array in this case--e .g,  after 
the assignment "a[i] := 1" is made on an all-zero array, 

Fig. 4. Certification tree of an assignment statement. 

_a @b ~ c?.,~ 

(stmt) 

(var) (c) := 

I 
{ident) (c) 

L 
c 

{exp) (a • _b) 

I 
{aexp) (a ~ b) 

(aexp) (a) (addop) {term) (_b) 

{term) (a) + {factor) (_b) 

{term) (a) {mulop) (factor) (L) {var) (_b) 

I I I I 
{factor) (_a) • {cons) (L) {ident) (b) 

I I I 
{var) (a) 2 b 

{ident} (a) 

I 
a 

the value of i can be deduced by searching for the first 
nonzero element.  Since (array ref) = ( ident)G (sublist) 
is computed for any array reference (rule 35), and since 
then (sublist) ~ (ident) implies (sublist)Q (ident) = 
(ident), this check reduces to testing whether (array ref) 
= (ident) when (array ret) is recognized as receiving a 
flow. We have not shown this check in the certification 
tables. 

As a general rule, certification semantics must gen- 
erate code that verifies whether computed addresses 
refer to the objects assumed during certification. Thus 
the array semantics must verify that the subscripts se- 
lect elements in the declared range of the array (rule 
35). Without this, a statement like "a[i] := b"  might 
cause an invalid flow b ~ c, where c is an object 
addressed by a[i] when i is out of range. 

A record r is a structure comprising fields 
xl . . . . .  Xm, the ith element being referenced by the 
compound name r.x~. Having a distinct name, each 
element can be assigned to a different security class. 
The notation Q£ denotesr.x3 Q .  • • Q £.Xm; ®r  is simi- 
larly defined. An operation copying a record from a file 
f into r is secure only if f--* ®r.  An operation copying a 
record r into a file f - i s  secure only if Or  --* f .  An 
assignment "r := s"  for two records of idefitical--struc- 
ture is secure only i fs .xi  ~ r.xi for each i. (A stronger, 
but not equivalent, r-e-quire-ment ®s --* ®r  would be 
easier to implement.) 

3.3 Procedure Calls 
A program p is secure only if it calls certified proce- 

dures for which the linkage flows are secure. Let q be a 
procedure with formal input parameters xl, . . .  , Xm 
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and formal  ou tpu t  p a r a m e t e r s  y l ,  . . .  , Yn. Cons ide r  a 
call to q in p of  the  form 

call  q ( a l  . . . .  , a m ;  b l ,  • • • , b n ) ,  

where  a~,  . . .  , am  are  t aken  as the  ac tua l  input  p a r a m -  
e ters  and  b ~ ,  . . .  , b n  as the ac tua l  ou tpu t  p a r a m e t e r s  of  
the  call .  The  secur i ty  of  the call r equ i r e s  tha t  th ree  
condi t ions  be ver i f ied:  

(a) q is secure ,  

(b) at --o x~ for  i = 1 , . . .  , m ,  and  

(c) y j  --~ b j  for  j = 1 . . . .  , n.  

Should  the  call  s t a t emen t  a p p e a r  in the  scope  of  condi -  
t ional  express ions  e~, . . .  , ek, the  impl ic i t  f lows f rom 
ei ,  • • • , ek to ob jec t s  tha t  cou ld  rece ive  va lues  dur ing  
execu t ion  o f q  mus t  be ver i f ied .  To  this end ,  the  com-  
pi ler  of  q must  ident i fy  all ob j ec t s  Cl . . . . .  ct to which q 
specif ies  f lows; a m o n g  them will be  the  fo rmal  ou tpu t  
p a r a m e t e r s  of  q .  The  secur i ty  of  the  call  s t a t e m e n t  
r equ i res  tha t  

(d) e, @" • • @ ek --> Cl (~)" " " (~ Cl. 

