Robust Declassification

Steve Zdancewic Andrew C. Myers
Cornell University Computer Science Department
Upson Hall Ithaca, NY 14853

{zdance, andru }@cs.cornell.edu
Revised September 23, 2003

Abstract fidentiality and integrity of data. Policies for the flow of in-
formation, such as noninterference [8], have the advantage

Security properties based on information flow, such as over access control policies in that they can conveniently
noninterference, provide strong guarantees that confiden-express precise, system-wide restrictions on the flow of sen-
tiality is maintained. However, programs often need to leak sitive data. The use of information flow controls has been
some amount of confidential information in order to serve only partially successful, however. Enforcement mecha-
their intended purpose, and thus violate noninterference. nisms have often been overly restrictive, preventing useful
Real systems that control information flow often include systems from being built. An even greater difficulty is that
mechanisms for downgrading or declassifying information; real systems often do leak some amount of confidential in-
however, declassification can easily result in the unexpectedformation, by intention. For example, even a program that
release of confidential information. checks passwords leaks a small amount of information (in

This paper introduces a formal model of information an information-theoretic sense) about the actual passwords,
flow in systems that include intentional information leaks when queried with an incorrect password.
and shows how to characterize what information leaks. To accommodate programs that leak information by de-
Further, we define a notion obbustnessor systems thatin- sign, information flow controls often include some notion
clude information leaks introduced by declassification. Ro- of declassifyinginformation @owngradingthe sensitivity
bust systems have the property that an attacker is unable tdabels on the data). Because the use of declassification may
exploit declassification channels to obtain more confiden- violate information flow policies, its invocation is limited to
tial information than was intended to be released. We show appropriately trusted subjects. One difficulty with the addi-
that all systems satisfying a noninterference-like property tion of a declassification mechanism is deciding when the
are robust; for other systems, robustness involves a nontriv-declassification is appropriate. Once a channel is added to
ial interaction between confidentiality and integrity proper- the system along which sensitivity labels are downgraded,
ties. We expect this model to provide new tools for the char-there is the potential for the channel to be abused to release
acterization of information flow properties in the presence sensitive information other than that intended.

of intentional information leaks. For example, consider a subroutine that checks pass-
words. If a user has access to another subroutine that al-
lows the user’s own password to be modified freely, this
1 Introduction pair of routines can be used to launder sensitive data one bit
at a time, as follows. A sensitive boolean value is encoded
in the password that the user assigns himself; this value is
then laundered by checking whether the user’s password is
one of the encodings. Thus, the declassification needed
This research was supported by DARPA Contract F30602-99-1-0533, in order to reduce the sensitivity labels on the password

monitored by USAF Rome Laboratory. The U.S. Government is au-) : : :
thorized to reproduce and distribute reprints for Government purposes checker's result—so that it can function as intended—can

notwithstanding any copyright annotation thereon. The views and con- D€ €xploited to leak other information as well.

clusions contained herein are those of the authors and should not be in- |n some systems for information flow control, such as
terpreted as necessarily representing the official policies or endorsementthe decentralized label model [16] labels can be assigned
either expressed or implied, of the Defense Advanced Research Projects . L L. .
Agency (DARPA), the Air Force Research Laboratory, or the U.S. Gov- (0 these subroutines to prevent this exploitation of declassi-

ernment. fication. However, the underlying problem still exists: how

Information flow control has for some time offered the
promise of a higher-level approach to maintaining the con-

to determine when declassification is not being exploited. In2 ~ System Model

this paper, we explore this issue, developing a formal model

for identifying what information is actually leaked by pro- A systemS = (X, +—) consists of a set of states, and
grams that contain intentional information leaks, under var- 3 transition relation— C ¥ x . We useo, o', o;, etc,
ious assumptions about the abilities possessed by attackerg range over the elements Bf and we writeo — o if
who are attempting to steal confidential data. the pair (o, 0’) is in the relation—. We further assume
that the relation— is reflexive: for eactv € ¥ we have
oo If S = (X, —1)andSy = (X, —5) are systems

We consider two kinds of attackers: First, there are pas- h ; tor th
sive attackers who are able to imperfectly observe the state?Ve" the same set of states, we wisteu S for the system

of a computational system as it evolves: some aspects of théz’ =1 U).) .

system state are observable, and others are not. Given such A trace 7 of a systems is any finite sequence,

a system, we can characterize what information passive at! ™ 927 --- 7 On—1 wheren > 1. If 7 is a trace, we
tackers may be able to learn through observation alone. SecWrte 7 (i) for thez_ state in the trace. For any sta:ten_Z,
ond, we consider active attackers who are able not only to'Ve Use the notat|0|Trc,,(S)_ for the set of traces starting at
observe the behavior of the system but also to modify it. 7+ 11 Setof all traces of is denoted bylic(S5):

Our formal model is sufficiently general that it can cap- def

ture both changes to the data used by the program and also Tre(S) = U Treq(S)

changes to the execution of the program. Active attackers gex

are of interest beca_luse we wish to build intrusion-tolerant the set of traces for the systetis completely determined
systgms. By mode_lmg z.acyve attackers formally, we can .de— by its relation— .

termine what confidentiality guarantees can be offered in a
partially compromised system, and relate the degree of sysp
tem intrusion to bounds on the information leaked.

