
Robust Declassification

Steve Zdancewic Andrew C. Myers
Cornell University Computer Science Department

Upson Hall Ithaca, NY 14853
{zdance, andru }@cs.cornell.edu

Revised September 23, 2003

Abstract

Security properties based on information flow, such as
noninterference, provide strong guarantees that confiden-
tiality is maintained. However, programs often need to leak
some amount of confidential information in order to serve
their intended purpose, and thus violate noninterference.
Real systems that control information flow often include
mechanisms for downgrading or declassifying information;
however, declassification can easily result in the unexpected
release of confidential information.

This paper introduces a formal model of information
flow in systems that include intentional information leaks
and shows how to characterize what information leaks.
Further, we define a notion ofrobustnessfor systems that in-
clude information leaks introduced by declassification. Ro-
bust systems have the property that an attacker is unable to
exploit declassification channels to obtain more confiden-
tial information than was intended to be released. We show
that all systems satisfying a noninterference-like property
are robust; for other systems, robustness involves a nontriv-
ial interaction between confidentiality and integrity proper-
ties. We expect this model to provide new tools for the char-
acterization of information flow properties in the presence
of intentional information leaks.

1 Introduction

Information flow control has for some time offered the
promise of a higher-level approach to maintaining the con-

This research was supported by DARPA Contract F30602-99-1-0533,
monitored by USAF Rome Laboratory. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright annotation thereon. The views and con-
clusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorsement,
either expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), the Air Force Research Laboratory, or the U.S. Gov-
ernment.

fidentiality and integrity of data. Policies for the flow of in-
formation, such as noninterference [8], have the advantage
over access control policies in that they can conveniently
express precise, system-wide restrictions on the flow of sen-
sitive data. The use of information flow controls has been
only partially successful, however. Enforcement mecha-
nisms have often been overly restrictive, preventing useful
systems from being built. An even greater difficulty is that
real systems often do leak some amount of confidential in-
formation, by intention. For example, even a program that
checks passwords leaks a small amount of information (in
an information-theoretic sense) about the actual passwords,
when queried with an incorrect password.

To accommodate programs that leak information by de-
sign, information flow controls often include some notion
of declassifyinginformation (downgradingthe sensitivity
labels on the data). Because the use of declassification may
violate information flow policies, its invocation is limited to
appropriately trusted subjects. One difficulty with the addi-
tion of a declassification mechanism is deciding when the
declassification is appropriate. Once a channel is added to
the system along which sensitivity labels are downgraded,
there is the potential for the channel to be abused to release
sensitive information other than that intended.

For example, consider a subroutine that checks pass-
words. If a user has access to another subroutine that al-
lows the user’s own password to be modified freely, this
pair of routines can be used to launder sensitive data one bit
at a time, as follows. A sensitive boolean value is encoded
in the password that the user assigns himself; this value is
then laundered by checking whether the user’s password is
one of the encodings. Thus, the declassification needed
in order to reduce the sensitivity labels on the password
checker’s result—so that it can function as intended—can
be exploited to leak other information as well.

In some systems for information flow control, such as
the decentralized label model [16], labels can be assigned
to these subroutines to prevent this exploitation of declassi-
fication. However, the underlying problem still exists: how

to determine when declassification is not being exploited. In
this paper, we explore this issue, developing a formal model
for identifying what information is actually leaked by pro-
grams that contain intentional information leaks, under var-
ious assumptions about the abilities possessed by attackers
who are attempting to steal confidential data.

We consider two kinds of attackers: First, there are pas-
sive attackers who are able to imperfectly observe the state
of a computational system as it evolves: some aspects of the
system state are observable, and others are not. Given such
a system, we can characterize what information passive at-
tackers may be able to learn through observation alone. Sec-
ond, we consider active attackers who are able not only to
observe the behavior of the system but also to modify it.
Our formal model is sufficiently general that it can cap-
ture both changes to the data used by the program and also
changes to the execution of the program. Active attackers
are of interest because we wish to build intrusion-tolerant
systems. By modeling active attackers formally, we can de-
termine what confidentiality guarantees can be offered in a
partially compromised system, and relate the degree of sys-
tem intrusion to bounds on the information leaked.

The major contribution of this paper is the definition of
when a computational system isrobustwith respect to an
active attacker. Given a system that contains some inten-
tional flows of confidential information, the system is ro-
bust with respect to a class of active attackers if these at-
tackers can learn no more about the confidential information
through active attacks than they can through passive obser-
vation. Equivalently, a system is robust if the intentional in-
formation leaks that it contains cannot be exploited through
active attack to learn more than was intended. In accor-
dance with this intuition, we are able to prove that a system
containing no information leaks is also robust. By giving
examples of robust and nonrobust systems, we demonstrate
that robustness is an useful, nontrivial property of computa-
tional systems that results from an interaction between the
confidentiality and integrity properties of the system.

The rest of the paper is structured as follows. In Sec-
tion 2, we introduce a formal model for the computational
system. We define a simple security property that captures
possibilistic information flow within the system, and for-
mally describe a passive attacker. Section 3 illustrates the
system model using the password-laundering example. In
Section 4, the model of an active attacker is developed; ro-
bust declassification is then defined and some of its more
interesting properties are shown to hold. In Section 5, we
conclude with some discussion about the related work, the
benefits of these models, and possible future applications.

