
Observational Determinism for Concurrent Program Security

Steve Zdancewic

Department of Computer and Information Science

University of Pennsylvania

stevez@cis.upenn.edu

Andrew C. Myers

Computer Science Department

Cornell University

andru@cs.cornell.edu

Abstract

Noninterference is a property of sequential programs that
is useful for expressing security policies for data confiden-
tiality and integrity. However, extending noninterference to
concurrent programs has proved problematic. In this pa-
per we present a relatively expressive secure concurrent lan-
guage. This language, based on existing concurrent calculi,
provides first-class channels, higher-order functions, and an
unbounded number of threads. Well-typed programs obey a
generalization of noninterference that ensures immunity to
internal timing attacks and to attacks that exploit informa-
tion about the thread scheduler. Elimination of these refine-
ment attacks is possible because the enforced security prop-
erty extends noninterference with observational determin-
ism. Although the security property is strong, it also avoids
some of the restrictiveness imposed on previous security-
typed concurrent languages.

1 Introduction
Type systems for tracking information flow within programs
are an attractive way to enforce security properties such as
data confidentiality and integrity. Recent work has proposed
a number ofsecurity-typed languageswhose type systems
statically check information flow, ranging from simple cal-
culi [28, 45, 17, 1, 38, 49, 41, 19, 18] to full-featured lan-
guages [27, 50, 30, 4]. Many systems for which informa-
tion security is important are concurrent—for example, web
servers, databases, operating systems—yet the problem of
checking information flow in concurrent programming lan-
guages has not yet received a satisfactory solution.

This research was supported in part by DARPA Contract F30602-99-1-
0533, monitored by USAF Rome Laboratory, by ONR Grant N00014-01-1-
0968, by NSF CAREER Award 0133302, by NSF Grant 0208642, and by
a Sloan Research Fellowship. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes, notwithstanding any
copyright annotation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsement, either expressed or implied, of
the Defense Advanced Research Projects Agency (DARPA), the Air Force
Research Laboratory, or the U.S. Government.

This paper makes two contributions. First, it presents a
definition of information-flow security that is appropriate for
concurrent systems. Second, it describes a simple but ex-
pressive concurrent language with a type system that prov-
ably enforces security.

Notions of secure information flow are usually based on
noninterference[15], a property only defined for determin-
istic systems. Intuitively, noninterference requires that the
publicly visible results of a computation do not depend on
confidential (or secret) information. Generalizing noninter-
ference to concurrent languages is problematic because these
languages are naturally nondeterministic: the order of execu-
tion of concurrent threads is not specified by the language se-
mantics. Although this nondeterminism permits a variety of
thread scheduler implementations, it also leads torefinement
attacksin which information is leaked through resolution of
nondeterministic choices (in this case, scheduler choices).
These attacks often exploittiming flows, covert channels that
have long been considered difficult to control [20].

Several recent papers have presented type systems for se-
cure information flow in concurrent languages [43, 38, 41,
5, 19, 29, 36]. The type systems of these languages enforce
secure information flow; but most of these type systems are
so restrictive that programming becomes impractical.

The secure concurrent language presented in this paper,
λPAR

SEC , addresses both of these limitations.λPAR
SEC has been

proved to enforce a generalization of noninterference for
concurrent systems, based on low-security observational de-
terminism. Much of the restrictiveness of prior security type
systems for concurrent languages arises from the desire to
control timing channels; we show that some restrictiveness
can be avoided by distinguishing different kinds of timing
channels. This approach opens up a trade-off between the
observational powers of an attacker and the restrictiveness
of the enforcement mechanism. In some situations, the more
restrictive model of the attacker may be warranted, but in
other cases, the less restrictive model is acceptable.

The concurrency features in most previous secure lan-
guages have been limited. By contrast,λPAR

SEC provides fairly
general support for concurrency: it allows an arbitrary num-
ber of threads, it supports both message-passing and shared-

1

memory styles of programming, and communication chan-
nels are themselves first-class values.λPAR

SEC is not intended
to serve as a user-level programming language (its syntax
and type system are too unwieldy). Instead, it is intended
to serve as a model language for studying information flow
and concurrency; nevertheless, using these constructs, one
can encode (via CPS translation) other security-typed lan-
guages [49].

The approach taken here is to factor the information se-
curity analysis into two pieces: a type system that elimi-
nates both explicit and implicit storage channels, and a race-
freedom analysis that eliminates timing channels. Factoring
the security analysis makes both the information-flow anal-
ysis and its proof of correctness more modular. In addition,
any improvements in the accuracy of alias analysis (used to
detect races) lead directly to improvements in the security
analysis. This paper focuses mainly on the type system for
explicit information flows, but race freedom is discussed in
Section 4.3.

The remainder of this paper is structured as follows. Sec-
tions 2 and 3 present and argue for our definition of in-
formation security and also informally describes our con-
current programming model and its security implications.
Section 4 gives the formal definition ofλPAR

SEC . Section 5
states our soundness results, including the security theorem.
(Full proofs are available in the dissertation of the first au-
thor [48].) Section 6 covers related work, and the paper con-
cludes in Section 7.

2 Security model
Information security is fundamentally connected to the abil-
ity of an observer to distinguish different program execu-
tions. Our primary concern is confidentiality. An attacker
must be prevented from distinguishing two program execu-
tions that differ only in their confidential inputs, because the
attacker might otherwise learn something about the inputs.

As usual, we assume that there is a latticeL of security
labels [7, 11]. Lattice elements describe restrictions on the
propagation of the information they label; labels higher in
the lattice describe data whose use is more restricted. For
confidentiality, labels higher in the lattice describe more con-
fidential data whose dissemination should be restricted. In
this paper we will leave the lattice abstract; however, it is
often useful to think about the simple two-point lattice con-
taining just the elementsL (low) andH (high), whereL v H
butH 6v L.

The terminology “̀1 is protected bỳ2” is used to indicate
that`1 v `2—intuitively it is secure to treat data with label
`1 as though it has label̀2 because the latter label imposes
more restrictions on how the data is used. The terms “high-
security” and “low-security” describe data whose labels are
relatively high or low in the lattice, respectively.

2.1 Noninterference and nondeterminism
Suppose that we have alow-equivalencerelation≈ζ that re-
lates two program expressionse ande′ if they differ only in
high-security input data. Hereζ (“zeta”) is a label that de-
fines “high-security”: high-security data is any whose label
` does not satisfỳ v ζ. The low observer (attacker) can see
only data protected byζ.

For example, consider pairs〈h, l〉, whereh ranges over
some high-security data andl ranges over low-security data.
An observer with low-security access (only permitted to see
thel component) can see that the pairs〈attack at dawn, 3〉
and〈do not attack, 4〉 are different (because3 6= 4), but
will be unable to distinguish the pairs〈attack at dawn, 3〉
and〈do not attack, 3〉. We have:

〈attack at dawn, 3〉 ≈` 〈do not attack, 3〉
〈attack at dawn, 3〉 6≈` 〈do not attack, 4〉

Noninterference says that this equivalence relation also
captures the distinctions that can be made by observing the
executionof the two expressions; an observer able to see only
low-security data learns nothing about high-security inputs
by watching the program execute. Suppose we have an eval-
uation relatione ⇓ v. Evaluations of two expressions will be
indistinguishable as long as they produce indistinguishable
results: Ife ≈ζ e′, then

(e ⇓ v ∧ e′ ⇓ v′) ⇒ v ≈ζ v′ (1)

Note that valuesv andv′ need not be strictly equal. The
equivalence relation≈ζ on values captures the idea that the
low-security observer may be unable to see certain parts of
the program output—it relates any two values whose differ-
ences are not observable by the low observer.

This definition of security is appealing, although it does
permit high-security information to leak through termination
behavior. Because termination behavior communicates an
average of one bit of information in an information-theoretic
sense, we follow common practice by ignoring this covert
channel [8, 45, 17, 27].

This definition does not apply straightforwardly to con-
current languages. First, the idea that a program termi-
nates with a single result is less appropriate for a concurrent
language, where programs may produce observable effects
while continuing to run. This can be addressed by describ-
ing the observations about program execution as a finite or
infinite event trace. Suppose that a machine configurationm
consists of a pair〈M, e〉 whereM is the state of the memory
ande is the executing program. The statementm ⇓ T means
that the configurationm may produce the execution trace
T . For the language defined in this paper, the event trace
consists of the sequence of memory states[M0,M1,M2, . . .]
that occur as the program executes.

A second, more significant difficulty with concurrent lan-
guages is nondeterminism; there may be many tracesT such
that m ⇓ T . For example, the language presented below
has a nondeterministic operational semantics that allows any

2

possible interleaving of the evaluations of two parallel pro-
cesses. Informally, there are two rules for evaluating an ex-
pressione1 | e2 where the symbol| represents parallel com-
position:1

〈M, e1〉 → 〈M ′, e′1〉
〈M, e1 | e2〉 → 〈M ′, e′1 | e2〉

〈M, e2〉 → 〈M ′, e′2〉
〈M, e1 | e2〉 → 〈M ′, e1 | e′2〉

The thread scheduler resolves this nondeterminism by
choosing a thread to run at each execution step.