Following previous work on state-based models of com-
utation [2], we writer = 7’ if the tracer is stutter-
equivalent tor’. In what follows, we consider traces equal
up to stuttering, but we will be explicit about using-

The major contribution of this paper is the definition of equivalence where it makes the exposition clearer. We also
when a computational system isbustwith respect to an extend the use of to sets of traces. [f' andT’ are sets of
active attacker. Given a system that contains some inteniraces, thef” = 7" whenever they contain the same traces
tional flows of confidential information, the system is ro- modulo=, formally:
bust with respect to a class of active attackers if these at- , y , , y ,
tackers can learn no more about the confidential information (Y7 € 7- 37 € T".7 =) A (V7' € T". 3r € T. 7 = 7))
through active attacks than they can through passive obser-
vation. Equivalently, a system is robust if the intentional in-
forr_nation leaks that it contains cannot l_)e exploited throughﬂexive because extra “null” transitiors— o can be elim-
active at_tack _to_ Iea_r_n more than was intended. In accor-;~ied from the trace. If Tre(S) andr = 7' then
dance_\ v_wth th|§ mtumor?, we are a_ble to prove that a sys_tem 7 € Tre(S).
containing no information leaks is also robust. By giving We also use the notatios to mean stuttering equiv-
examples of rob_ust and nonrobust' §ystems, we demonstratgIence of sequences from an arbitrary 3&t that is if
that robustness is an useful, nontrivial property of computa-
tional systems that results from an interaction between the
confidentiality and integrity properties of the system.

Note that identifying traces up to stutter-equivalence is
compatible with our assumption that the relatien is re-

x,y € X* we writexz = y wheneverz andy are stutter-
ing equivalent.

2.1 Views of a System
The rest of the paper is structured as follows. In Sec-

tion 2, we introduce a formal model for the computational A view of the systemS is an equivalence relatios:
system. We define a simple security property that captureson >.. An equivalence relation corresponds to an ability to
possibilistic information flow within the system, and for- distinguish different states of the systefn the more dis-
mally describe a passive attacker. Section 3 illustrates thetinctions made by the relatior, the more information is
system model using the password-laundering example. Inknown aboutS. Views correspond to security domains or
Section 4, the model of an active attacker is developed; ro-clearance levels because they describe a portion of the state
bust declassification is then defined and some of its moreaccessible to an observer.
interesting properties are shown to hold. In Section 5, we For example, consider the set of stafésconsisting
conclude with some discussion about the related work, theof pairs (h,[), whereh ranges over some high-security
benefits of these models, and possible future applications. data and! ranges over low-security data. An observer

with low-security access (only permitted to see trem-
ponent) can see that the statestack at dawn, 3) and def

(do not attack, 4) are different (becausg # 4), but will Obsq(S,~) = {7/~ | 1€ Tre,(S)}
be unable to distinguish the statestack at dawn, 3) and

(do not attack, 3). Thus, with respect to this view(): Obs, (S, =) is the set of all possible sequences of equiva-

lence classes under that might be observed by watching
(attack at dawn, 3) ~ (do not attack, 3) the system whenever it starts in state
(attack at dawn, 3) % (do not attack, 4) The function that maps to Obs,, (S, ~) induces another
)])] equivalence relation, writtefi[~], on X. This relation can
The universal relation, which we write |, relates ev- pe thought of as the information that might be learned by
ery state to every other state. It corresponds to having nOyatching s through the views: two states are equivalent
knowledge of the state of the system. Conversely, the iden-opy if the possible traces leading from these states are in-
tity relation, given by, corresponds to perfect informa- distinguishable undex. To say that a systersi induces

tion about the state of the system: any two states can bepjs opservational equivalences[~] with respect tov, we
distinguished. lf~ is a view of S, we write [¢]~ for the define:

equivalence class of the statewith respect tox.

Let Z(X) be the set of all views of the system. This Vo,0" € X. {0,0’) € S[~]
set forms a complete lattice in which the equivalence re- A
lation ~4 is less than the equivalence relatien; (writ- Obs, (S, =) = Obsy (S, =)

tenx~, C; ~p) whenever~g C =, as sets. Under this
ordering,~7 is the top of the lattice ane:, is the bot-
tom element. The lattice join operationg, is given by
intersecting the relations, and the meet operatign,is the
transitive closure of the union of the two relations. We write
~a Cz ~pwhenevercy Cr ~pand~s # ~p. Definition 2.1 (=-Secure System)A systemsS is secure
Higher elements in the lattice represent more informa- ,iih respect to passive attacker if and only if all ~-
tion about the state of the system, lower elements representqivalent states are observationally equivalent. Formally:

less information. Two elements may be incomparable, and,S[%} C; ~. Wheneves satisfies this property we write:
in general Z(X) is not distributive. See Landauer and Red- -

mond [9] for a more detailed description of this lattice and S ESP(~)
its relation to unwinding conditions for noninterference.