If  (d) is ver i f ied ,  then  by (c) e l  Q "  • • Q ek - -~yj  - -~bj  
for  each  ac tua l  ou tpu t  b j  of q.  

Unless  p and q are  c o m p i l e d  toge the r ,  cond i t ions  
( a ) - ( d )  canno t  be  ver i f ied  at  the  same  t ime .  H o w e v e r ,  
the  cer t i f ier  can ou tpu t  into the  s epa ra t e ly  c o m p i l e d  p 
and q i n fo rma t ion  used subsequen t ly  by a l inker  to 
cer t i fy the  l inkage  flows. On  recogniz ing  a call to  q in p ,  
the  cer t i f ie r  ou tpu t s  the  list of  m + n + 1 classes 
(al ,  • • • , am; b~ . . . . .  b~; el Q "  • • Q £k). F o r  p roce-  
d-ure q ,  it ou tpu t s  the  list of  m + n + 1 secur i ty  classes 
( x l  . . . .  , Xm;  Y l ,  • • • , . . ~ ;  Cj ® "  • • ® C_l). By ma tch ing  
these  lists, the  l inker  can verify cond i t ions  ( b ) - ( d ) .  

This  mechan i sm pe rmi t s  cons t ruc t ing  a p r o c e d u r e  q 
which ou tpu t s  resul ts  of  a h igher  class than the inputs .  
This  is conven ien t  when q i tself ,  o r  conf iden t ia l  infor-  
ma t ion  used  by q to c o m p u t e  its resul ts ,  must  be pro-  
t ec ted .  The  flow of  in fo rma t ion  c o m p u t e d  by q can be  

res t r ic ted  to ac tual  ou tputs  of  high secur i ty  classes.  
The  fo rego ing  a p p r o a c h  poses  a ser ious  l imi ta t ion  

in des igning a p r o c e d u r e  q for  handl ing  a rb i t r a ry  classes 
of  i n fo rma t ion ,  as is typical  of  l ib ra ry  p r o c e d u r e s .  The  
formal  inputs  x l  . . . . .  Xm must  be d e c l a r e d  in the  high- 
est  secur i ty  class H so that  at  ~ ,  x~ (i = 1 . . . . .  m) can 
be verif ied for  all calls. This implies  tha t  Yl . . . . .  Y,, 
must  also be dec l a r ed  in H since they  will be  de r ived  
f r o m x l ,  . . .  , X m .  This  in tu rn  impl ies  tha t  no cell  o n q  
can be ver i f ied  unless  the  cal ler  has ass igned  
b l ,  • • • , bn to H ,  even if a l  . . . . .  am a re  all in the  leas t  
class L .  The  fo rego ing  m e c h a n i s m  canno t  t h e r e f o r e  be  
used to contruct  unres t r ic ted  p roc e du re s  that  yield 
low securi ty results  f rom da ta  in a rb i t ra ry  securi ty 
classes. 

O n e  so lu t ion ,  ana logous  to  the  P L / I  G E N E R I C  
p r o c e d u r e  for  d i f fe ren t  da t a  types  [17], is to p r e p a r e  a 
s epa ra t e  ve rs ion  of  q for  each  poss ib le  c o m b i n a t i o n  of  
input  secur i ty  classes.  T h e  v iab i l i ty  of  this a p p r o a c h  is 
ques t ionab le  when  the re  a re  m a n y  poss ib le  c o m b i n a -  
t ions of  p a r a m e t e r  secur i ty  classes .  A m o r e  a t t r ac t ive  
solut ion resul ts  when  q is r e s t r i c t ed  in two ways:  I ts  
ou tpu t  p a r a m e t e r s  a re  d e r i v e d  sole ly  f rom the inpu t  
p a r a m e t e r s  and  i n f o r m a t i o n  in the  leas t  class L ;  it is no t  
p e r m i t t e d  to wr i te  in to  any o t h e r  nonloca l  ob jec t s .  
(Local  ob j ec t s  can be  wr i t t en  if the i r  va lues  a re  e r a s e d  
when q r e tu rns . )  T h e  secur i ty  of  a call on such a 
res t r i c ted  p r o c e d u r e  is ve r i f i ed  w h e n e v e r  

( a )  a I ( ~ ) .  • • (~ a m ~ b I ~)" " "  (~ b n ,  and 

(b)£1 ® " "  _bl @ ' "  @_b.. 