2 System Model

A systemS = 〈Σ, 7→〉 consists of a set of states,Σ, and
a transition relation7→ ⊆ Σ × Σ. We useσ, σ′, σi, etc.,
to range over the elements ofΣ, and we writeσ 7→ σ′ if
the pair〈σ, σ′〉 is in the relation 7→. We further assume
that the relation7→ is reflexive: for eachσ ∈ Σ we have
σ 7→ σ. If S1 = 〈Σ, 7→1〉 andS2 = 〈Σ, 7→2〉 are systems
over the same set of states, we writeS1 ∪ S2 for the system
〈Σ, 7→1 ∪ 7→2〉.

A trace τ of a systemS is any finite sequenceσ0 7→
σ1 7→ σ2 7→ . . . 7→ σn−1 wheren ≥ 1. If τ is a trace, we
write τ(i) for theith state in the trace. For any stateσ in Σ,
we use the notationTrcσ(S) for the set of traces starting at
σ. The set of all traces ofS is denoted byTrc(S):

Trc(S)
def
=

⋃
σ∈Σ

Trcσ(S)

The set of traces for the systemS is completely determined
by its relation 7→ .

Following previous work on state-based models of com-
putation [2], we writeτ ≡ τ ′ if the traceτ is stutter-
equivalent toτ ′. In what follows, we consider traces equal
up to stuttering, but we will be explicit about using≡-
equivalence where it makes the exposition clearer. We also
extend the use of≡ to sets of traces. IfT andT ′ are sets of
traces, thenT ≡ T ′ whenever they contain the same traces
modulo≡, formally:

(∀τ ∈ T. ∃τ ′ ∈ T ′. τ ≡ τ ′) ∧ (∀τ ′ ∈ T ′. ∃τ ∈ T. τ ≡ τ ′)

Note that identifying traces up to stutter-equivalence is
compatible with our assumption that the relation7→ is re-
flexive because extra “null” transitionsσ 7→ σ can be elim-
inated from the trace. Ifτ ∈ Trc(S) and τ ≡ τ ′ then
τ ′ ∈ Trc(S).

We also use the notation≡ to mean stuttering equiv-
alence of sequences from an arbitrary setX; that is if
x, y ∈ X∗ we write x ≡ y wheneverx andy are stutter-
ing equivalent.

2.1 Views of a System

A view of the systemS is an equivalence relation≈
on Σ. An equivalence relation corresponds to an ability to
distinguish different states of the systemS; the more dis-
tinctions made by the relation≈, the more information is
known aboutS. Views correspond to security domains or
clearance levels because they describe a portion of the state
accessible to an observer.

For example, consider the set of statesΣ consisting
of pairs 〈h, l〉, where h ranges over some high-security
data andl ranges over low-security data. An observer

with low-security access (only permitted to see thel com-
ponent) can see that the states〈attack at dawn, 3〉 and
〈do not attack, 4〉 are different (because3 6= 4), but will
be unable to distinguish the states〈attack at dawn, 3〉 and
〈do not attack, 3〉. Thus, with respect to this view (≈):

〈attack at dawn, 3〉 ≈ 〈do not attack, 3〉
〈attack at dawn, 3〉 6≈ 〈do not attack, 4〉

The universal relation, which we write≈⊥, relates ev-
ery state to every other state. It corresponds to having no
knowledge of the state of the system. Conversely, the iden-
tity relation, given by≈>, corresponds to perfect informa-
tion about the state of the system: any two states can be
distinguished. If≈ is a view ofS, we write [σ]≈ for the
equivalence class of the stateσ with respect to≈.

Let I(Σ) be the set of all views of the system. This
set forms a complete lattice in which the equivalence re-
lation ≈A is less than the equivalence relation≈B (writ-
ten≈A vI ≈B) whenever≈B ⊆ ≈A as sets. Under this
ordering,≈> is the top of the lattice and≈⊥ is the bot-
tom element. The lattice join operation,tI , is given by
intersecting the relations, and the meet operation,uI , is the
transitive closure of the union of the two relations. We write
≈A <I ≈B whenever≈A vI ≈B and≈A 6= ≈B .

Higher elements in the lattice represent more informa-
tion about the state of the system, lower elements represent
less information. Two elements may be incomparable, and,
in general,I(Σ) is not distributive. See Landauer and Red-
mond [9] for a more detailed description of this lattice and
its relation to unwinding conditions for noninterference.

2.2 The Security PropertySP(≈)

The orderingvI yields a way of comparing how much
information is declassified by a systemS relative to some
initial information about the system. The view relation≈
describes apassive attacker, a principal able to observe
the system and deduce information about the state. Sys-
tems that preserve a view≈ are said to satisfy the security
predicateSP(≈); intuitively a system satisfiesSP(≈) if
an observer with information given by≈ cannot learn any-
thing by watching the system run. We now formalize this
intuition.