We characterize our security predica$e? (=), in terms
of the information lattic& (3) by simply requiring that the
induced observational equivalence corresponds to no more
information than was originally known.

This predicate tries to capture the idea that there is no (pos-
2.2 The Security PropertySP(~) sibilistic) information flow to an observer with view. Any

two ~-equivalent states ands’ must generate equivalent

The ordering_7 yields a way of comparing how much ©bservations when the system is run. Unfolding the defini-

information is declassified by a systefirelative to some tion of S [|= SP(~) yields the equivalent statement:
initial information about the system. The view relatign S = SP(~)
describes gassive attacker a principal able to observe N
the system and deduce information about the state. Sys- Vo,0! € 5.0~ 0 = Obsy(S,~) = Obsy (S, ~)
tems that preserve a viewy are said to satisfy the security ’ ’ AR TN

predicateSP(~); intuitively a system satisfieSP(~) if Or, in terms of the traces of the system:
an observer with information given by cannot learn any-
thing by watching the system run. We now formalize this S ESP(=)
intuition. <

Given a tracer € Tre(S), the ~-view of 7, written Vo,0' € .0~ o' = V1 € Tre,(S).
7/ =, is simply the sequence of equivalence classes of states Ir' € Treg/(S). (1/=) = (7'/=)
in7:

We now make a few observations about our security
Vi e {0...len(7)}. (/=)(i) = [7(9)]~ predicate and its interaction with our notion of view.
First, note that an observer can only gain information

The intuition behindr/ ~ is that a passive attacker who is by watching the system run; information is not lost or de-
able to distinguish states only up to will see the trace gtroyed by watching the system.

T generated by the system as the sequence of equivalence
classes. Ambservationof systemS with respect to starting ~ Proposition 2.1 For any systen$ and views: it is the case
statec and view=z, written Obs,, (S, ~2) is given by: that~ C7 S[~].

One consequence of this monotonicity property is that 2.3 Multilevel Security, Confidentiality, and In-
wheneverS = SP(=) holds, the views of two states co- tegrity
incide with their observationss = S[~].

Next, note that for every systesi both S = SP(~.) So far,_ our definition of_information flow sgcurity has
and S = SP(~+) hold, but for different reasons. In the peen mthated from.the point of view ofprotectmg the con-
former case, no interesting observations can be made abodfdentiality of data with respect to one view of the system,
the system and consequently there are no channels througff- FOr @ system with multilevel confidentiality concerns,
which information could flow. In the latter case, the ob- We take a lattice of security domairts: and assume that
server already has complete information about the system€re is a lattice-homomorphisial from Lc into Z(%).

state, and so could not learn anything by watching it run. ~ 1his homomorphism maps a domainc Lc to a corre-
sponding view relationz, € Z(X). Note that because we

This last statement may be somewhat surprising, becausgequire the magvl : ¢ — =~ to be a homomorphism,
a~T-observer may learn what nondeterministic choices are r . must contain top and bottom security clearances that
made in a particular trace of the system. In our model of in- 5.0 sent to the “omniscient” and “null” views of the system,
formation flow all of the “interesting” information is found respectively. Writdvl(L) for the image ofCc underlu.
in the initial state of the system—uwhich is unknown to the The gefinition ofSP(~) can also be used to indicate
passive attacker—and that the actual transitions are “unin-han computation depends on low-integrity data. Thus, we
teresting.r The transition relation— is already known to may specify integrity constraints about a system by sim-
the observer. ply giving another lattice of integrity levelg};, and corre-

We have chosen this model because it is simple, fairly sponding equivalence relations;, for « € £;. Although
general, and it suffices to describe our ideas about robust deintegrity relations are treated by the formalism in the same
classification. By comparison, event and state-event basedvay as the confidentiality relations, their meaning is dif-
models [22, 7, 8, 11, 12] take the dual position that only ferent. Confidentiality equivalence says that two states are
the transitions of the system are of interest (they correspondequivalent from the observer’s point of view, whereas in-
to augmenting our relations to includelabels the events tegrity equivalence says that two states are equivalent from
observed from outside the system). the point of view of a user who relies on the state. Two