A standard way to handle nondeterminism is apossibilis-
tic generalization of noninterference in which the computa-
tions of two expressions are considered indistinguishable as
long as every possible computation of one expression is pos-
sible for the other expression as well [23]; that is,m1 ≈ζ m2

must imply:

∀T1 . m1 ⇓ T1 ⇒ ∃T2 . m2 ⇓ T2 ∧ T1 ≈ζ T2

∀T2 . m2 ⇓ T2 ⇒ ∃T1 . m1 ⇓ T1 ∧ T1 ≈ζ T2
(2)

If the evaluation relation is deterministic, this security
condition is noninterference. Importantly, it can be proved in
essentially the same way as noninterference. One common
technique is to show that each step of computation preserves
the low-level equivalence between configurations [15, 45].

However, a system that satisfies the possibilistic security
condition may have a refinement that does not. As a result,
an observer may be able to distinguish two such programs
by comparing the probabilities of possible executions. For
example, consider this program:

l := true | l := false | l := h (A)

Here the boolean variablesl andh are low- and high-security
locations respectively. This program is secure if the low
observer cannot distinguish between the following two pro-
grams:

l := true | l := false | l := true (A1)
l := true | l := false | l := false (A2)

Suppose that the low observer is unable to distinguish two
traces if their final memories have the same values in loca-
tion l. In both programs the locationl may end with the
contentstrue or false, so the possible low observations of
the two programs are identical. However, an attacker may
be able to infer some information about the initial value of
h. For example, the thread scheduler may tend to run the
final expression of the three last, so that both programs usu-
ally have the effectl := h. Even if the scheduler randomly
chooses ready threads to execute,l will be more likely to
containh than¬h. In general, if the distribution of the final
values ofl is different in the two programs, it is undoubtedly
because the assignmentl := h is leaking information about
h via (perhaps probabilistic) refinement of thread scheduler
nondeterminism.

Even the simple program(l := true | l := false)
might be used to violate confidentiality, despite not men-
tioning high-security data. For example, the code for the

1The actual operational semantics ofλPAR
SEC is given in Figure 3.

assignmentl := false might happen to fall on the same
cache line as a piece of data used by another apparently se-
cure program running on the same system. If accesses to
this other data are conditioned on confidential information,
it could make the assignmentl := false more likely to
come last, winning the write–write race. Thus, an attacker
might learn about confidential data by introducing such pro-
grams into a running system. Attacks of this sort have been
demonstrated [42].

2.2 Internal vs. external timing
Many previous security-typed language approaches for con-
current programs [43, 41, 19, 5, 36] aim to prevent high-
security information from affecting the termination behavior
and timing behavior of a program. This decision strengthens
possibilistic noninterference by considering execution time
to be observable by the low-security observer. Confidential
information thus cannot be encoded in the execution time of
one thread and then transferred to a second thread, as in the
following example that exploits thread timing behavior:

x := true; (B)
(if h then delay(100) else skip; x := false)

| (delay(50); l := x; ...)

This program initializes variablex to true and then spawns
two threads. The first thread assignsx the valuefalse either
immediately or after a delay. The second thread waits long
enough that the assignment tox is likely to have occurred
whenh is false; this thread then assignsl the value ofx.
Depending on the thread scheduler, this program can reliably
copy the contents ofh into the variablel—an information
leak. Its bandwidth can be increased by placing the code
inside a loop.

If program execution time is considered low-observable,
information flow control requires that the execution time of
low-equivalent programs be equal. Because proving state-
ments about execution time is difficult, the type systems pro-
posed to enforce this security condition have tended to be
very restrictive. For example, these type systems have usu-
ally ruled out programs like the following, because its run-
ning time depends on high-security information:

x := true; (C)
(if h then delay(100) else skip; x := false)

A related way to treat timing channels is to pad code to
eliminate them [3, 36], for example by ensuring that the same
time is taken by both branches of anif. However, this ap-
proach does not easily handle loops, recursive functions, or
instruction-cache effects.

Here we have taken a different approach, drawing a dis-
tinction between the internally and externally observable
timing behavior of programs. External observations are
those made by an observer outside the system, timing the
program with mechanisms external to the computing sys-
tem. Internal observations are those made by other programs

3

running on the same system. In principle, internal observa-
tions are more easily controlled because other programs can
be subjected to a validation process before being allowed to
run. Typically, internal observations also offer greater po-
tential for high-bandwidth information transfer, so they may
also be more important to control. In this work, the focus is
on controlling information flows that are internal to the sys-
tem. Because there are many external flows, most of which
are difficult to control (e.g., conversation between users of
the system), and other techniques that can be applied to con-
trolling them (e.g., auditing, dynamically padding total exe-
cution time), this decision seems reasonable.

The beneficial effect of this decision is that example (C) is
considered secure because its timing channels are only exter-
nal; example (B) is considered insecure because it contains
an internal timing channel made observable by a race.

2.3 Low-security observational determinism
These weaknesses of possibilistic security conditions led
McLean [24] and Roscoe [32] to propose using low-security
observational determinism to generalize noninterference to
nondeterministic systems. Low-security observational de-
terminism is essentially noninterference as given above (1),
but applied to a nondeterministic system. In our framework
the observational determinism can be expressed straightfor-
wardly. Similarly to noninterference, we have two arbitrary
initial configurationsm andm′ that the low observer cannot
distinguish (m ≈ζ m′). To avoid information flows, they
must produce indistinguishable tracesT andT ′:

(m ⇓ T ∧m′ ⇓ T ′) ⇒ T ≈ζ T ′ (3)

Thus, to a low-level observer who is unable to distinguish
states that differ only in high-security components, a system
satisfying this condition appears deterministic.

2.4 Race freedom
To obtain deterministic results from the low-security view-
point, it isnot necessary that evaluation itself be determinis-
tic, which is fortunate because nondeterminism is important.
Nondeterministic evaluation allows thread scheduler behav-
ior to depend on aspects of the run-time system not under
the programmer’s control: for instance, the operating sys-
tem, the available resources, or the presence of other threads.
The problem is how to permit useful nondeterminism with-
out creating security holes.

Our insight is that requiringrace freedomis a solution
to this problem. To be considered secure, a program must
enforce an ordering on any two accesses to the same memory
location, when at least one of the accesses is a write. This
ordering ensures that the sequence of operations performed
at a single memory location is deterministic.

Race freedom rules out insecure programs like example
(A) because it has a write–write race to the locationl. How-
ever, the program(l1 := true | l2 := true) is consid-
ered secure because it writes to two different locations, even

though the ordering of these writes is nondeterministic. Dis-
allowing races reduces the expressiveness of the language,
but because races are difficult to reason about, programmers
rarely use them intentionally; races are usually bugs.

Making programs race-free weakens the ability of a
thread to observe the behavior of other threads. The observa-
tional powers of the low observer are weakened correspond-
ingly. This weakening is expressed formally in the relation
T ≈ζ T ′ that captures when the low observer is able to dis-
tinguish two traces. Two tracesT andT ′ are related if they
are equivalent up to stuttering and prefixing at every memory
location, consideredindependentlyof other locations.

To be more precise, letM , a memory, be a finite map
from locationsL to valuesv. ThenM(L) is the contents of
locationL. Let T (L) be the projection of the traceT onto a
single memory locationL; that is, ifT = [M0,M1,M2, . . .]
thenT (L) = [M0(L),M1(L),M2(L), . . .]. A sequence of
values[v0, v1, v2, . . .] is related to another sequence of val-
ues[v′

0, v
′
1, v

′
2, . . .] if vi ≈ζ v′

i for all i up to the length of the
shorter sequence. ThenT ≈ζ T ′ if for all locationsL, T (L)
is equivalent up to stuttering toT ′(L), or vice versa.

Combining this definition of trace equivalence with obser-
vational determinism (3) yields a new security condition that
allows high-security information to affect theexternaltermi-
nation and timing behavior of a program, while preventing
any effect oninternal termination and timing behavior.

Two aspects of this definition merit discussion. First, al-
lowing one sequence to be a prefix of the other permits an
externalnontermination channel that leaks one bit of infor-
mation, but removes the obligation to prove program ter-
mination. However, this decision implies that the≈ζ re-
lation on traces is not an equivalence relation (transitivity
fails). To see why, consider the three tracesT1 = [v0, v1],
T2 = [v0, v1, v2], T3 = [v0, v1, v3], we haveT2 ≈ζ T1 and
T1 ≈ζ T3 but T2 6≈ζ T3. Consequently, we prove the secu-
rity property in terms of a more primitive simulation relation
.ζ (defined in Section 5.3) that is transitive.