Given a traceτ ∈ Trc(S), the≈-view of τ , written
τ/≈, is simply the sequence of equivalence classes of states
in τ :

∀i ∈ {0 . . . len(τ)}. (τ/≈)(i) = [τ(i)]≈

The intuition behindτ/≈ is that a passive attacker who is
able to distinguish states only up to≈ will see the trace
τ generated by the system as the sequence of equivalence
classes. Anobservationof systemS with respect to starting
stateσ and view≈, writtenObsσ(S,≈) is given by:

Obsσ(S,≈)
def
= {τ/≈ | τ ∈ Trcσ(S)}

Obsσ(S,≈) is the set of all possible sequences of equiva-
lence classes under≈ that might be observed by watching
the system whenever it starts in stateσ.

The function that mapsσ toObsσ(S,≈) induces another
equivalence relation, writtenS[≈], onΣ. This relation can
be thought of as the information that might be learned by
watchingS through the view≈: two states are equivalent
only if the possible traces leading from these states are in-
distinguishable under≈. To say that a systemS induces
thisobservational equivalenceS[≈] with respect to≈, we
define:

∀σ, σ′ ∈ Σ. 〈σ, σ′〉 ∈ S[≈]
⇔

Obsσ(S,≈) ≡ Obsσ′(S,≈)

We characterize our security predicate,SP (≈), in terms
of the information latticeI(Σ) by simply requiring that the
induced observational equivalence corresponds to no more
information than was originally known.

Definition 2.1 (≈-Secure System)A systemS is secure
with respect to passive attacker≈ if and only if all ≈-
equivalent states are observationally equivalent. Formally:
S[≈] vI ≈. WheneverS satisfies this property we write:

S |= SP(≈)

This predicate tries to capture the idea that there is no (pos-
sibilistic) information flow to an observer with view≈. Any
two ≈-equivalent statesσ andσ′ must generate equivalent
observations when the system is run. Unfolding the defini-
tion of S |= SP(≈) yields the equivalent statement:

S |= SP(≈)
⇔

∀σ, σ′ ∈ Σ. σ ≈ σ′ ⇒ Obsσ(S,≈) ≡ Obsσ′(S,≈)

Or, in terms of the traces of the system:

S |= SP(≈)
⇔

∀σ, σ′ ∈ Σ.σ ≈ σ′ ⇒ ∀τ ∈ Trcσ(S).
∃τ ′ ∈ Trcσ′(S). (τ/≈) ≡ (τ ′/≈)

We now make a few observations about our security
predicate and its interaction with our notion of view.

First, note that an observer can only gain information
by watching the system run; information is not lost or de-
stroyed by watching the system.

Proposition 2.1 For any systemS and view≈ it is the case
that≈ vI S[≈].

One consequence of this monotonicity property is that
wheneverS |= SP(≈) holds, the views of two states co-
incide with their observations:≈ = S[≈].

Next, note that for every systemS both S |= SP(≈⊥)
andS |= SP(≈>) hold, but for different reasons. In the
former case, no interesting observations can be made about
the system and consequently there are no channels through
which information could flow. In the latter case, the ob-
server already has complete information about the system
state, and so could not learn anything by watching it run.

This last statement may be somewhat surprising, because
a≈>-observer may learn what nondeterministic choices are
made in a particular trace of the system. In our model of in-
formation flow all of the “interesting” information is found
in the initial state of the system—which is unknown to the
passive attacker—and that the actual transitions are “unin-
teresting.”1 The transition relation7→ is already known to
the observer.

We have chosen this model because it is simple, fairly
general, and it suffices to describe our ideas about robust de-
classification. By comparison, event and state-event based
models [22, 7, 8, 11, 12] take the dual position that only
the transitions of the system are of interest (they correspond
to augmenting our relation7→ to includelabels, the events
observed from outside the system).

To some extent, the difference between state-based sys-
tems and labeled-transition systems is only a matter of mod-
eling: each approach can simulate the other with appropri-
ate encodings [5]. For example, the state can keep track of
the event (label) of the most recent transition, or even the
entire history of the computation. State-based approaches
have been advocated in the past [4], although our defini-
tion of security differs from traditional noninterference in
that purge functions are not used. The combination of tak-
ing states modulo≈-equivalence and traces up to stutter-
equivalence, yields essentially the same result.

Equivalence relations over states appear in all of these
formulations in the guise of unwinding relations [8, 20,
13, 12] and the closely related notion of simulation rela-
tions [10]. The difference between unwinding relations and
views is that rather than starting with an event system and
trying to find a consistent unwinding relation as a means of
establishing a security property, we start with a view of the
system and determine how the view is altered by informa-
tion leaks inherent in the system. We intend that the defini-
tions of attack and robust declassification developed in what
follows be applicable to richer system models, but we leave
to future work such generalization.

1In the terminology of Mantel’s Assembly Kit [11], all high-security
events,i.e. those transitions in the set7→ ∩ ≈, are adaptable.