To some extent, the difference between state-based sys:?‘t"’Ttes are equivalent if the d'ﬁ.e rences betwegn them are
unimportant. If the system satisfies the security property

tems and labeled-transition systems is only a matter of mod-SP the “ ant” s of its behavi f
eling: each approach can simulate the other with appropri- (,), the *important” aspects of its behavior are unaf-

ate encodings [5]. For example, the state can keep track oifeCted by qmmpor_tant d|fferen_ces between the s_tates. Be-
the event (label) of the most recent transition, or even the CaUSE confidentiality and integrity are expressed in terms of

entire history of the computation. State-based approache?observatlonal equivalence, the same security property en-

have been advocated in the past [4], although our defini- orzes both. le of how the latti truct ~
tion of security differs from traditional noninterference in b S ag texamp €o b OV;/ € allt.llce IS ruc u_rteif()t can
that purge functions are not used. The combination of tak- € used fo reason about a multiievel secunty system, con-

ing states module=-equivalence and traces up to stutter- ;l?er th? pr(r)]blerl: of tlrylr;(g éobdetz;c]ermmte Wh'\(/:\? principal tsh t
equivalence, yields essentially the same result. information has been leaked Dy the system. Ve assume tha

_ _ _ the declassifications in the system occur under some prin-
Equivalence relations over states appear in all of thesecipal's authority. Clearly, someone with top-level clearance
formulations in the guise of unwinding relations [8, 20, (someone who knows everything about the system) could
13, 12] and the closely related notion of simulation rela- have leaked the information. A more interesting question to
tions [10]. The difference between unwinding relations and sk is: What is théowestsecurity domain that could have
views is that rather than starting with an event system andgthorized the declassification?
trying to find a consistent unwinding relation as a means of |t js possible to assign responsibility for the declassifi-
establishing a security property, we start with a view of the cation based on the security clearancesCin We con-
system and determine how the view is altered by informa- stryct the set of security domains whose available informa-

tions of attack and robust declassification developed in whatx. can explain the observed behavioris (S, ~). This is

follows be applicable to richer system models, but we leave the following set:
to future work such generalization.
D={~; | S[=] C1 (¢ Uz =)}

LIn the terminology of Mantel's Assembly Kit [11], all high-security The. join (~ Uz ~) represents the sum C_)f information
eventsj.e. those transitions in the set N =, are adaptable. available to security domaifand the information known to

the viewer of the system. When the join is highefZif}) Let S be the password checking system just described.

than S[~], the principal whose view isz;, has access to The external user of the system can learn some information

enough information to cause the apparent declassification. about the passworgl namely whether it matches the query
If the lattice L is distributive, we can pinpoint the least they submitted, by watching the system run. Thus the sys-

security domain that could have been responsible for thetem .S induces an observational equivalerftiez] which is

declassification by simply taking the greatest lower bound strictly higher in the information lattic&(%):

on the members oD, namely~p = glb{~, € D}. By

distributivity, ~ , is guaranteed to be an elementftself. (t,h,p,q,7) S[=] {t', 1, p',q',7")
It is the smallest level of information that, together with , . = , ,
is sufficient to explain the=-view of the system. I is t=t)AN(g=q)N(r=r)A({t=0=(p=1p))

not distributive, any one of thez-minimal elements oD Now suppose that the owner of the password alters
could have declassified information sufficient to cause the pocaq on the value of the high-security dathefore the

evident information flow. password checker is run. Because we've assumed that both

the high-security data and the password are represented as
3 An Example bits, the simplest variant of such an attack is to copy the high
security data into the password. This attack corresponds to
To illustrate the model, let us consider the example of the adding some transitiof® the system above:
attack discussed in the introduction, in which a password 0. h
system is used to launder confidential information. {0, . p, ;)

To model that scenario, we assume that the state of thenow, as expected, the observational equivalence induced on

system consists of a 5-tuplg, i, p,q,r). The compo- the attacked systersi’ is not the same as the one induced
nentt € {0,1} is the time—a0 indicates that the password py the original systens. We have:

checker has not run yet, and 1 indicates that the password

—A <07ha h7Qar>

checker has completed. In more realistic examples, this (t,h,p,q,r) S'[=] (t', 1, p' ¢, r")
simple notion of time could be replaced with the program <

counter of a computer, but this suffices for our discussion. t=t)N(@g=q¢)N(r=1")A

The component is a bit representing some high security (t=0=p=p'Vh=~h"Vp="~'Vh=p)

data that should not be leaked to external users of the sys- . . . S -
Stating the equivalence relations in this way, it is easy to

tem. For simplicity, we assume that there is only one user that th . L ob by | th | f
password in the database, and its value is a bit given by the>€€ that Ine external observer can possibly fearn the value o