Second, considering each memory location independently
is justified because internal observations of the two locations
can only observe the relative ordering of their updates by
using code that contains a race—and programs containing
races are disallowed. By requiring only per-location order-
ing of memory operations, this definition avoids the restric-
tiveness incurred by timing-sensitive definitions of security.

3 Synchronization mechanisms
The previous section presents a new security condition for
concurrent imperative programming languages. A concur-
rent language can be made more expressive by exploiting the
added flexibility in the condition. This section and the next
present such a language, calledλPAR

SEC .
The race freedom requirement of the security definition

implies that threads cannot asynchronously communicate
through shared memory. Consequently,λPAR

SEC uses message
passing for interthread communication, and the communica-

4

tion is regulated to prevent illegal information flows. Also,
because the security definition relies on sequencing writes
to memory,λPAR

SEC needs a thread synchronization mecha-
nism. Despite its importance for practical concurrent pro-
gramming and impact on information-flow properties, syn-
chronization has only recently been studied in the context of
information security [19, 30, 18].λPAR

SEC provides a thread-
synchronization mechanism based on the same abstraction it
uses for message passing.

3.1 Message passing
To support both thread synchronization and communication,
λPAR

SEC uses message passing. The programming model of
λPAR

SEC is based on the join calculus [13], which supports first-
class channels;λPAR

SEC extends it withlinear channelsand
linear handlers. This linear synchronization mechanism pro-
vides additional structure that allows the type system to more
accurately describe synchronization information flows.

TheλPAR
SEC notation for sending a valuev on a channelc is

c(v). Messages may contain no data, in which case the send
is writtenc(), or they may contain multiple values, in which
case the send is writtenc(v1,...,vn). A send on a channel
may cause the activation of a correspondingmessage handler
(or simplyhandler), for example: c(x) � l := x

When a message is sent on channelc, the handler triggers,
creating a new thread to executel := x with the message
contents bound to the variablex. The message is consumed
by the handler. Handlers may invoke their own channel, al-
lowing encoding of loops and recursive functions.

Handler definitions are introduced vialet-syntax. For
example, aλPAR

SEC program described above is:

let c(x) � l := x in c(t)

Multiple threads might attempt to send messages on a sin-
gle channel concurrently, creatingsend contentionand pos-
sibly race conditions. Lexical scoping of channel names
makes it impossible to introducereceive contention, in which
multiple handlers vie for a message.

In λPAR
SEC channels are first-class and may be passed as val-

ues in the messages sent on other channels. For example, the
channeldouble sends two (empty) messages on any channel
it is given as an argument:

let double(c) � c() | c() in
let d() � P in double(d)

Ordinary handlers remain permanently in the program en-
vironment once declared, and are able to react to any number
of messages sent on the channels they define.λPAR

SEC also sup-
portslinear channels, on which exactly one message must be
sent. The symbol(is used in place of� to indicate that a
message handler is linear. For example, the following pro-
gram declares a linear channelk that must be used exactly
once along each execution path, as shown in this example:

let k(x) (l := x in
if h then k(t) else k(f)

Linear handlers are guaranteed to be invoked exactly once
unless the computation diverges. Consequently, no informa-
tion is transmitted by the fact that the linear handler is run.
Furthermore, linear handlers cannot create nondeterminism
because there is never any send contention. These observa-
tions enable more precise information-flow checking.

Channel arguments are given a security label that restricts
what data may be sent on them. This suggests an alternate
formulation of the security condition of Section 2.3: a pro-
gram could be equipped with a distinguished output channel
that accepts only low values, and we could require that the
sequence of values sent on the output channel is determinis-
tic. A distinguished input channel would also be required to
allow the program context to acknowledge the output. The
difference between the two approaches is not large, because
memory locations can be viewed as external processes that
receive messages at every write.

3.2 Synchronization
So far,λPAR

SEC has not addressed the issue of synchronization
between concurrent threads. Rather than directly incorpo-
rating mutexes or semaphores as primitives, we adoptjoin
patternsas found in the join calculus [13]. With this design,
handlers may block waiting for messages on multiple chan-
nels, permitting synchronization on several threads of execu-
tion. For example, the following handler waits for messages
on channelsinput1 andinput2 before starting the thread
“let z...”.

input1(x) | input2(y) � let z = x + y in output(z)

If some of the channels in the join pattern never receive a
message, the handler never triggers.

This approach simplifies reasoning about synchroniza-
tion. Unlike mutexes or semaphores, which may be used
anywhere within a program, join patterns limit synchroniza-
tion to points at which messages are received.

Despite this abstraction2, join patterns support a range
of useful synchronization idioms [13]. In particular, they
provide synchronous message passing between two threads.
Suppose threadP1 wants to send the messagem syn-
chronously on the channelc to threadQ1, after which it con-
tinues asP2. ThreadQ1 blocks waiting for the messagem
and then continues as threadQ2(m). In traditional message-
passing notation, this situation might be expressed by the fol-
lowing program:

cobegin (P1;sendc(m);P2)|(Q1;recvc(x);Q2(x)) coend

Writing R1;R2 for sequential composition of (sequential)
processesR1 and R2, this example can be written using
λPAR

SEC ’s join patterns:

let sendc(x) | recvc() � P2 | Q2(x)
in P1;sendc(m) | Q1;recvc()

2Join patterns could beimplementedusing mutexes or semaphores.

5

let k0() | k1() (T in
let k2() | k3() (S; k0() in

P;(Q1;(R1; k1() | R2; k3()) | Q2; k2())

· R1 ///o/o/o/o/o/o/o/o ·
!!CCC

CC· Q1 ///o/o ·
66mmmm
((QQQQ· P ///o/o ·

66mmmm

!!CCC
CC · R2 ///o/o ·

((QQQQ · T ///o/o ·
· S ///o/o ·

66mmmm

· Q2 ///o/o/o/o/o/o/o/o ·
66mmmm

Figure 1. Nonnested synchronization

λPAR
SEC also allows join patterns for linear channels. For

example, the program below declares a handler for two linear
channelsk0 andk1:

let k0() | k1(x) (P in Q

Channelsk0 andk1 must be used exactly once in each pos-
sible execution path of the processQ.

Join patterns inλPAR
SEC permit complex synchronization

behavior. For instance, the program shown in Figure 1 has
the synchronization structure pictured there, where wavy ar-
rows represent computation and straight arrows represent
process forking or synchronizing message sends. The exam-
ple is a single-message producer-consumer pair. Note that
this program uses channelk0 inside the body of the handler
defining channelsk2 andk3.

The typical synchronization mechanisms for shared-
memory programming are locks, such as mutexes and
semaphores. Like other process calculi [26, 13],λPAR

SEC does
not directly support these mechanisms. Though their addi-
tion would be straightforward, locks do not interact with in-
formation flow analysis as congenially as message-passing
does. Locks are primarily used to obtain atomicity, which
is useful for writing correct programs, but it provides little
help in reasoning about timing flows. For example, given a
critical section controlled by a mutex, the order of arrival of
two threads can leak as much information as if there were no
mutex. Locks can be used as limited message-passing mech-
anisms, and it is plausible that a precise information flow
analysis could be constructed for those uses.

3.3 Expressiveness
Security-typed languages rule out apparently insecure pro-
grams and thus may reduce expressiveness. WhileλPAR

SEC has
a relatively rich collection of features in comparison with the
previous work, it is difficult to directly compare expressive-
ness because of the differing definitions of security.

Channels inλPAR
SEC are quite expressive. A channel is an

extension to a continuation: both accept a value and cause
some computation to occur, possibly using the value.λPAR

SEC

is in fact an extension of a secure CPS language introduced
in the authors’ earlier work [49]. Thus adding concurrency
causes no loss of expressiveness, unlike in various previ-
ous secure concurrent languages that have ruled out high-

security loop guards [38, 36]. However,λPAR
SEC does rule out

programs that other systems consider secure [17, 38, 19, 36],
because those programs allow refinement attacks. It is our
belief that these different approaches embody a tradeoff in
secure systems design. In cases where absolute security is
mandatory, the more restrictive languages may be required.
However, there are many circumstances in which external
timing and termination channels are acceptable risks.

Linearity is an important feature because it improves rea-
soning about implicit flows: information flows arising from
program control structure [8]. In the producer-consumer ex-
ample of Figure 1, knowing that the code atT is executed
gives no more information than knowing thatP was exe-
cuted. Linearity makes it possible to determine this despite
the complex control structure. Prior secure concurrent lan-
guages are either unable to express this program or reject
it as insecure, which is unfortunate because the producer-
consumer idiom is useful.

4 λPAR
SEC : A secure concurrent calculus

This section introduces the formal semantics forλPAR
SEC , in-

cluding its syntax, operational semantics, and type system.