Tab le  I I I  gives the  semant ics  for  cer t i fy ing these  condi -  
t ions.  No te  tha t  cond i t i on  (b)  is ver i f ied  by ass igning 
the c l a s s b l  ®"  "" ® b n  to the  node  of  the  syntax  t r ee  
a s soc ia t ed  with the  call s t a t e m e n t  so tha t  the  impl ic i t  
f low is h a n d l e d  in the  s ame  way  as in o t h e r  s t a t emen t s .  

A special  case of  these  r e s t r i c t ed  p r o c e d u r e s  is the  
" func t i on"  type  p r o c e d u r e  (e .g .  S O R T ,  L O G ,  S IN) .  

Table II. Certification of Arrays and Records. 

Syntax rule Certification semantics 
Arrays 
33 (sublist) ::= (exp) 
34 (sublist) ::= (sublist)l, (exp) 
35 (array ret) ::= (ident) [(sublist)] 

Records 
36 (stmt) ::= input (rec) from (file) 

37 (stmt) ::= output (rec) to (file) 

38 (stmt) ::= (rec)l := (rec)2 

(sublist) := (exp) 
(sublist) := (sublist)l @ (exp) 
(array ref) := (ident) ~3 (sublist) 
generate subscript range checking code 

(stmt) := ® (rec) 
if not ((file) ~ (stmt)) 

then CERTIFIED := false 
(stmt) := (file) 
if not (~ r(}-~) ~ (stmt)) 

then CERTIFIED := false 
if (rec)l and (rec)2 have corresponding elements xl . . . . .  x, 

then 
if not ((rec)l .x~ -0 (rec)2 .x~ for all i) 

then CERTIFIED := false 
(stmt) := ® (re_.2)~ 

else TYPE ERROR := true 
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Table III. Certification of Restricted Procedure Calls. 

Syntax rule Certification semantics 
39 (inparams) ::= (exp) 
40 (inparams) ::= (inparams)l, (exp) 
41 (outparams) ::= (var) 
42 (outparams) ::= (outparams)l, (var) 
43 (strut) ::= 

call (ident) ((inparams); (outparams)) 

44 (fncall) ::= (ident)((inparams)) 
45 (factor) ::= (fncall) 

(inparams) := (exp) 
( ~ )  (inparams)l • (exp) 
( ~ s )  := 7-+-~ 
( ~ )  := (o-fitparams)l ® (va_zr) 
if not (inparams) ~ (outparams) then CERTIFIED := false 

(stmt) := (outparams) 
(fncall) := (inparams) 
( ~ )  := (fncall) 

Here  a procedure f is called during expression evalua- 
tion (e.g. by f ( a l  . . . .  , am))  and returns with a single 
result derived entirely from the input parameters  and 
constants. Since there are no explicit output  parame-  
ters, the function call can be treated as any other 
expression with operands a~ . . . .  , a m .  Table I I I  shows 
the syntax and semantics for this case. 

3 .4  Except ion  Handl ing 
Program traps caused by exceptional cond i t i ons -  

underflow, overflow, divide by zero, array subscript 
range, endfile, and so f o r t h - r e q u i r e  special care [12]. 
They may cause statements subsequently executed to 
depend on the variables that caused them. The result- 
ing flows will not be detected by the mechanism defined 
so far. 