2.3 Multilevel Security, Confidentiality, and In-
tegrity

So far, our definition of information flow security has
been motivated from the point of view of protecting the con-
fidentiality of data with respect to one view of the system,
≈. For a system with multilevel confidentiality concerns,
we take a lattice of security domainsLC and assume that
there is a lattice-homomorphismlvl from LC into I(Σ).
This homomorphism maps a domain` ∈ LC to a corre-
sponding view relation≈` ∈ I(Σ). Note that because we
require the maplvl : ` 7−→ ≈` to be a homomorphism,
LC must contain top and bottom security clearances that
are sent to the “omniscient” and “null” views of the system,
respectively. Writelvl(LC) for the image ofLC underlvl .

The definition ofSP(−) can also be used to indicate
when computation depends on low-integrity data. Thus, we
may specify integrity constraints about a system by sim-
ply giving another lattice of integrity levels,LI , and corre-
sponding equivalence relations,↔ι for ι ∈ LI . Although
integrity relations are treated by the formalism in the same
way as the confidentiality relations, their meaning is dif-
ferent. Confidentiality equivalence says that two states are
equivalent from the observer’s point of view, whereas in-
tegrity equivalence says that two states are equivalent from
the point of view of a user who relies on the state. Two
states are equivalent if the differences between them are
unimportant. If the system satisfies the security property
SP(↔ι), the “important” aspects of its behavior are unaf-
fected by “unimportant” differences between the states. Be-
cause confidentiality and integrity are expressed in terms of
observational equivalence, the same security property en-
forces both.

As an example of how the lattice structure ofI(Σ) can
be used to reason about a multilevel security system, con-
sider the problem of trying to determine which principal’s
information has been leaked by the system. We assume that
the declassifications in the system occur under some prin-
cipal’s authority. Clearly, someone with top-level clearance
(someone who knows everything about the system) could
have leaked the information. A more interesting question to
ask is: What is thelowestsecurity domain that could have
authorized the declassification?

It is possible to assign responsibility for the declassifi-
cation based on the security clearances inLC . We con-
struct the set of security domains whose available informa-
tion aboutΣ, together with the information represented by
≈, can explain the observed behavior inObs (S,≈). This is
the following set:

D = {≈` | S[≈] vI (≈` tI ≈)}

The join (≈` tI ≈) represents the sum of information
available to security domaiǹand the information known to

the viewer of the system. When the join is higher inI(Σ)
than S[≈], the principal whose view is≈` has access to
enough information to cause the apparent declassification.

If the latticeLC is distributive, we can pinpoint the least
security domain that could have been responsible for the
declassification by simply taking the greatest lower bound
on the members ofD, namely≈D = glb{≈` ∈ D}. By
distributivity,≈D is guaranteed to be an element ofD itself.
It is the smallest level of information that, together with≈
is sufficient to explain the≈-view of the system. IfLC is
not distributive, any one of thevI-minimal elements ofD
could have declassified information sufficient to cause the
evident information flow.

3 An Example

To illustrate the model, let us consider the example of the
attack discussed in the introduction, in which a password
system is used to launder confidential information.

To model that scenario, we assume that the state of the
system consists of a 5-tuple〈t, h, p, q, r〉. The compo-
nentt ∈ {0, 1} is the time—0 indicates that the password
checker has not run yet, and 1 indicates that the password
checker has completed. In more realistic examples, this
simple notion of time could be replaced with the program
counter of a computer, but this suffices for our discussion.
The componenth is a bit representing some high security
data that should not be leaked to external users of the sys-
tem. For simplicity, we assume that there is only one user
password in the database, and its value is a bit given by the
componentp. The external user submits a query,q, which
will be compared againstp by the password checker. Ifp
andq match, the password checker toggles the value of the
booleanr, which stores the result of the query. Ifp andq
are not the same, the password checker leaves the value of
r unchanged.

The execution of the password checker can be given by
the transition relation below:

〈t, h, p, q, r〉 7→ 〈t, h, p, q, r〉
〈0, h, p, p, 0〉 7→ 〈1, h, p, p, 1〉 (p = q, toggler)
〈0, h, p, p, 1〉 7→ 〈1, h, p, p, 0〉 (p = q, toggler)
〈0, h, p, q, 0〉 7→ 〈1, h, p, q, 0〉 (p 6= q, leaver)
〈0, h, p, q, 1〉 7→ 〈1, h, p, q, 1〉 (p 6= q, leaver)

An external user of the system is only able to directly see
the value of the query submitted to the password checker,
the result that the password checker returns, and that the
password checker has completed its computation (time has
passed). This leads to an equivalence relation,≈, given by:

〈t, h, p, q, r〉 ≈ 〈t′, h′, p′, q′, r′〉
⇔

(t = t′) ∧ (q = q′) ∧ (r = r′)

Let S be the password checking system just described.
The external user of the system can learn some information
about the passwordp, namely whether it matches the query
they submitted, by watching the system run. Thus the sys-
temS induces an observational equivalenceS[≈] which is
strictly higher in the information latticeI(Σ):

〈t, h, p, q, r〉 S[≈] 〈t′, h′, p′, q′, r′〉
⇔

(t = t′) ∧ (q = q′) ∧ (r = r′) ∧ (t = 0 ⇒ (p = p′))

Now suppose that the owner of the password altersp
based on the value of the high-security datah before the
password checker is run. Because we’ve assumed that both
the high-security data and the password are represented as
bits, the simplest variant of such an attack is to copy the high
security data into the password. This attack corresponds to
adding some transitions2to the system above:

〈0, h, p, q, r〉 7→A 〈0, h, h, q, r〉

Now, as expected, the observational equivalence induced on
the attacked systemS′ is not the same as the one induced
by the original systemS. We have:

〈t, h, p, q, r〉 S′[≈] 〈t′, h′, p′, q′, r′〉
⇔

(t = t′) ∧ (q = q′) ∧ (r = r′)∧
(t = 0 ⇒ p = p′ ∨ h = h′ ∨ p = h′ ∨ h = p′)

Stating the equivalence relations in this way, it is easy to
see that the external observer can possibly learn the value of
h by watching the systemS′ run. The external observer can
distinguish any two states based on the run of the systemσ
andσ′ just whenσ is not related toσ′ via S′[≈]. Negating
the right hand side of the equivalence above yields:

(t 6= t′) ∨ (q 6= q′) ∨ (r 6= r′)∨
(t = 0 ∧ p 6= p′ ∧ h 6= h′ ∧ p 6= h′ ∧ h 6= p′)

This says that the external observer can see when time has
passed, whenq changes, whenr changes, or whent = 0
andp = h, p′ = h′ andp 6= p. Some information abouth
has been leaked.

As this example shows, the equivalence relations in-
duced by a system may be quite complex.3 Note that the at-
tack just described doesn’t leak all of the information about
h because whenh = p, copying it into the password doesn’t
lead to any new behavior in the system (with respect to ob-
servations through view≈). A more savvy attacker might

2We use the subscriptA to indicate that these are transitions introduced
by an attacker.

3In this setting, because there are only two possible values forp, h,
etc., more information is leaked than when more values are possible. The
reason is thatp 6= q andh 6= q implies thatp = h, which, in general
is not true. We have made use of this kind of reasoning to simplify the
description of the equivalence relations.

also toggler whenever he copiedh into p, thus indicating
thatp does in fact containh. This smarter attack adds these
transitions:

〈0, h, p, q, 0〉 7→A 〈0, h, h, q, 1〉
〈0, h, p, q, 1〉 7→A 〈0, h, h, q, 0〉

The equivalence relation induced byS′ now is given by:

〈t, h, p, q, r〉 S[≈] 〈t′, h′, p′, q′, r′〉
⇔

(t = t′) ∧ (q = q′) ∧ (r = r′)∧
(t = 0 ⇒ (p = p′) ∨ (h = h′))

Reading off the negation, we see that an attacker can dis-
tinguish states whenevert = 0 andh 6= h′ andp 6= p′,
that is, it is possible for the observer to learn the complete
information about the initial state of the system.

Clearly this simple password system is not secure with
respect to an attacker who has the ability to both alter one
piece of high-security data (the password) based on another
(h) and communicate that this change has been done (toggle
r). On the other hand, if the attacker may only toggler
no additional information is leaked. In what follows, we
develop a methodology for characterizing systems in terms
of their robustness against different kinds of attacks.

4 Robust Declassification

This section examines declassification in a system, spec-
ifies a class of attackers that is interesting from the inform-
ation-flow perspective, and defines robustness for systems
with respect to this class of attackers.

Having defined information flow in terms of the lattice
of information,I(Σ), we are now in a position to consider
declassification of data. The starting point for our notion of
declassification is that any system that leaks information—
any system that does not satisfySP(≈)—can be thought of
as containing declassifications. A passive attacker may be
able to learn some information by observing the system but,
by assumption, that information leakage is allowed by the
security policy.

We first define active attackers: principals that may alter
the system in an attempt to learn secret information.

4.1 Active Attacks

What constitutes a valid attack on the system? We would
like to model ways that an attack can affect the confidential-
ity properties of the system. Typical assumptions about the
attacker in an information-flow setting are that the attacker
can make (perhaps limited) observations of the system and
draw inference from those observations—passive attacks.

Another common means of specifying attackers is to re-
quire that they are programs running concurrently with the
system (for example, in process calculi such as CSP [21] or
the Spi calculus [1]) or perhaps more limited processes (for
example, restricted to polynomial-time probabilistic com-
putation).

Our concern is that an attacker will be able to exploit the
information learned via declassification, or simply the fact
that a declassification occurs, to cause a system to divulge
more information than permitted by the security policy.

In our model attackers are able to change the behavior
of the executing system. For example, in a system that is
a single-computer program, the attacker might overwrite
memory locations or registers of the machine. As in Sec-
tion 3, we model these changes as anattack transition rela-
tion 7→A that performs the change to the state. The power
of the attacker can also be captured simply by the attacker’s
view≈A, because any attack must be secure with respect to
≈A:

Definition 4.1 (≈A-Attack)
An ≈A-attack is a systemA = 〈Σ, 7→A〉 such that

A |= SP(≈A).

Note that the requirement thatA |= SP(≈A) is essentially
the fair environment assumption: The attacker must not
know the secret already (or be able to learn it from means
other than the system in question). We useA(≈A) to mean
the set of all attacks with respect to the view≈A.