4.1 Syntax and operational semantics
Figure 2 shows the syntax forλPAR

SEC programs. Base val-
ues inλPAR

SEC are channel namesc, memory locationsL, or
booleanst andf. The metavariablef ranges over channels
and variables that have channel or linear channel type. A
process(“ thread” and “process” are used interchangeably)
P consists of a sequence oflet-declarations and primitive
operations followed by either the terminal process0, anif
expression, orP1 | P2. Message sends and handlers are
as described in the previous section. Nonlinear join patterns
may bind linear variablesy (although they are not required
to), but linear join patterns never bind linear variables. This
restriction prevents problems in sequencing linear sends.

It is helpful to define a sequential subset ofλPAR
SEC : pro-

cesses not containing the| symbol. IfP (y) is a sequential
process that contains one free linear channel variabley, the
processP; Q is sugar forlet y() (Q in P (y).

Figure 2 also describes a program’s dynamic state. A
memoryM contains channel handler definitions in addition
to ordinary mappings between locations and their values; its
domain is generalized to include the join patternsJ defines.
The functiondom(M) is the set of locationsL and join pat-
ternsJ that appear inM . If L ∈ dom(M) then we write
M(L) for the valuev such that[L 7→ v] ∈ M . Similarly,
if J ∈ dom(M), we writeM(J) for the (open) processP
such that[J � P] ∈ M . A synchronization environmentS
stores the linear handlers that have been declared by the pro-
gram, using similar notation. Program-counter labels (pc)
are used to track implicit information flows [49, 30]. The
syntax[pc : P] associates a top-level processP with a pc
label. A collection of such processes running concurrently is

6

x, f ∈ V Variable names

bv ::= c Channel value
| L Reference value
| t | f Boolean values

v ::= x Variables
| bv` Secure values

lv ::= y | c Linear values

prim ::= v Values
| v ⊕ v Boolean operations
| !v Dereference

f ::= x | y | c Variables or channels

J ::= f(~x, y) Nonlinear channel
| f(~x) Linear channel
| J | J Join pattern

P ::= let x = prim in P Primitive operation
| let x = ref v in P Reference creation
| set v := v in P Assignment
| let J � P in P Handler definition
| let J (P in P Linear handler definition
| v(~v, lvopt) Message send
| lv(~v) Linear message send
| if v then P else P Conditional
| (P | P) Parallel processes
| 0 Inert process

M ::= M [L 7→ v] Memory locationL storingv
| M [pc : J � P] Message handler
| ·

S ::= S[pc : J (P] Linear handler
| ·

N ::= · | N | [pc : P] Process pool

m = 〈M, S, N〉 Machine configuration

bv` t `′
def
= bv(`t`′)

|i Pi
def
= P1 | . . . | Pn (i ∈ {1, . . . , n})

Figure 2. Process syntax & notation

M, pc |= v ⇓ v t pc

M(L) = v

M, pc |= !L ⇓ v t pc

M, pc |= n` ⊕ n′
`′ ⇓ (n[[⊕]]n′)`t`′ t pc

M, pc |= prim ⇓ v

〈M, S, (N | [pc : let x = prim in e])〉
→ 〈M, S, (N | [pc : e{v/x}])〉

〈M, S, (N | [pc : let x = ref v in P])〉
→ 〈M [L 7→ v], S, (N | [pc : P{Lpc/x}])〉
where(L 6∈ dom(M))

〈M, S, (N | [pc : set L` := v in P])〉
→ 〈M [L 7→ v t ` t pc], S, (N | [pc : P])〉
where(L ∈ dom(M))

〈M, S, (N | [pc : if t` then P1 else P2])〉
→ 〈M, S, (N | [pc t ` : P1])〉

〈M, S, (N | [pc : if f` then P1 else P2])〉
→ 〈M, S, (N | [pc t ` : P2])〉

〈M, S, (N | [pc : let f1(~x1)| . . . | fn(~xn)� P1 in P2])〉
→ 〈M [pc : c1(~x1)| . . . | cn(~xn)� P1{(ci)pc/fi}], S,

(N | [pc : P2{(ci)pc/fi}])〉
where theci are fresh

〈M, S, (N | [pc : let f1(~x1)|. . .| fn(~xn)(P1 in P2])〉
→ 〈M, S[pc : c1(~x1)|. . .| cn(~xn)(P1],

(N | [pc : P2{ci/fi}])〉
where theci are fresh

〈M [pc : c1(~x1, y
opt
1)|. . .| cn(~xn, yopt

n)� P], S,
(N |i [pci : ci`i(~vi, lv

opt
i)])〉

→ 〈M [pc : c1(~x1, y
opt
1)|. . .| cn(~xn, yopt

n)� P], S,
(N | [` : P{~vi t pci/~xi}{lvi/yi}opt])〉

where ` = ipci t `i

〈M, S[pc : c1(~x1)|. . .| cn(~xn)(P], (N |i [pci :ci(~vi)])〉
→ 〈M, S, (N | [pc : P{~vi t pci/~xi}])〉

〈M, S, (N | [pc : P | Q])〉
→ 〈M, S, (N | [pc : P] | [pc : Q])〉

Figure 3. λPAR
SEC operational semantics

7

called aprocess pool. A machine configurationm is a triple
〈M, S, N〉, whereM is a memory,S is a synchronization
environment, andN is a process pool.

Figure 3 contains the operational semantics forλPAR
SEC ,

instrumented to track information flow within executing
programs—that this instrumentation is correct is the purpose
of the security proof. The rules define a transition relation
m1 → m2 between machine configurations, though space
limitations preclude full explanation of the semantics. Eval-
uation of primitive operations is described by a large-step
evaluation relationM, pc |= prim ⇓ v.

The evaluation rule for a process about to do a memory
update[pc : set L` := v in P] updates the contents of
memory locationL to contain a security valuev whose label
is bounded below bỳ, the security label of the reference
itself (needed to prevent information leaks through aliasing)
andpc (needed to prevent implicit information flows).

The two rules for evaluating conditional expressions show
how the program counter label approximates the implicit in-
formation flows that arise due to program control behavior.
The process[pc : if t` then P1 else P2] evolves to the
process[pc t ` : P1], where the new program counter label
is the join of the old one and the label of the value that regu-
lates the conditional—any assignment operations that occur
in P1 will propagate the labelpct ` and so track the implicit
information introduced by the branch.

Note that the rules for evaluating handler definitions in-
stall their handlers in the appropriate environment, with the
channels renamed to prevent collisions; linear handlers also
record thepc at the point of their definition. Correspond-
ingly, the rules for sending messages look up the channel in
the appropriate environment and start a thread to execute the
body. The rule for the newpc differs between linear and
nonlinear messages; in the linear case thepc of the sending
context(s) is discarded and thepc existing at the evaluation
of the handler is used instead—possibly loweringpc. Linear-
ity ensures that this is safe [49]: once the handler has been
reached, it must also be invoked (unless that thread of con-
trol does not terminate). Therefore, the future computation
learns nothing from its invocation.

The operational semantics in the figure are too rigid: they
require the right-most processes to take part in the computa-
tional step. Because thread scheduling should ignore the syn-
tactic ordering of process pools and processes running con-
currently, we introduce structural equivalences on processes
and process pools, allowing arbitrary reordering of items
separated by|, and discarding of halted processes (0). These
structural equivalences (N1 ≡ N2, P1 ≡ P2) are the least
symmetric, transitive congruences allowing these transfor-
mations. Finally, two machine configurations〈M1, S1, N1〉
and 〈M2, S2, N2〉 are structurally equivalent if they areα-
equivalent andN1 ≡ N2.

The syntax-independent operational semantics is given by
the transition relationV defined from the→ relation by

pc, ` ∈ L Security labels

s ::= t` Security types

t ::= bool Booleans
| [pc](~s, kopt) Channel types
| s ref Reference types

k ::= (~s) Linear channel types

Γ ::= · | Γ , x :s Type contexts

H ::= · Empty memory type
| H, [L :s] Location type
| H, [c :s] Channel definition type

K ::= · | K, y :k Linear type contexts

T ::= · | T, c :k Synchronization state types

label(t`)
def
= `

Figure 4. Type syntax

composition with structural equivalence:

m1 V m2 ⇐⇒ ∃m′
1,m

′
2. m1 ≡ m′

1 → m′
2 ≡ m2

4.2 λPAR
SEC type system

The languageλPAR
SEC has a nonstandard type system that en-

forces the security condition. Figure 4 shows the types for
λPAR

SEC programs. They are divided into security types and lin-
ear types. Base types,t, consist of booleans, channel types,
and references; security typest` are pairs consisting of a base
type and a security label annotation.

The channel type[pc](~s, kopt) has any number of nonlin-
ear arguments and at most one linear argument. The[pc]
component of a channel type is a lower bound on the secu-
rity level of memory locations that might be written to if a
message is sent on this channel.

The linear types are channels(~s) that accept nonlinear
arguments. A linear message does not itself reveal informa-
tion about the sending context (although its contents might),
so linear channel types do not need a[pc] component.

The security lattice is lifted to a subtyping relation≤ on
λPAR

SEC types, in the usual manner [45, 49]. In particular, non-
linear channel types are contravariant in both theirpc-label
and their argument types; reference types are invariant.