H !
componenp. The external user submits a quegywhich thy WaFC:mg thte systtetrﬁ Lun. Lhe etxhternal o]lc)fherversc;an
will be compared againgt by the password checker. #f IStinguish any two states based on the run ot the System

he . Ll 4
andq match, the password checker toggles the value of the?hndq :::Sr;[Wger_lg IS ?;: relate_d tlm waﬁ [~]. _l\lledga.ltlng
booleanr, which stores the result of the query. gdfandq € nght hand side ot the equivaience above yields:

are not the same, the password checker leaves the value of tA)V(g£)V (r#r)V

runchanged. . (t=0Ap#p AR#N Ap# R Nh#p)
The execution of the password checker can be given by

the transition relation below: This says that the external observer can see when time has

passed, when changes, when changes, or wheh = 0

(t,h,p,q;r) +— (t,h,p,qr) andp = h, p’ = h/ andp # p. Some information about
<07 hvpypv 0> = <1a h7pap> 1> (p =dq, toggler) has been leaked.
(0,h,p,p, 1) +— (1,h,p,p,0) (p=q,toggler) As this example shows, the equivalence relations in-
(0,h,p,q,0) — (L h,pq0) (p#q leaver) duced by a system may be quite compleXote that the at-
(0,h,p,q,1) +— (Lhp,q1) (p#q,leaver) tack just described doesn't leak all of the information about

An external user of the system is only able to directly see h because wheh = p, copying it into the password doesn't
the value of the query sub)r/nitted to tht)al password chgcker lead to any new behavior in the system (with respect to ob-
'servations through viewt). A more savvy attacker might
the result that the password checker returns, and that the 9) y g
password checker has completed its computation (time has ?We use the subscript to indicate that these are transitions introduced
passed). This leads to an equivalence relatiorgiven by: by an attacker. _
3In this setting, because there are only two possible valueg, fox

i h ~ W o d etc, more information is leaked than when more values are possible. The

< ’ ,p,q,r) ~ < YD q,T > reason is thap # g andh # g implies thatp = h, which, in general
g is not true. We have made use of this kind of reasoning to simplify the
= q’) A(r= r’) description of the equivalence relations.

also toggler whenever he copiedl into p, thus indicating ~ Another common means of specifying attackers is to re-
thatp does in fact contain. This smarter attack adds these quire that they are programs running concurrently with the
transitions: system (for example, in process calculi such as CSP [21] or
the Spi calculus [1]) or perhaps more limited processes (for
(0,h,9,4:0) —=a (0,h,h,q,1) example, restricted to polynomial-time probabilistic com-
0,h,p,0:1) —a (0,h,h,q,0) putation).
Our concern is that an attacker will be able to exploit the

Th ivalence relation in now is given by: : . . e :
€ equivalence relation induced Kynow is given by information learned via declassification, or simply the fact

(t,h,p,q,r) S[~] (&' 1, p g, 1) that aldeclass.ification occurs, to cause a sygtem t(_) divulge
o more information than permitted by the security policy.

t=t)A(g=¢q)A@F=1)A In our model attackers are able to change the behavior

t=0= (p=p)V(h="H)) of the executing system. For example, in a system that is

a single-computer program, the attacker might overwrite
Reading off the negation, we see that an attacker can disimemory locations or registers of the machine. As in Sec-

tinguish states whenever= 0 andh # h’ andp # p/, tion 3, we model these changes asa#tack transition rela-
that is, it is possible for the observer to learn the complete tion —4 that performs the change to the state. The power
information about the initial state of the system. of the attacker can also be captured simply by the attacker’s

L view =4, because any attack must be secure with respect to
Clearly this simple password system is not secure with __ .

respect to an attacker who has the ability to both alter one

piece of high-security data (the password) based on another

(h) and communicate that this change has been done (toggld?€finition 4.1 (=4 -Attack)

7). On the other hand, if the attacker may only toggle An ~,-attack is a systemd = (X,—4) such that
no additional information is leaked. In what follows, we A SP(=a).

develop a methodology for characterizing systems in terms

of their robustness against different kinds of attacks. Note that the requirement that = SP(~) is essentially
the fair environment assumption: The attacker must not

know the secret already (or be able to learn it from means
other than the system in question). We ufe-) to mean
the set of all attacks with respect to the viewy.

This section examines declassification in a system, spec- Gijven an attackl and a systens, both specified in terms
ifies a class of attackers that is interesting from the inform- of the same set of stat& the attack ors by A is just the
ation-flow perspective, and defines robustness for systems,nion of the systemsS U A. This means of composition
with respect to this class of attackers. is justified by our possibilistic interpretation of information

Having defined information flow in terms of the lattice flow: the attacker will learn more information if it is pos-

of information, Z(X), we are now in a position to consider sjple for a trace in the new system to distinguish one state
declassification of data. The starting point for our notion of from another.

declassification is that any system that leaks information—
any system that does not satisf{P (=~)—can be thought of
as containing declassifications. A passive attacker may b
able to learn some information by observing the system but,

by assumption, that information leakage is allowed by the ~ Given a systent' and an attacker’s view of the system