Given an attackA and a systemS, both specified in terms
of the same set of statesΣ, the attack onS by A is just the
union of the systems:S ∪ A. This means of composition
is justified by our possibilistic interpretation of information
flow: the attacker will learn more information if it is pos-
sible for a trace in the new system to distinguish one state
from another.

4.2 Robust Systems

Given a systemS and an attacker’s view of the system
≈A, we would like a way to characterize classes of attacks
drawn from the setA(≈A). The first such characterization,
on which all our other classifications are based, is robust-
ness:

Definition 4.2 (Robust Declassification)
A systemS = 〈Σ, 7→〉 is robustwith respect to the class

B ⊆ A(≈A) of attacks if for all attacksA = 〈Σ, 7→A〉 in B,
it is the case that(S ∪ A)[≈A] vI S[≈A]. To indicate that
S is robust in this way, we write:

S |= R(B)

This says formally that observing the attacked systemS ∪
A reveals no more information than watching the original
systemS.

By identifying interesting subsets of attacks from which
the system is immune, we can better understand its informa-
tion flow properties. Conversely, if we can be reasonably
sure that the the only attacks on the system are ones for
which the system is robust, we believe the system is secure.
As with any formalization of attacks, we aren’t guaranteed
anything about attacks that fall outside our model. Also, we
can never hope to prevent all attacks against every system.
We see our results as tools for mapping the landscape of at-
tacks, information flow systems, and their interaction with
declassification.

The first interesting lesson we learn from this formaliza-
tion is that all systems that are secure with respect to≈A are
robust to all attacks from that view. Intuitively, whenever
running the system reveals no information to the attacker,
there is no way for an attacker to boost their information of
the system by modifying its behavior.

Theorem 4.1
If S |= SP(≈A) thenS |= R(A(≈A)).

Proof: Let A be an attack inA(≈A). Then, by def-
inition of an attacker, we haveA |= SP(≈A). From
Proposition 2.1 and the definition ofSP(≈A) it follows
that S[≈A] = ≈A, and henceS |= SP(S[≈A]) and also
A |= SP(S[≈A]). From Lemma A.1 (its proof is in the Ap-
pendix) it follows that(S ∪A) |= SP(S[≈A]), from which
we obtain(S ∪A)[≈A] vI S[≈A] as required. 2

This result justifies to some extent the use ofSP(≈A)
as a strong notion of security—not only does it guarantee
information flow properties of the systemS with respect to
≈A, it also says thatS is not susceptible to any attacks by
such an observer either.

Clearly there are other sets of attackers for which any
system is robust. For example, letB be the set of attacks
such that attack transition relation7→A is contained in the
view S[≈A]. Then any systemS (even one that does not
satisfySP(≈A)) is robust with respect toB. The proof is
a simple inductive argument. However, this is a particularly
limited class of attackers that are unable to alter any part of
the state they are able to observe, and so it is not particularly
useful.

In order to formulate a more useful class of attackers
for which the system is robust, we describe the relation be-
tween information learned by certain attackers and the secu-
rity properties of a system that is not secure with respect to
≈A. We first construct the iterated observation of a system,
Sn[≈A], which can be thought of as the least view refining
≈A for which S is secure. The definition of iterated obser-
vation is the following:

S0[≈A]
def
= ≈A

Sn+1[≈A]
def
= S[Sn[≈A]]

Sω[≈A]
def
=

⊔
n∈ω Sn[≈A]

The least fixed-point specified by the last definition exists
becauseI(Σ) is a complete lattice and Proposition 2.1 im-
plies that the iterated observation forms the ordered chain:

≈A vI S[≈A] vI S2[≈A] vI S3[≈A] vI . . .

As we desired, any system is secure with respect to itsω-
iterated view:

Proposition 4.1
Any system,S, and view≈A satisfyS |= SP(Sω[≈A]).

The following proposition states that the observational
equivalence generated by a system operates monotonically
on equivalence relations.

Proposition 4.2
If ≈A vI ≈B then for any systemS, S[≈A] vI S[≈B].

Finally, we give a bound on information leaked.4

Theorem 4.2
Let S be a system and let≈A be a view inI(Σ). LetA

be an≈A-attack such thatA |= SP(Sω[≈A]). Then

(S ∪A)[≈A] vI Sω[≈A].

Proof: From Proposition 4.1 we haveS |= SP(Sω[≈A]),
and, by using Lemma A.1, it follows that for anyA ∈ B
that(S ∪A) |= SP(Sω[≈A]). Consequently,

(S ∪A)[Sω[≈A]] vI Sω[≈A].

Propositions 2.1 and 4.2 show that

(S ∪A)[≈A] vI (S ∪A)[Sω[≈A]]

and we obtain the required result by transitivity ofvI .
2

How can we use this theorem to help understand the be-
havior of a system under attack? As we described in Sec-
tion 2.3, the security property can capture both confidential-
ity and integrity aspects of a system. The equivalence rela-
tion S[≈A] can be thought of as describing either the max-
imal amount of information that can be learned by watch-
ing the system, or, perhaps more intuitively, as an integrity

4In the proceedings version of this paper, Theorem 4.2 was claimed
to be a generalization of Theorem 4.1, and was incorrect as stated. The
version presented here is weaker in that it does not define a class of attacks
against whichS is robust unlessSω [≈A] = S[≈A].

property of the system. Two states related byS[≈A] are, in
some sense, unimportant to the behavior ofS as observed
by the attacker. Only attacks that force two such “unim-
portant” states to be “important”—by providing transitions
that distinguish them—can cause additional information to
be leaked by the system.