A type contextΓ is a finite map from nonlinear vari-
ables to their types. Linear type contextsK are finite maps
from linear variables to linear types. A memory type,H
(for heap), is a mapping from locations and channels to their
types. A synchronization state typeT similarly maps linear
channels to their linear types.

The typing judgments are defined by the rules in Fig-
ure 5. These judgments make use of auxiliary judgments

8

that ensure values, linear values, and primitive operations are
well-typed (Figure 6). For space reasons we have omitted
the straightforward judgments for deciding that memories,
synchronization environments, and process pools are well-
formed, as well as the subtyping and subsumption rules.

The type system guarantees the following properties:

• Explicit and implicit insecure information flows are
ruled out, if the program is also race-free.

• Channel names introduced by a linear handler are used
exactly once in each possible future execution path.

Typing judgments have the formH;Γ ;T ;K [pc] ` P ,
which asserts that processP is well-typed in the context
defined byH, Γ , T , K, and a program-counter labelpc.
Nonlinear contextsΓ permit weakening and contraction,
whereas linear contextsK do not; thus, a process typed as-
suming a set of linear message handlers must use all of them.

The type system uses thepc label to bound what can be
learned by seeing that the program execution has reachedP .
The [pc] component of the judgment is thus a lower bound
on the label of memory locations that may be written byP .
The rule that increasespc is IF, because branching transfers
information to the program counter.

Most of the typing rules are similar in spirit to those in
recent security-typed languages [17, 49, 30], though there
are a few rules of special interest.

Concurrent processesP1 | P2 are checked using the
program-counter label of the parent process, as shown in rule
PAR of Figure 5. The two processes have access to the same
nonlinear resources, but the linear resources must be parti-
tioned between them.

The typing rules LET and LETL IN make use of aux-
iliary operations that extract variable binding information
from handler definitions. A join patternJ yields a collec-
tion Γf of channels it defines and a set of variables bound in
the body of the handler definitionΓargs. For nonlinear join
patterns, the linear variables form a synchronization context
K. The operationJ ;pc 〈Γf ; Γargs; K〉, defined in Fig-
ure 7 collects these channel names and variables for nonlin-
ear join patterns and assigns them types. A similar operation
J ; 〈K; Γargs〉 defined for linear join patterns extracts
the synchronization pointK and the context for the handler
body,Γargs.

Rule LET checks the body of the handler under the as-
sumption that the arguments bound by the join pattern have
the appropriate types. Nonlinear handlers cannot capture
free linear values or channels, because that would poten-
tially violate their linearity. Consequently, the only linear
resources available inside the bodyP1 are those explicitly
passed to the handler:Kargs. Note that the channels defined
by the nonlinear handler (Γf) are available inside the handler
body, which allows recursion. The processP2 has access
to the newly defined channels (inΓf) and to the previously

PRIM

H;Γ [pc] ` prim : s
H;Γ , x :s; T ; K [pc] ` P

H;Γ ; T ; K [pc] ` let x = prim in P

REF

H;Γ ` v : s pc v label(s)
H;Γ , x :s refpc; T ; K [pc] ` P

H;Γ ; T ; K [pc] ` let x = refv in P

ASSN

H;Γ ` v : s ref` H;Γ ; T ; K [pc] ` P
H;Γ ` v′ : s pc t ` v label(s)

H;Γ ; T ; K [pc] ` set v := v′ in P

IF

H;Γ [pc] ` v : bool`

H;Γ ; T ; K [pc t `] ` Pi (i ∈ {1, 2})
H;Γ ; T ; K [pc] ` if v then P1 else P2

ZERO H;Γ ; ·; · [pc] ` 0

PAR

H;Γ ; Ti; Ki [pc] ` Pi (i ∈ {1, 2})
H;Γ ; T1, T2; K1, K2 [pc] ` P1 | P2

LET

J ;pc 〈Γf ; Γargs; Kargs〉
H;Γ ,Γf ,Γargs; ·, Kargs [pc] ` P1

H;Γ ,Γf ; T, K [pc] ` P2

H;Γ ; T ; K [pc] ` let J � P1 in P2

LETL IN

J ; 〈Kf ; Γargs〉
H;Γ ,Γargs; T1; K1 [pc] ` P1

H;Γ ; T2; K2, Kf [pc] ` P2

H;Γ ; T1, T2; K1, K2 [pc] ` let J (P1 in P2

SEND

H;Γ ` v : [pc′](~s, kopt)`

H;Γ [pc] ` vi : si

T ; K ` lvopt : kopt

pc t ` v pc′

H;Γ ; T ; K [pc] ` v(~v, lvopt)

L INSEND

T ; K ` lv : (~s)
H;Γ [pc] ` vi : si

H;Γ ; T ; K [pc] ` lv(~v)

Figure 5. Process typing

9

H;Γ ` x : Γ (x)

H;Γ ` t` : bool`

H;Γ ` f` : bool`

H;Γ ` L` : H(L) t `

H;Γ ` c` : H(c) t `

·; y :k ` y : k

c :k; · ` c : k

` k1 ≤ k2 T ; K ` lv : k1

T ; K ` lv : k2

` s1 ≤ s2 H;Γ ` v : s1

H;Γ ` v : s2

H;Γ ` v : s pc v label(s)

H;Γ [pc] ` v : s

H;Γ ` v : bool` H;Γ ` v′ : bool` pc v `

H;Γ [pc] ` v ⊕ v′ : bool`

H;Γ ` v : s ref` pc v label(s t `)

H;Γ [pc] ` !v : s t `

Figure 6. λPAR
SEC value and operation types

f(~x);pc 〈f : [pc](~s); ~x :~s; ∅〉

f(~x, y);pc 〈f : [pc](~s, k); ~x :~s; y :k〉

J1 ;pc 〈Γf1; Γargs1; K1〉
J2 ;pc 〈Γf2; Γargs2; K2〉

J1 | J2 ;pc 〈Γf1,Γf2; Γargs1,Γargs2; K1,K2〉

f(~x); 〈f : (~s); ~x :~s〉

J1 ; 〈K1; Γargs1〉 J2 ; 〈K2; Γargs2〉
J1 | J2 ; 〈K1,K2; Γargs1,Γargs2〉

Figure 7. Join pattern bindings

available resources. Rule LETLIN operates similarly but ex-
ternal linear channels may be used in the handler body.3

The rule for type-checking sends on nonlinear channels
requires that the channel type and the types of the values
passed in the message agree. Also, the program counter at
the point of the send must be protected by the label of the
message handler, which rules out implicit information flows.

Sending a message on a linear channel does not impose
any constraints on thepc label at the point of the send, be-
cause there is no information revealed by the act of sending

3Unlike the related linear-continuation type system [49], the type system
presented in Figure 5 does not explicitly enforce any ordering constraints on
the use of linear channels, relying instead on race freedom. Race freedom
implies that there is acausalrelationship between the linear synchronization
handlers such that any two handlers that interfere are totally ordered. Inter-
fering linear handlers are used sequentially, so updates to memory locations
mentioned in the handlers are deterministic.

on a linear channel. Note that the contents of the messages
are labeled with thepc label, because the linear message
might contain information about the program counter.

4.3 Race prevention and alias analysis
As discussed above, two concurrently running threads might
leak confidential information if they have write–write or
read–write races. Rather than further complicating the type
system with race-condition analysis, we assume that a sep-
arate program analysis rejects programs that contain such
races. This strategy modularizes the proof of security: Any
program analysis that soundly guarantees race freedom can
be used in conjunction with this type system.

The remainder of this section formalizes our race freedom
condition and sketches some ways that existing technology
can be used to determine whether a given program satisfies
the condition.

Intuitively, the definition of race freedom requires that
steps performed by parallel threads can be interleaved in any
order. Formally, a configurationm is race-free whenever
m V∗ m′ andm′ V m1 andm′ V m2 andm1 6≡ m2

imply that there exists anm′′ such thatm1 V m′′ and
m2 V m′′. An open term is race-free whenever its closed
instances are race-free.

This is a strong notion of race freedom (it implies con-
fluence), though certainly sufficient to rule out timing leaks
that may occur between threads. It is possible to weaken the
definition of race freedom to consider harmful only nonde-
terminism apparent from the memory, but even with a weak-
ened definition of race freedom, nondeterminism on nonlin-
ear channels can cause races.

There are a number of ways to establish race freedom.
One approach is to use an alias analysis to soundly approx-
imate the set of locations and channels written to (or sent
messages) by a threadP . Call this setwrite(P). By de-
termining which locations are potentially read byP (a set
read(P)), an analysis can prevent races by requiring the fol-
lowing (and its symmetric counterpart) for any subprograms
P1 andP2 that might execute concurrently:

write(P1) ∩ (read(P2) ∪ write(P2)) = ∅

An alias analysis constructs finite models of the dynamic
behavior of a program in order to approximate which refer-
ences are instantiated with which memory locations at run
time. The more closely the abstract model agrees with the
true behavior of the system, the more accurate aliasing in-
formation can be. Formulating such an alias analysis is or-
thogonal to this work; instead, we have simply stated the
race-freedom property the analysis must enforce.