4 Robust Declassification

e4.2 Robust Systems

security policy. ~ 4, we would like a way to characterize classes of attacks
We first define active attackers: principals that may alter drawn from the setd(~). The first such characterization,
the system in an attempt to learn secret information. on which all our other classifications are based, is robust-
ness:

4.1 Active Attacks
Definition 4.2 (Robust Declassification)

What constitutes a valid attack on the system? We would A systent' = (X, —) is robustwith respect to the class
like to model ways that an attack can affect the confidential- B < A(~4) of attacks if for all attacksA = (X, —.,) in B,
ity properties of the system. Typical assumptions about theit is the case thatS U A)[~ 4] Ez S[~4]. To indicate that
attacker in an information-flow setting are that the attacker 5 is robust in this way, we write:
can make (perhaps limited) observations of the system and
draw inference from those observations—passive attacks. S R(B)

This says formally that observing the attacked system
A reveals no more information than watching the original

de
systems. S9[=4] Yo,
By identifying interesting subsets of attacks from which St [4] def S[S™ [~ 4]]
the system is immune, we can better understand its informa- 5[] def] S []
~ - new ~

tion flow properties. Conversely, if we can be reasonably
sure that the the only attacks on the system are ones forrhe |east fixed-point specified by the last definition exists
which the system is robust, we believe the system is securepecausé () is a complete lattice and Proposition 2.1 im-

As with any formalization of attacks, we aren’t guaranteed plies that the iterated observation forms the ordered chain:
anything about attacks that fall outside our model. Also, we

can never hope to prevent all attacks against every system.
We see our results as tools for mapping the landscape of at- .]] .
tacks, information flow systems, and their interaction with AS We desired, any system is secure with respect to-its
declassification. iterated view:

The first interesting lesson we learn from this formaliza-
tion is that all systems that are secure with respest tare
robust to all attacks from that view. Intuitively, whenever

~a Cr S[=a] Cr S?[~a] Cr S%[~a] Cr ...

Proposition 4.1
Any systemg, and view= 4 satisfyS = SP(S“[~4]).

Theorem 4.1
If S |ESP(x4)thenS = R(A(=4)).

Proof: Let A be an attack inA(=~4). Then, by def-
inition of an attacker, we havel = SP(=4). From
Proposition 2.1 and the definition &fP(~,4) it follows
that S[~4] = ~4, and hence5 = SP(S[~4]) and also
A |= SP(S[~4]). From Lemma A.1 (its proof is in the Ap-

Proposition 4.2
If =4 C7 ~p then for any systerfi, S[=4] Tz S[~g].

Finally, we give a bound on information leakéd.

Theorem 4.2
Let S be a system and let4 be a view inZ(X). Let A
be an~ 4-attack such thatd = SP(S“[~4]). Then

pendix) it follows that(S U A) = SP(S[~4]), from which Aixal Cr ¥l
we obtain(S U A)[~4] Cz S|~ 4] as required. O (SUA)[=a] Bz 5[4l
Proof: From Proposition 4.1 we have = SP(S¥[~4]),
and, by using Lemma A.1, it follows that for an¥ € B

that(S U A) E SP(S¥[~4]). Consequently,

This result justifies to some extent the useS#?(~)
as a strong notion of security—not only does it guarantee
information flow properties of the systethwith respect to
~ 4, it also says thafb is not susceptible to any attacks by
such an observer either.

Clearly there are other sets of attackers for which any propositions 2.1 and 4.2 show that
system is robust. For example, IBtbe the set of attacks
such that attack transition relatien, is contained in the
view Sz 4]. Then any systen$ (even one that does not
satisfySP (=2 4)) is robust with respect t8. The proof is
a simple inductive argument. However, this is a particularly ™
limited class of attackers that are unable to alter any part of How can we use this theorem to help understand the be-
the state they are able to observe, and so it is not partiCU|ar|yhavior of a system under attack? As we described in Sec-
useful. tion 2.3, the security property can capture both confidential-

In order to formulate a more useful class of attackers ity and integrity aspects of a system. The equivalence rela-
for which the system is robust, we describe the relation be-tjon S[~ 4] can be thought of as describing either the max-
tween information learned by certain attackers and the secuimal amount of information that can be learned by watch-
rity properties of a system that is not secure with respect toing the system, or, perhaps more intuitively, as an integrity
~ 4. We first construct the iterated observation of a system, — _ _ _ _

S™[~ 4], which can be thought of as the least view refining . In the proceedings version of this paper, Theorem 4.2 was claimed

. . - . 0 be a generalization of Theorem 4.1, and was incorrect as stated. The
~ 4 for which S is secure. The definition of iterated obser- yersion presented here is weaker in that it does not define a class of attacks
vation is the following: against whichS is robust unles$“[~ 4] = S[~4].

(SUA)[SY[~4]] Er S¥[~a4].