We can use Theorem 4.2 to characterize attacks on the
password checking facility described in Section 3. It is easy
to show that, for this particular system,Sω[≈A] = S[≈A].
It follows that any attack that satisfiesA |= SP(S[≈A])
cannot cause the system to leak information. The attacker
that simply togglesr (at time 0) falls into this class, as
does the one that changesq to a string not equal top.
The attack that copiesh into p, on the other hand, sends
the states〈0, h1, p, h1, r〉 and 〈0, h2, p, h1, r〉 to the states
〈0, h1, h1, h1, r〉 and 〈0, h2, h2, h1, r〉, respectively. The
first pair of states areSω[≈A]-equivalent, whereas the sec-
ond two are not. While Theorem 4.2 does not guarantee that
such an attack will cause more information to be leaked, it
does say that the attack lies outside those that the system is
known to be robust against.

The bound on information flow given by Theorem 4.2
is not tight; it is possible to construct systems and at-
tacks for which the estimated information flow given by
Sω[≈A] is strictly more than the actual information learned
by (S ∪A)[≈A]. However, theSω[≈A] usefully bounds in-
formation flow for a variety of systems. Determining more
precise bounds on what attackers can learn is a goal of fu-
ture work.

5 Discussion and Conclusions

There has been a fair amount of prior work on controlled
declassification or downgrading mechanisms, or the formal
characterization of systems incorporating them. The sim-
plest and most standard approach to declassification is to
restrict its uses to those performed by a trusted subject. This
approach does not address the question of whether an infor-
mation channel is created. Many systems have incorporated
a more limited form of declassification. Ferrari et. al [6]
augment information flow controls in an object-oriented
system with a form of dynamically-checked declassification
calledwaivers. Myers and Liskov [15] define a form ofse-
lective declassificationthat can be checked at compile-time,
based on the authority of the declassifying process. How-
ever, these efforts provide only limited characterization of
the safety of the declassification process.

Intransitive noninterferencepolicies [19, 17, 18] gener-
alize noninterference to describe systems that contain re-
stricted downgrading mechanisms. The work by Bevier
et al. on controlled interference[3] is most similar to this
work in allowing the specification of policies for informa-
tion released to a set ofagents. Their notion of agent largely

agrees with the notion of a passive attacker defined here.
None of this prior work addresses the issue of an active at-
tacker. However, the results in this paper should also be ap-
plicable to specifying intransitive noninterference policies.

Our notion of attack is clearly connected withrefinement.
In particular, the original systemS refines (has less nonde-
terminism than) the attacked system(S ∪A). S is robust to
the attackA if the refinement preserves the equivalences
given by S[≈A]. Another important direction for future
work is to consider attacks that can remove transitions from
S, effectively causing some computation paths to become
impossible.

This paper makes a number of contributions to the prob-
lem of systems containing intentional information leaks
that presumably arise from controlled declassification. Us-
ing a purely state-based system model and definition of
a noninterference-like information flow property, we pre-
cisely characterize the information that is released to an ar-
bitrary observer (passive attacker) of the system, described
as an equivalence relation≈A over the states of the system.
The possible executions of the system, defined by its nonde-
terministic transition relation, generate a refinement of the
view equivalence relation,S[≈A]. The difference between
these two equivalence relations captures the information re-
leased to an observer. The lattice of information (whose
elements are views of the system) is a powerful tool for un-
derstanding the information flow behavior of the system.

The major contributions of this paper lie in the charac-
terization of information flow in systems suffering some in-
trusion by an active attacker that is able to modify the state
of the executing system. Making the reasonable assump-
tion that the attacker cannot construct an attack that depends
on the exploitation of information that it cannot observe di-
rectly, we obtain the expected property that an attacker can-
not violate confidentiality if the system obeys the informa-
tion flow security property. Importantly, for systems that
contain intentional information leaks (do not obey the secu-
rity property), we give a recipe for bounding the ability of a
class of attackers to obtain information. From a description
of the direct powers of observation of an attacker (≈A), the
relationS[≈A] is obtained, defining both a level of confi-
dentiality that can be maintained, and a degree of integrity
that must not be violated by an active attacker in order to
preserve that confidentiality.

We expect this model to provide new tools for the char-
acterization of information flow properties in the presence
of intentional information leaks and system intrusion. Be-
cause the model is state-based, it seems particularly applica-
ble to language-based approaches to information flow con-
trol [14]. The connections to models of intransitive nonin-
terference also deserve further exploration.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The Spi calculus.Information and Computation,
148(1):1–70, January 1999.

[2] M. Abadi and L. Lamport. Composing specifications.
ACM Transactions on Programming Languages and Sys-
tems, 14(4):1–60, October 1992.

[3] W. R. Bevier, R. M. Cohen, and W. D. Young. Connec-
tion policies and controlled interference. InProc. 8th IEEE
Computer Security Foundations Workshop, pages 167–176,
1995.