One trivially sound analysis is to assume that any process
might read or write any reference. Such a rough approxima-
tion to the actual aliasing forces the program to be sequen-
tial. A second possibility is to ensure that references and
nonlinear channels are used sequentially. Simple syntactic
constraints can enforce this property [31]. Sequentiality can

10

also be formulated in the type system [19], but doing so is
rather complex.

Another possibility is to track aliasing directly in the type
system [40, 46], which would potentially permit very fine-
grained control of concurrency. More generally, pointer
or shape analysis can be used to approximateread(−) and
write(−) [21, 9, 10, 33]. BecauseλPAR

SEC ’s sequential core is
essentially an imperative language withgoto, we expect that
these existing alias analyses can be adapted to this setting.

5 Security condition
We now present more formally the security condition that
theλPAR

SEC language enforces and give an outline of the proof
techniques used.

Well-typedλPAR
SEC programs satisfy the determinism-based

security condition described informally in Sections 2.3 and
2.4. The proof strategy is to show that regardless of the high-
security inputs to a program, its low-security memory access
behavior can be simulated by a single, deterministic program
that differs only in its high-security parts. The existence of
a common simulation implies that low-security behavior re-
veals nothing about the inputs.

The remainder of this section sketches the proof that the
type system in conjunction with a race-freedom analysis
implies the security condition. A complete proof is avail-
able [48].

5.1 Subject reduction
Subject reduction is a crucial first step of the security
proof because it establishes that evaluation preserves well-
formedness.

Lemma 5.1 (Subject reduction) Suppose that

H;T ` 〈M, S, N〉 and〈M, S, N〉 → 〈M ′, S′, N ′〉

Then there existH ′ andT ′ such thatH ′;T ′ ` 〈M ′, S′, N ′〉.
Furthermore,H ′ extendsH, and T and T ′ agree on the
channels in their intersection.

Proof: The proof is by cases on the evaluation step used.
A number of additional lemmas are needed:

• Substitution: the usual lemmas for type preservation
when substituting for linear and nonlinear variables;

• Weakening: preservation of typing judgments when
program counter labels are lowered or heap types and
synchronization environments are extended. 2

5.2 Observational equivalence
The ζ-equivalence relation indicates when two values look
the same to a low-level observer.

Definition 5.1 (ζ-equivalence) Let ζ-equivalence (written
≈ζ) be the family of symmetric binary relations inductively
defined as follows.

• For values:

H;Γ |= v1 ≈ζ v2 : t` ⇔
H;Γ ` vi : t` ∧ (` v ζ ⇒ v1 = v2)

• For linear values:

T |= c1 ≈ζ c2 : k ⇔ T (ci) = k ∧ c1 = c2

5.3 Process simulation
Generalizingζ-equivalence to processes is more involved
because there can be both high-security and low-security
computations running simultaneously, making it harder to
relate corresponding parts of subprograms. Bisimulation-
based proof techniques for noninterference are no longer ap-
propriate. Rather than giving a definition of≈ζ for traces
directly, we instead give a simulation relation.ζ . Two pro-
grams are thenζ-equivalent if they can both be simulated by
the same program.

The simulation relation is induced by the typing structure
of a source machine configuration. Intuitively, ifm .ζ m′

then configurationm′ can simulate the low-security behavior
of m while ignoring both the timing and termination behav-
ior of the high-security computation inm.

Definition 5.2 (ζ-simulation) Let.ζ be the relation (mutu-
ally) inductively defined as shown in Figures 8, 9, 10, 11 and
in the rules below.

For configurations:SIM -CONFIG

H ` M1 .ζ M2

H;T1, T2 ` S1 .ζ S2, T2

H; ·;T2; · ` N1 .ζ N2

H;T1, T2 ` 〈M1, S1, N1〉 .ζ 〈M2, S2, N2〉

For processes withpc 6v ζ: SIM -HIGH-PROC

pc 6v ζ T (ci) =(~si) H;Γ ` ~vi : ~si

H;Γ ;T ; · [pc] ` P .ζ |i ci(~vi)

For processes that are well-typed withpc v ζ, the .ζ

relationship acts homomorphically on the typing rule of the
term, replacing the judgmentH;Γ ` v : s with the equiva-
lence ruleH;Γ ` v1 ≈ζ v2 : s (and similarly for primitive
operations). For example, the simulation for conditionals is
derived from the typing ruleIF:

pc v ζ
H;Γ [pc] ` v1 .ζ v2 : bool`

H;Γ ;T ; · [pc t `] ` P1i .ζ P2i i ∈ {1, 2}
H;Γ ;T ; · [pc] ` if v1 then P11 else P12 .ζ

if v2 then P21 else P22

The most important part of the.ζ relation is
SIM -HIGH-PROC. This rule says that any process that is
well typed with apc label not protected byζ can be sim-
ulated by the process that just sends a response on each of
the linear channels. Intuitively, this simulation bypasses all

11

of the potential high-security computation performed inP
and simply returns via the linear-channel invocations. Im-
portantly, for high-security processP .ζ P ′ the simulation
P ′ always terminates, even ifP does not; the simulation ig-
nores the termination behavior ofP .

Observe that any value returned from a high-security con-
text via linear channels must itself be high-security, because
its label must protect that context’s program-counter label.
Therefore, it does not matter what value is returned in the
ζ-simulation because that value is not observable anyway.

Also note that if there are no linear channels in the con-
text, the rule SIM -HIGH-PROC says thatP .ζ 0—the high-
security processP has no way of affecting low-security
memory locations, so from the low-security view,P may as
well not exist.

In this setting the.ζ relation is more fundamental and
easier to work with than≈ζ , because≈ζ is not transitive and
hence not an equivalence relation. Two machine configura-
tions areζ-equivalent if they are both simulated by the same
configuration:

Definition 5.3 (ζ-equivalence for configurations)
Configurations m1 and m2 are ζ-equivalent, written
H;T |= m1 ≈ζ m2, if and only if there exists a configura-
tion m such thatH;T ` m1 .ζ m andH;T ` m2 .ζ m.

To prove thatλPAR
SEC satisfies the security condition, we

first show that the simulation preserves typing and respects
the operational semantics.

Lemma 5.2 (Simulation preserves typing)If H;T ` m
andH;T ` m .ζ m′ thenH;T ` m′.

Proof: By induction on the derivation ofH;T ` m; the
inductive hypothesis must be extended to the other judgment
forms. The one interesting case is SIM -HIGH-PROC, which
holds because each free linear channelci mentioned inP is
used exactly once in the simulation|i ci(~vi). 2

Now we establish that the simulation respects the opera-
tional semantics.

Lemma 5.3 (→-simulation) If H;T |= m1 .ζ m2 and
m1 → m′

1 then eitherm′
1 .ζ m2 or there existsH ′, T ′,

andm′
2 such thatm2 → m′

2 andH ′, T ′ |= m′
1 .ζ m′

2.

Proof: This is proved by separately considering low-
security and high-security evaluation steps (pc v ζ and
pc 6v ζ, respectively). In either case it is shown that a step
of m1 can be simulated by zero or one steps performed by
its simulationm2. The proofs are by cases on the evaluation
step taken bym1. A similarV-simulation result follows.
2

Next, we show that the race-freedom condition im-
plies deterministic updates. Given a configurationm =
〈M,S, N〉, we definem(L) asM(L).

SIM -VAL

H;Γ |= v1 ≈ζ v2 : s pc v label(s)

H;Γ [pc] ` v1 .ζ v2 : s

SIM -BINOP

H;Γ |= v11 ≈ζ v12 : bool`

H;Γ |= v21 ≈ζ v22 : bool` pc v `

H;Γ [pc] ` v11 ⊕ v12 .ζ v21 ⊕ v22 : bool`

SIM -DEREF

H;Γ |= v1 ≈ζ v2 : s ref` pc v label(s t `)

H;Γ [pc] ` !v1 .ζ !v2 : s t `

Figure 8. Primitive operation simulation

SIM -EMPTY

H ` M
∀L ∈ dom(M).label(H(L)) 6v ζ
∀c ∈ dom(M).label(H(c)) 6v ζ

H ` M .ζ ·

SIM -LOC

H ` M1 .ζ M2 H |= v1 ≈ζ v2 : H(L)

H ` M1[L 7→ v1] .ζ M2[L 7→ v2]

SIM -J

H ` M1 .ζ M2

J ;pc 〈{ci :H(ci)}; {~xi : ~si}; {yopt
i :kopt

i }〉
H(ci) = [pc](~si, k

opt
i)

H; ~xi : ~si; ·; {yopt
i :kopt

i } [pc] ` P1 .ζ P2

H ` M1[J � P1] .ζ M2[J � P2]