(SUA)[ral Ex (SUA)[S*[~a]

and we obtain the required result by transitivityCof.

property of the system. Two states relateds 4] are, in agrees with the notion of a passive attacker defined here.
some sense, unimportant to the behavioSas observed None of this prior work addresses the issue of an active at-
by the attacker. Only attacks that force two such “unim- tacker. However, the results in this paper should also be ap-
portant” states to be “important”—by providing transitions plicable to specifying intransitive noninterference policies.

that distinguish them—can cause additional information to . . o
be leaked by the system. Our notion of attack is clearly connected witfinement

We can use Theorem 4.2 to characterize attacks on the" particular, the original systeifi refines (has less nonde-

password checking facility described in Section 3. It is easy (€7Minism than) the attacked systéf A). S'is robust to
to show that, for this particular systeri“[~.] = S[~]. the attackA if the refinement preserves the equivalences

It follows that any attack that satisfie = SP(S[~.4]) given. by S[zA}_. Another important direction folr.future
cannot cause the system to leak information. The attackevork is tg conS|der'attacks that can remove transitions from
that simply toggles- (at time 0) falls into this class, as S ' effegtwely causing some computation paths to become
does the one that changesto a string not equal tg. impossible.

The attack that copies into p, on the other hand, sends

the states0, i1, p, h1,7) and (0, ha,p, ha,7) to the states |om of systems containing intentional information leaks
(0,h1, hy, by, r) @nd (0, ho, ho, ha, 7). respectively. The hat presumably arise from controlled declassification. Us-
first pair of states ar§[~ 4]-equivalent, whereas the sec- g 4 purely state-based system model and definition of
ond two are not. While Theorem 4.2 does not guarantee thaly noninterference-like information flow property, we pre-
such an attack will cause more information to be leaked, it ¢isely characterize the information that is released to an ar-
does say that the attaclf lies outside those that the system iBitrary observer (passive attacker) of the system, described
known to be robust against. _ as an equivalence relation, over the states of the system.

~ The bound on information flow given by Theorem 4.2 The possible executions of the system, defined by its nonde-
is not tight; it is possible to construct systems and at- yorminjstic transition relation, generate a refinement of the
tacks fo_r whjch the estimated informgtion flow given by yiew equivalence relatior§[~]. The difference between
5[~ a] is strictly more than the actual information learned hese two equivalence relations captures the information re-
by (SU A)[=a4]. However, the5*[~] usefully boundsin- |eased to an observer. The lattice of information (whose
formation flow for a variety of systems. Determining more gjements are views of the system) is a powerful tool for un-

precise iounds on what attackers can learn is a goal of fu-yerstanding the information flow behavior of the system.
ture work.

This paper makes a number of contributions to the prob-

The major contributions of this paper lie in the charac-
terization of information flow in systems suffering some in-
trusion by an active attacker that is able to modify the state
of the executing system. Making the reasonable assump-
R , X tion that the attacker cannot construct an attack that depends
declassification or downgrading mechanisms, or the formal ,, the exploitation of information that it cannot observe di-
characterization of systems incorporating them. The sim- rectly, we obtain the expected property that an attacker can-

plest_ ar_ld most standard approach to declassmca_tlon IS F%ot violate confidentiality if the system obeys the informa-
restrict its uses to those performed by a trusted subject. This;q fow security property. Importantly, for systems that

approach does not address the question of whether an infore , yain intentional information leaks (do not obey the secu-

mation channel is created. Manylsys_tems have |.ncorporatedrity property), we give a recipe for bounding the ability of a
a more limited form of declassification. Ferrari et. al [6] 1555 of attackers to obtain information. From a description
augment information flow controls in an object-oriented ¢ o direct powers of observation of an attacken}, the
system with a form of dynamically-checked declassification relation S[~.] is obtained, defining both a level of confi-

callgdwaivers !\/_Iyer.s and Liskov [15] define a form ‘SE dentiality that can be maintained, and a degree of integrity
lective declassificatiothat can be checked at compile-time, 4t must not be violated by an active attacker in order to
based on the authority of the declassifying process. HOW'preserve that confidentiality.

ever, these efforts provide only limited characterization of
the safety of the declassification process. We expect this model to provide new tools for the char-
Intransitive noninterferencpolicies [19, 17, 18] gener- acterization of information flow properties in the presence
alize noninterference to describe systems that contain re-of intentional information leaks and system intrusion. Be-
stricted downgrading mechanisms. The work by Bevier cause the model is state-based, it seems particularly applica-
et al. on controlled interferencg3] is most similar to this ble to language-based approaches to information flow con-
work in allowing the specification of policies for informa- trol [14]. The connections to models of intransitive nonin-
tion released to a set afjents Their notion of agent largely terference also deserve further exploration.

5 Discussion and Conclusions

There has been a fair amount of prior work on controlled

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The Spi calculudnformation and Computatign
148(1):1-70, January 1999.