[4] W. R. Bevier and W. D. Young. A state-based approach
to non-interference. InProc. 7th IEEE Computer Security
Foundations Workshop, pages 11–21, 1994.

[5] R. De Nicola and F. Vaandrager. Three logics for branching
simulation. Journal of the Association of Computing Ma-
chinery, 42(2):458–487, 1995.

[6] E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Provid-
ing flexibility in information flow control for object-oriented
systems. InProc. IEEE Symposium on Security and Privacy,
pages 130–140, Oakland, CA, USA, May 1997.

[7] J. A. Goguen and J. Meseguer. Security policies and security
models. InProc. IEEE Symposium on Security and Privacy,
pages 11–20, Apr. 1982.

[8] J. A. Goguen and J. Meseguer. Unwinding and inference
control. InProc. IEEE Symposium on Security and Privacy,
pages 75–86, Apr. 1984.

[9] J. Landauer and T. Redmond. A lattice of information. In
Proc. 6th IEEE Computer Security Foundations Workshop,
pages 65–70. IEEE Computer Society Press, June 1993.

[10] N. Lynch and F. Vaandrager. Forward and backward simu-
lations – Part I: Untimed systems.Information and Compu-
tation, 121(2):214–233, September 1995. Also, Technical
Memo MIT/LCS/TM-486.b (with minor revisions), Labora-
tory for Computer Science, Massachusetts Institute of Tech-
nology.

[11] H. Mantel. Possibilistic definitions of security: An assem-
bly kit. In Proc. 13th IEEE Computer Security Foundations
Workshop, pages 185–199, Cambridge, United Kingdom,
2000.

[12] H. Mantel. Unwinding possibilistic security properties. In
ESORICS 2000, volume 1895 ofLecture Notes in Computer
Science, pages 238–254. Springer-Verlag, 2000.

[13] J. K. Millen. Unwinding forward correctibility. InProc.
7th IEEE Computer Security Foundations Workshop, pages
2–10, 1994.

[14] A. C. Myers. JFlow: Practical mostly-static information
flow control. In Proc. 26th ACM Symp. on Principles of
Programming Languages (POPL), pages 228–241, San An-
tonio, TX, Jan. 1999.

[15] A. C. Myers and B. Liskov. Complete, safe information
flow with decentralized labels. InProc. IEEE Symposium on
Security and Privacy, pages 186–197, Oakland, CA, USA,
May 1998.

[16] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model.ACM Transactions on Software
Engineering and Methodology, 9(4):410–442, Oct. 2000.

[17] S. Pinsky. Absorbing covers and intransitive non-inter-
ference. InProc. IEEE Symposium on Security and Privacy,
pages 102–113, 1995.

[18] A. W. Roscoe and M. H. Goldsmith. What is intransitive
noninterference? InProc. 12th IEEE Computer Security
Foundations Workshop, 1999.

[19] J. Rushby. Noninterference, transitivity and channel-control
security policies. Technical report, SRI, 1992.

[20] P. Ryan. A CSP formulation of non-interference and un-
winding. Cipher, pages 19–30, 1991.

[21] S. Schneider. Security properties and CSP. InProc. IEEE
Symposium on Security and Privacy, 1996.

[22] A. Zakinthinos and E. S. Lee. A general theory of security
properties and secure composition. InProc. IEEE Sympo-
sium on Security and Privacy, Oakland, CA, 1997.

A Proofs

Lemma A.1
Let S1 = 〈Σ, 7→1〉 and S2 = 〈Σ, 7→2〉 be systems and

suppose≈ is an equivalence relation inI(Σ) then:

S1 |= SP(≈) ∧ S2 |= SP(≈) ⇒ S1 ∪ S2 |= SP(≈)

Proof: Let σ1 andσ′1 be two states such thatσ1 ≈ σ′1. Let
τ1 be a trace inTrcσ1(S1 ∪ S2). We must show that there
exists a traceτ ′1 in Trcσ′

1
(S1 ∪ S2) such that

(τ1/≈) ≡ (τ ′1/≈).

We proceed by induction on the length ofτ1. In the case
that τ1 has length 1,τ1/ ≈ ≡ [σ1]≈ and we may choose
τ ′1 = σ′1, which is equivalent toτ1 modulo≈ becauseσ1 ≈
σ′1. If τ1 starts with the transitionσ1 7→x σ2 . . ., then 7→x

is either of the form7→1 or 7→2. In either case, becauseS1

and S2 satisfySP(≈), we may construct a≡-equivalent
traceσ′1 7→x σ′2 7→x . . . 7→x σ′n consisting of transitions
from the systemSx and such thatσ′n ≈ σ2. We inductively
construct the rest of the list starting from the statesσ2 ≈
σ′n: Let τ2 be the suffix ofτ1 starting atσ2. Then there
exists aτ ′2 ∈ Trcσ′

n
(Σ1 ∪ Σ1) such thatτ2 ≡ τ ′2. Because

stuttering equivalence is preserved by trace concatenation
τ1 = σ1 7→x τ2 ≡ σ′1 7→x . . . 7→x τ ′2 as required.

2