The program in Figure 5 will be certified by our 
mechanism. A problem arises when sum overflows and 
the trap handler terminates the program: The value ofx 
can be approximated by M A X / L A S T i ,  where M A X  is 
the largest value that can be stored in a register and 
L A S T i  is the last value o f / e n t e r e d  into f i lef .  The trap 
has effectively caused a flow of class H information (x) 
into a class L file (f). Had  the p rogrammer  indicated 
the possible loop termination by replacing the while  
expression e with "not  overflow s u m  , "  the invalid im- 
plicit flow from s u m  t o f  would have been detected [5]. 

One so lu t ion- inh ib i t  all t r a p s - c a n  be rejected, 
for it defeats the purpose of traps. Another  solution 
would have the compiler test, for each type of trap 
possible after each statement,  the flow that would arise 
should that trap occur. This may be rejected for sheer 
inelegance and impracticality. 

A practical solution is based on inhibiting all traps 
except those for which actions have been defined ex- 
plicitly by the program.  Such definitions could be made 
with a s ta tement  similar to one used in PL/I  [17]: 

on (condition) (ident) do (stmt), 

where (conditions) names a trap condition (underflow, 
overflow, endfile, etc.), (ident) is the identifier to which 
the condition applies, and (stmt) contains no gotos. All 
on statements must appear  as part  of a program's  decla- 
ration section. When the trap occurs, (stmt) is executed 
and control is returned to the point of the trap. Suppose 
there is an on statement "on  (condition)y do (stmt)l",  z 

511 

is a variable receiving a flow in (stmt)l, another  state- 
ment  (stmt)z in the program contains a reference (either 
read or write) t o y ,  and (exp) is a conditional expression 
in whose scope (stmt)2 lies. Since (stmt)~ is potentially 
executed immediately after the reference to y in 
(stmt)2, the implicit flow (exp) ~ z must be verified. To 
avoid having the compiler backpack  to the on state- 
ment to verify (exp) ~ z, it is simpler to verify a 
stronger condition: y ~ z when the on statement is 
processed, and (exp) ~ _ y  when (stmt)2 is processed. 
This requires a modification in the semantics: the class 
of any (stmt) is defined as the greatest lower bound of 
all x such that x e i t h e r  receives a flow, o r  is an on 
con'dition identifier referenced,  in (stmt). Only those 
traps for which on statements have been declared will 
be enabled by the compiler.  

The program in Figure 5 would be (trivially) certi- 
fied by this mechanism since it would run with traps 
inhibited. Had the p rogrammer  made clear his inten- 
tions via the statement "on  overflow s u m  do e := 
false," the program would not be certified. 

4.  Appl icat ions  

4 .1  The  C o n f i n e m e n t  P r o b l e m  
A service procedure is c o n f i n e d  as long as the sys- 

tem guarantees that it can neither retain a n y  customer 
information nor encode it into any value transmitted by 
a storage object [20, 21]. It is s e l e c t i v e l y  c o n f i n e d  if this 
restriction applies only to confidential customer infor- 
mation [5, 10]. Mechanisms enforcing varying degrees 
of confinement exist or have been proposed [2, 14, 18, 
20, 26, 27]. 

Our certifier is capable of verifying the partial, or 
total, confinement of a procedure (see Section 3.3). 
L e t p  be a procedure with input parametersx~,  . . .  , Xc,  

x c + l ,  • • • , Xm,  and suppose tha tp  is permit ted to retain 
information derived from the nonconfidential inputs 
x a , . . .  , X c ,  but not from the confidential inputs 
Xc+~ . . . .  , x m .  The confinement of p hinges on three 
properties: ( 1 ) p  must be internally secure, ( 2 )p  must 
not write into any nonlocal object z for which x~ ~ z (c 
+ 1 -< i <- m),  and (3) p must invoke only confined 
procedures.  By our definition of security, property (1) 
implies that confidential information cannot be en- 
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coded in supposedly nonconfidential results. Property 
(2) ensures that any information output from p is not 
derived from confidential inputs. (It does not, how- 
ever, prevent p from returning confidential results to 
the customer through the output parameters.)  Property 
(3) requires that p cannot be linked to any other proce- 
dure which might violate properties (1) or (2). 