M. Abadi and L. Lamport. Composing specifications.
ACM Transactions on Programming Languages and Sys-
tems 14(4):1-60, October 1992.

W. R. Bevier, R. M. Cohen, and W. D. Young. Connec-
tion policies and controlled interference. Pnoc. 8th IEEE
Computer Security Foundations Workshppges 167-176,
1995.

W. R. Bevier and W. D. Young. A state-based approach
to non-interference. IiProc. 7th IEEE Computer Security
Foundations Workshgmpages 11-21, 1994.

R. De Nicola and F. Vaandrager. Three logics for branching
simulation. Journal of the Association of Computing Ma-
chinery, 42(2):458-487, 1995.

E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Provid-
ing flexibility in information flow control for object-oriented
systems. IProc. IEEE Symposium on Security and Privacy
pages 130-140, Oakland, CA, USA, May 1997.

J. A. Goguen and J. Meseguer. Security policies and security

models. InProc. IEEE Symposium on Security and Privacy
pages 11-20, Apr. 1982.

J. A. Goguen and J. Meseguer. Unwinding and inference
control. InProc. IEEE Symposium on Security and Privacy
pages 75-86, Apr. 1984.

J. Landauer and T. Redmond. A lattice of information. In
Proc. 6th IEEE Computer Security Foundations Workshop
pages 65-70. IEEE Computer Society Press, June 1993.
N. Lynch and F. Vaandrager. Forward and backward simu-
lations — Part I: Untimed systemmformation and Compu-
tation, 121(2):214-233, September 1995. Also, Technical
Memo MIT/LCS/TM-486.b (with minor revisions), Labora-
tory for Computer Science, Massachusetts Institute of Tech-
nology.

H. Mantel. Possibilistic definitions of security: An assem-
bly kit. In Proc. 13th IEEE Computer Security Foundations
Workshop pages 185-199, Cambridge, United Kingdom,
2000.

H. Mantel. Unwinding possibilistic security properties. In
ESORICS 20000lume 1895 of_ecture Notes in Computer
Sciencepages 238-254. Springer-Verlag, 2000.

J. K. Millen. Unwinding forward correctibility. IrProc.

7th IEEE Computer Security Foundations Workshogges
2-10, 1994.

A. C. Myers. JFlow: Practical mostly-static information
flow control. InProc. 26th ACM Symp. on Principles of
Programming Languages (POPLpages 228-241, San An-
tonio, TX, Jan. 1999.

A. C. Myers and B. Liskov. Complete, safe information
flow with decentralized labels. IAroc. IEEE Symposium on
Security and Privacypages 186-197, Oakland, CA, USA,
May 1998.

A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label modelACM Transactions on Software
Engineering and Methodolog9(4):410-442, Oct. 2000.

[17] S. Pinsky. Absorbing covers and intransitive non-inter-
ference. InProc. IEEE Symposium on Security and Privacy
pages 102-113, 1995.

[18] A. W. Roscoe and M. H. Goldsmith. What is intransitive
noninterference? IfProc. 12th IEEE Computer Security
Foundations Workshg@.999.

[19] J. Rushby. Noninterference, transitivity and channel-control
security policies. Technical report, SRI, 1992.

[20] P. Ryan. A CSP formulation of non-interference and un-
winding. Cipher, pages 19-30, 1991.

[21] S. Schneider. Security properties and CSPPioc. IEEE
Symposium on Security and Privad@96.

[22] A. Zakinthinos and E. S. Lee. A general theory of security
properties and secure composition. Rroc. IEEE Sympo-
sium on Security and Privacpakland, CA, 1997.

A Proofs

Lemma A.1
LetS; = (X,—1) and Sy = (3, —2) be systems and
supposex is an equivalence relation ifi(X) then:

SIESP(R)AS ESP(x) = S US, = SP(~)

Proof: Leto; ando be two states such that ~ of. Let
71 be a trace inTre,, (S1 U S2). We must show that there
exists a traceq in Trc,; (S1 U S2) such that

(/=) = (r1/=).
We proceed by induction on the length gf. In the case
thatm has length 171/ ~ = [01]~ and we may choose

71 = o}, which is equivalent ta; modulo~ becauser; ~
o. If 7, starts with the transitioa; —, o3 ..., then—,
is either of the form—; or —s. In either case, becausg
and S, satisfy SP(~), we may construct &-equivalent
traceo} —, o} —, ... —, o), consisting of transitions
from the systen®, and such that/, ~ o5. We inductively
construct the rest of the list starting from the statgsx
ol: Let o be the suffix ofr; starting ates. Then there
exists ar, € Trc,, (X1 U ¥1) such that, = 7. Because
stuttering equivalence is preserved by trace concatenation
TI =01 b=y To = 0 >, ... >, T4 @S required.

a