Figure 9. Memory simulation

SIM -S-EMPTY

H; T ` S; T ′

∀[pc : J (P] ∈ S.pc 6v ζ

H; T ` S .ζ ·, T ′

SIM -S-HANDLER

H; T ` S1 .ζ S2, T1

J ; 〈{ci :T (ci)}; {~xi : ~si}〉
T (ci) = (~si) T2 ⊆ T
H; ~xi : ~si; T2; · [pc] ` P1 .ζ P2

H; T ` S1[pc : J (P1] .ζ

S2[pc : J (P2], T1, T2

Figure 10. Synchronization environment sim-
ulation

SIM -NONE H;Γ ; ·; · ` · .ζ ·

SIM -PROC

H;Γ ; T1; K1 ` N .ζ N ′

H;Γ ; T2; K2 [pc] ` P .ζ P ′

H;Γ ; T1, T2; K1, K2 ` N | [pc : P] .ζ

N ′ | [pc : P ′]

SIM -EQ

N1 ≡ N2 N3 ≡ N4

H;Γ ; T ; K ` N2 .ζ N3

H;Γ ; T ; K ` N1 .ζ N4

Figure 11. Process pool simulation

12

Lemma 5.4 (Race freedom and determinism)Suppose
that bothm(0,0) V∗ m(i,0) and m(0,0) V∗ m(0,j) where
the last step of each evaluation sequence makes a low-
observable change to locationL, but no prior step does.
Thenm(i,0)(L) ≈ζ m(0,j)(L).

Proof: By induction on(i, j), applying a collection of re-
lated lemmas that use race freedom to reason about equiva-
lence of configurations after single syntax-independent eval-
uation steps. 2

To talk about programs that differ only in high-security
inputs, we usesubstitutions. A substitutionγ is a finite map
from variables to values. IfΓ is a typing environment and
γ is a substitution, we writeγ |= Γ to mean thatγ assigns
each variable a value of the type required byΓ. The notation
γ(e) is short-hand for simultaneous capture-avoiding substi-
tutions. We writeH |= γ1 ≈ζ γ2 : Γ if the two substitutions
satisfyΓ and map each variable to equivalent values given
heap typeH.

The following lemma says that starting from a configura-
tion with an open process pool and closing it under equiva-
lent substitutions yields equivalent configurations.

Lemma 5.5 (Simulations and high-substitution)
Suppose the following hold:

H ` M and H;T1, T2 ` S;T1 and H;Γ ;T2; · ` N
and H |= γ1 ≈ζ γ2 : Γ
and ∀x ∈ dom(Γ). label(Γ (x)) 6v ζ

Then for any configurationm,
H;T |= 〈M, S, γ1(N)〉 .ζ m implies
H;T |= 〈M, S, γ2(N)〉 .ζ m

Proof: An easy induction on the typing derivation for pro-
cess poolN . The inductive cases follow from the construc-
tion of .ζ . 2

5.4 Determinism-based security
Given the technical machinery above, we can state the secu-
rity theorem as follows.

Theorem 5.1 (Determinism-based security)Let ζ be an
arbitrary label in the security lattice. Suppose that

H;x :s; ·; · ` N

Let an initial memoryM be given such thatH ` M and
suppose that wheneverH; · ` 〈M, ·, N〉 .ζ m the simula-
tion m is race-free. Let locationL ∈ dom(H) be given such
that label(H(L)) v ζ. Further suppose thatlabel(s) 6v ζ.
Then for any two valuesv1 andv2 such thatH; · ` vi : s the
sequence of values stored in memory locationL during the
evaluation of〈M, ·, N{v1/x}〉 is a prefix of the sequence of
values stored inL by 〈M, ·, N{v2/x}〉 (or vice-versa).

Proof: By Lemma 5.5 there exists a configurationm′ that
simulates both configurations. Suppose, for the sake of con-
tradiction, that the evaluations disagree on then+1st update
to the locationL. We derive a contradiction by induction on
n, using Lemma 5.4. 2

Note that in order to establish that a given program is se-
cure, not only must the program be well-typed, butall of its
ζ-simulations must be race-free. An easy lemma shows that
if m .ζ m′ andm is race-free thenm′ is race-free. Con-
sequently, it suffices to perform the race-freedom analysis
on the original source program—if the original program is
race-free, all of its simulations are too.

6 Related work
There has been a long history of information-flow research
based on trace models of computer systems [14, 23, 16, 25,
47] and process algebras [34, 39, 35]. Early programming
languages work in this area was initiated by Denning [8] and
Reynolds [31].

A few researchers have investigated noninterference-
based type systems for concurrent languages and process cal-
culi. Smith and Volpano have assumed a fixed number of
threads and a uniform thread scheduler; however, their work
accounts for probabilistic thread scheduling and relaxes the
constraints due to timing channels [43, 44, 41].

McLean [24] and Roscoe [32] proposed determinism-
based definitions of noninterference for trace-based and
labeled-transition systems. Their approach has not been used
previously in type systems for programming languages.

Focardi and Gorrieri [12] have implemented a flow-
checker for a variant of Milner’s calculus of concurrent sys-
tems (CCS). Honda et al. have proposed a similar system
for theπ-calculus in which they can faithfully encode Smith
and Volpano’s language [19]. Their work relies on a sophis-
ticated type system that distinguishes between linear chan-
nels, affine channels, and nonlinear channels. Both of these
approaches use bisimulation to prove possibilistic noninter-
ference properties. A similar approach is taken by Abadi
and Gordon to prove the correctness of cryptographic proto-
cols in the Secure Pi Calculus [2], but they do not enforce
information-flow policies.

Hennessy and Riely consider information-flow properties
in the asynchronousπ-calculus [18]. Like the definition used
here, their may-testing version of noninterference is timing-
and termination-insensitive, though possibilistic. Their lan-
guage does not support synchronous communication or re-
finement of the flow analysis via linearity constraints.

Pottier [29] gives an elementary proof of possibilistic
noninterference for a variant of theπ-calculus, but its type
system is restrictive because it does not make a distinction
between linear and nonlinear channel usage. Conchon [6]
also gives a similar information analysis for the join calcu-
lus, with a strong security condition based on bisimulation.

13

Sabelfeld and Sands have considered concurrent lan-
guages in a probabilistic setting [38], achieving scheduler in-
dependence. They use a novel probabilistic bisimulation ap-
proach to specify noninterference properties, and have used
the techniques to prove correct Agat’s program transforma-
tion for eliminating timing channels [3]. However, this trans-
formation does not allow high-pc loops or recursive func-
tions, and it allows leaks through instruction-cache effects.
Mantel and Sabelfeld [22] have also considered type systems
for multithreaded secure message-passing languages, includ-
ing the use of Agat’s transformation to pad timing chan-
nels [36] and thus achieve scheduler independence.

The design ofλPAR
SEC was inspired by concurrent process

calculi such as theπ-calculus [26] and especially the join
calculus [13].

7 Conclusions
This paper makes two contributions: first, it presents and
formalizes in a language setting a definition of information
security based on observational determinism. This definition
has the advantage over possibilistic security properties that
it is immune to refinement attacks, eliminating covert chan-
nels based on the observation of the probabilities of possible
results. Two insights make the observational determinism
an effective basis for a security condition: internal and ex-
ternal timing channels are treated differently, and programs
are required to be race-free, eliminating their ability to ob-
tain information from the internal timing channels. Based
on these insights, the attacker is formally modeled as having
less power to observe differences between program execu-
tions, with the result that the security definition avoids some
of the restrictiveness of alternative noninterference defini-
tions. Thus, this work allows a tradeoff in expressiveness
based on an estimation of the power of the attacker.

The second contribution is a demonstration that this new
definition of security can be enforced by the type system of
a concurrent language with expressive thread communica-
tion primitives in conjunction with a program analysis used
to guarantee race freedom. Factoring the security analy-
sis into a type system and an alias analysis simplifies the
type system and permits more sophisticated analyses to be
plugged in to obtain more precise characterizations of in-
formation flow. The language and its type system support
linear message handlers that can synchronize on messages
from multiple threads; this feature enables a less restrictive
treatment of implicit flows. TheλPAR

SEC language is not a full-
featured programming language; nevertheless, it includes the
key features that research on process calculi have shown to
be important for concurrent programming. Therefore, the
security analysis ofλPAR

SEC should extend to other concurrent
languages that support message passing. In addition,λPAR

SEC

is likely to be useful in designing secure intermediate lan-
guages, just as secure sequential calculi have been [49, 50].

Acknowledgments
The authors would like to thank Dan Grossman, E Lewis,
Greg Morrisett, Andrei Sabelfeld, Fred Schneider, and
Stephanie Weirich for their suggestions about earlier drafts
of this work. The comments of the anonymous reviewers
also improved the paper.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core

calculus of dependency. InProc. 26th ACM Symp. on Prin-
ciples of Programming Languages (POPL), pages 147–160,
San Antonio, TX, Jan. 1999.