4.2 State Variables 
Invalid flows ("leaks")  can occur in some systems 

when an observer may examine system state variables 
and deduce information encoded in them [6, 20, 26]. 
For example, a process could transmit a confidential 
value x by locking out files f l  . . . . .  fx; an observer 
could determine x by counting the number of locked 
files. These flows can be regulated by associating secu- 
rity classes with all state variables and verifying flows to 
and from them as with any other object in the system 
[21]. 

4.3 Data Bank Confidentiality 
Suppose a system (or network of systems) has a 

large database containing different classes of informa- 
tion about individuals. One class might be employment  
records, another  health records, others credit records, 
tax records, criminal records, and so on. Assuming that 
all access to the database must be performed by using 
certified query and update procedures,  controlling 
flows is straightforward. Let each user u have a clear- 

ance, i.e. a static security classu.  I f u  submits a query 
involving records Xl . . . . .  Xm of the database, the 
query procedure would verify xl  Q" • • @ Xm ~ u be- 
fore accepting the request. Similarly, if usubm~'s  an 
update request for recordsyl  . . . .  , Yn, the update pro- 
cedure would verify u --*Yl ® ' ' "  ®Yn before accept- 
ing the request.  

5. Limitations 

Lampson has identified three classes of paths, or 
"channels," by which processes can transmit informa- 
tion out of their immediate environments [20]. Legiti- 
mate channels are the declared formal outputs of the 
process; storage channels are other storage objects in 
the nonlocal environment of the process; and covert 

channels are any other transmission methods not in- 
volving values stored anywhere in the system. Since the 
first two channels involve information transmitted 
through storage objects in the system, their flows can 
be verified by our mechanism. The third, however,  
employs physical phenomena to connect events within 
the computer with those outside; examples include pro- 
gram running time, power consumption, noise, and 
electromagnetic radiation. Flows along these channels 
are beyond the pale of our certification mechanism. 
Various run-time mechanisms must be used to deal 
with them. Fenton [9, 10] and Jones and Lipton [19], 
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Fig. 5. Program with invalid flow caused by a trap. 

p: begin 
i: integer security class L; 
e: Boolean security class L; 
f:  f'de security dass L; 
x,  sum: integer security class H; 
begin 

sum := 0; 
i : = 0 ;  
e := true; 
while e do 

begin 
sum :=sum + x ; 
i : = i + 1 ;  
output i to f 

end 
end 
end 

have shown how to construct mechanisms that prevent  
an isolated program's running time from depending on 
confidential information. After  a careful analysis, Lip- 
ner has concluded that sealing covert channels associ- 
ated with program running time is at best difficult and 
may be impossible in systems of shared resources [21]. 
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Shifting Garbage 
Collection Overhead 
to Compile Time 
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This paper discusses techniques which enable 
automatic storage reclamation overhead to be partially 
shifted to compile time. The paper assumes a 
transaction oriented collection scheme, as proposed by 
Deutsch and Bobrow, the necessary features of which 
are summarized. Implementing the described 
optimizations requires global flow analysis to be 
performed on the source program. It is shown that at 
compile time certain program actions that affect the 
reference counts of cells can be deduced. This 
information is used to find actions that cancel when the 
code is executed and those that can be grouped to 
achieve improved efficiency. 

Key Words and Phrases: garbage collection, global 
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Introduction 

Heap storage no longer accessible from program 
variables has traditionally been collected either by gar- 
bage collection or by a reference count scheme [5]. 
Garbage collection involves a periodic disruption of 
program execution, during which any one of several 
well-known scan, mark, and collect algorithms can be 
employed. Reference counting, although less disrup- 
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