[2] M. Abadi and A. Gordon. A calculus for cryptographic
protocols: The spi calculus.Information and Computation,
148(1):1–70, Jan. 1999.

[3] J. Agat. Transforming out timing leaks. InProc. 27th ACM
Symp. on Principles of Programming Languages (POPL),
pages 40–53, Boston, MA, Jan. 2000.

[4] A. Banerjee and D. A. Naumann. Secure information flow
and pointer confinement in a java-like language. InProc.
of the 15th IEEE Computer Security Foundations Workshop,
2002.

[5] G. Boudol and I. Castellani. Noninterference for concurrent
programs and thread systems.Merci, Maurice, A mosaic in
honour of Maurice Nivat, 281(1):109–130, June 2002.

[6] S. Conchon. Modular information flow analysis for process
calculi. In I. Cervesato, editor,Proc. Foundations of Com-
puter Security Workshop, Copenhagen, Denmark, 2002.

[7] D. E. Denning. A lattice model of secure information flow.
Comm. of the ACM, 19(5):236–243, May 1976.

[8] D. E. Denning and P. J. Denning. Certification of Programs
for Secure Information Flow.Comm. of the ACM, 20(7):504–
513, July 1977.

[9] A. Deutsch. Interprocedural may-alias analysis for pointers:
Beyand k-limiting. InProc. of the ’94 SIGPLAN Conference
on Programming Language Design, pages 230–241, 1994.

[10] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive
points-to analysis in the presence of function pointers. In
Proc. of the ’94 SIGPLAN Conference on Programming Lan-
guage Design, pages 242–256, June 1994.

[11] R. J. Feiertag. A technique for proving specifications are mul-
tilevel secure. Technical Report CSL-109, SRI International
Computer Science Lab, Menlo Park, California, Jan. 1980.

[12] R. Focardi and R. Gorrieri. The compositional security
checker: A tool for the verification of information flow secu-
rity properties.IEEE Transactions on Software Engineering,
23(9), Sept. 1997.

[13] C. Fournet and G. Gonthier. The Reflexive CHAM and the
Join-Calculus. InProc. ACM Symp. on Principles of Pro-
gramming Languages (POPL), pages 372–385, 1996.

[14] J. A. Goguen and J. Meseguer. Security policies and security
models. InProc. IEEE Symposium on Security and Privacy,
pages 11–20. IEEE Computer Society Press, Apr. 1982.

[15] J. A. Goguen and J. Meseguer. Unwinding and inference
control. InProc. IEEE Symposium on Security and Privacy,
pages 75–86. IEEE Computer Society Press, Apr. 1984.

[16] J. Gray III and P. F. Syverson. A logical approach to multi-
level security of probabilistic systems. InProceedings of the
IEEE Symposium on Security and Privacy, pages 164–176.
IEEE Computer Society Press, 1992.

14

[17] N. Heintze and J. G. Riecke. The SLam calculus: Program-
ming with secrecy and integrity. InProc. 25th ACM Symp. on
Principles of Programming Languages (POPL), pages 365–
377, San Diego, California, Jan. 1998.

[18] M. Hennessy and J. Riely. Information flow vs. resource ac-
cess in the asynchronous pi-calculus.ACM Transactions on
Programming Languages and Systems, 24(5), Sept. 2002.

[19] K. Honda and N. Yoshida. A uniform type structure for secure
information flow. InProc. 29th ACM Symp. on Principles of
Programming Languages, pages 81–92, Jan. 2002.

[20] B. W. Lampson. A note on the confinement problem.Comm.
of the ACM, 16(10):613–615, Oct. 1973.

[21] W. Landi and B. Ryder. A safe approximation algorithm for
interprocedural pointer aliasing. InProc. of the SIGPLAN ’92
Conference on Programming Language Design, June 1992.

[22] H. Mantel and A. Sabelfeld. A unifying approach to the se-
curity of distributed and multi-threaded programs.Journal of
Computer Security, 2002. To appear.

[23] D. McCullough. Noninterference and the composability of
security properties. InProc. IEEE Symposium on Security
and Privacy, pages 177–186. IEEE Computer Society Press,
May 1988.

[24] J. McLean. Proving noninterference and functional correct-
ness using traces.Journal of Computer Security, 1(1), 1992.

[25] J. McLean. A general theory of composition for trace sets
closed under selective interleaving functions. InProc. IEEE
Symposium on Security and Privacy, pages 79–93. IEEE
Computer Society Press, May 1994.

[26] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes.Information and Computation, 100(1):1–77, 1992.

[27] A. C. Myers. JFlow: Practical mostly-static information flow
control. InProc. 26th ACM Symp. on Principles of Program-
ming Languages (POPL), pages 228–241, San Antonio, TX,
Jan. 1999.

[28] J. Palsberg and P. Ørbæk. Trust in theλ-calculus. InProc.
2nd International Symposium on Static Analysis, number
983 in Lecture Notes in Computer Science, pages 314–329.
Springer, Sept. 1995.

[29] F. Pottier. A simple view of type-secure information flow in
theπ-calculus. InProc. of the 15th IEEE Computer Security
Foundations Workshop, 2002.

[30] F. Pottier and V. Simonet. Information flow inference for ML.
In Proc. 29th ACM Symp. on Principles of Programming Lan-
guages, Portland, Oregon, Jan. 2002.

[31] J. C. Reynolds. Syntactic control of interference. InProc.
5th ACM Symp. on Principles of Programming Languages
(POPL), pages 39–46, 1978.

[32] A. W. Roscoe. CSP and determinism in security modeling.
In Proc. IEEE Symposium on Security and Privacy, 1995.

[33] R. Rugina and M. Rinard. Pointer analysis for multithreaded
programs. InProc. of the ACM SIGPLAN 1999 Conference
on Programming Language Design, pages 77–90, May 1999.

[34] P. Ryan. A CSP formulation of non-interference and unwind-
ing. Cipher, pages 19–30, 1991.

[35] P. Ryan and S. Schneider. Process algebra and non-
interference. InProc. of the 12th IEEE Computer Security
Foundations Workshop. IEEE Computer Society Press, 1999.

[36] A. Sabelfeld and H. Mantel. Static confidentiality enforce-
ment for distributed programs. InProceedings of the 9th
Static Analysis Symposium, volume 2477 ofLecture Notes
in Computer Science. Springer-Verlag, 2002.

[37] A. Sabelfeld and A. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1), Jan. 2003.

[38] A. Sabelfeld and D. Sands. Probabilistic noninterference for
multi-threaded programs. InProc. of the 13th IEEE Com-
puter Security Foundations Workshop, pages 200–214. IEEE
Computer Society Press, July 2000.

[39] S. Schneider. Security properties and CSP. InProc. IEEE
Symposium on Security and Privacy, 1996.

[40] F. Smith, D. Walker, and G. Morrisett. Alias types. InProc. of
the 9th European Symposium on Programming, volume 1782
of Lecture Notes in Computer Science, pages 366–381, 2000.

[41] G. Smith. A new type system for secure information flow. In
Proc. of the 14th IEEE Computer Security Foundations Work-
shop, pages 115–125. IEEE Computer Society Press, June
2001.

[42] T. V. Vleck. Timing channels. poster session, IEEE
TCSP conference, Oakland CA, May 1990. Available at
http://www.multicians.org/timing-chn.html.

[43] D. Volpano and G. Smith. Probabilistic noninterference
in a concurrent language.Journal of Computer Security,
7(2,3):231–253, Nov. 1999.

[44] D. Volpano and G. Smith. Verifying secrets and relative se-
crecy. InProc. 27th ACM Symp. on Principles of Program-
ming Languages (POPL), pages 268–276. ACM Press, Jan.
2000.

[45] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis.Journal of Computer Security,
4(3):167–187, 1996.

[46] D. Walker and G. Morrisett. Alias types for recursive data
structures. InWorkshop on Types in Compilation, Sept. 2000.

[47] A. Zakinthinos and E. S. Lee. A general theory of security
properties and secure composition. InProc. IEEE Symposium
on Security and Privacy, Oakland, CA, 1997.

[48] S. Zdancewic.Programming Languages for Information Se-
curity. PhD thesis, Cornell University, 2002.

[49] S. Zdancewic and A. C. Myers. Secure information flow via
linear continuations.Higher Order and Symbolic Computa-
tion, 15(2–3):209–234, Sept. 2002.

[50] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Se-
cure program partitioning.ACM Transactions on Computer
Systems, 20(3):283–328, Aug. 2002.

15

	Introduction
	Security model
	Noninterference and nondeterminism
	Internal vs. external timing
	Low-security observational determinism
	Race freedom

	Synchronization mechanisms
	Message passing
	Synchronization
	Expressiveness

	PARSEC: A secure concurrent calculus
	Syntax and operational semantics
	PARSEC type system
	Race prevention and alias analysis

	Security condition
	Subject reduction
	Observational equivalence
	Process simulation
	Determinism-based security

	Related work
	Conclusions

