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Abstract 

CACL is a protection scheme for objects that offers a 
simple and flexible model of protection and has an 
efficient, software-only implementation. The model, 
based on Access Control Lists (ACLs) integrated 
with the type system, allows owners to control who 
may invoke which methods on which objects, per- 
mits cooperation between mutually suspicious princi- 
pals, allows ownership of objects to be transferred 
safely, prevents unwanted propagation of authority 
between principals, and allows changes to the autho- 
rization information to take effect on the next method 
invocation. The implementation, based on the inte- 
gration of Capabilities with method dispatch, avoids 
the overhead of access checking in the majority of 
invocations, at the cost of space for extra dispatch 
vectors. CACL offers a viable mechanism for fine- 
grained protection in an object-oriented database sys- 
tem. 

1 Introduction 

For a number of years, object-oriented database sys- 
tems (OODBs) have been an active area of research. 
Most of the attention has been given to traditional 
database concerns, such as defining more expressive 
data models, inventing query languages for objects, 
and devising schemes for concurrency control and 
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recovery. Substantially less attention has been paid to 
the problem of protection. In some systems, e.g., 02 
[8], protection is not addressed at all (at least, in the 
published literature). Presumably, one would protect 
objects by protecting the operating system files in 
which they reside. Many other OODBs protect 
objects at the segment level [1][9]. A user can grant 
(or deny) to other users the ability to read or write the 
objects in his/her segments. One disadvantage of 
these approaches is that the granularity of protection 
is coarse. The entire object-base is partitioned into 
relatively few operating system files or object seg- 
ments. While in theory, individual objects could be 
assigned to individual files or segments, doing so 
would carry sizeable overhead, both in administra- 
tive complexity and in system resources. Another 
disadvantage is that the model of protection is differ- 
ent from the model of the objects being protected. By 
offering only Read/Write/Execute protection, the 
protection model treats all objects as if they were of 
type File. Not only is this counterintuitive for the 
user, but it is probably sufficient only for get- and 
put-style methods. An object usually hides much 
complexity behind a relatively simple interface. 
What may appear to be a retrieval from a given 
object may actually involve “reading” many different 
objects and “writing” others. It appears that any 
assignment of rights to a user either grants too little 
privilege to get the job done or far too much to be 
safe. 

There have been attempts to provide more sophisti- 
cated models of protection for OODBs. For example, 
a recent proposal allows both explicit and implicit 
authorizations[ lo]. An explicit authorization on one 
part of the database implies certain rights over other 



parts, unless overridden by another explicit authori- 
zation. The scope and interaction of authorizations is 
tied to the semantics of the various abstractions 
offered by the model, e.g., classes, objects, compos- 
ite objects, versions, and methods. This protection 
model is certainly integrated with the data model to 
which it applies. However, it is quite intricate, and 
given an arbitrary set of explicit authorizations, it is 
not immediately clear whether a given invocation by 
a given user will succeed. Nor is it obvious what will 
be the overall effect of a given change in authoriza- 
tions. 

Clearly, some form of protection is needed in any 
system that intends to manage objects of value to its 
users. However, we believe that a protection mecha- 
nism must balance the sophistication of its protection 
model against the ability of the users to understand it. 
CACL offers a very simple model. Essentially, the 
owner of an object controls who may invoke which 
of the object’s methods. As we shall see, however, 
this simple model is quite effective in solving some 
interesting protection problems. 

The seamless nature of an integrated object-oriented 
system also forces one to consider the issue of when 
authorization checks should be carried out. In con- 
ventional operating systems, a process’ right to 
access a file can be checked at a distinguished point 
in the process’ execution, i.e., when the file is 
opened. In an integrated object-oriented system, such 
distinguished points do not exist; a program, begin- 
ning at some root of persistence, simply follows ref- 
erences and invokes methods on objects. It may be 
necessary to check authorization at any point in the 
propram’s execution. Furthermore, access rights may 
be revoked or granted at arbitrary times. If such revo- 
cations and restorations are to appear to be “immedi- 
ate,” access rights must be checked (conceptually) at 
every invocation. 

Clearly, the kind of mechanism we are suggesting 
poses major implementation challenges. In particu- 
lar, if we literally place an authorization check in the 
path of every method invocation, performance will 
be severely degraded. Furthermore, we believe the 
vast majority of such checks will succeed because 
they are, in fact, unnecessary. There are three reasons 
for this. First, experience shows that most objects 
exist only to implement a higher-level abstraction. 
Method invocations that occur “inside” the larger 

object should not be subject to access checks. Sec- 
ond, we expect revocation and restoration of rights to 
occur far less frequently than method invocation. 
This means that in most cases, a process’ right to 
access an object will not change from one invocation 
to the next. Third, we expect that a large percentage 
of all invocations will occur because a public method 
invokes a series of other public or private methods on 
self. If the caller has the right to invoke the public 
method, that should imply the right of the method to 
execute without further hindrance. Thus any practical 
implementation must meet the rather severe require- 
ment of doing little or no work on each method invo- 
cation, yet giving the appearance of performing a full 
access check. 

CACL is a fine-grained protection mechanism for 
strongly-typed, object-oriented programming envi- 
ronments or database systems. In this paper, we will 
discuss the model’s semantics and its efficient imple- 
mentation. The protection model is easy to under- 
stand, yet flexible enough to solve realistic protection 
problems. Our implementation meets the stringent 
performance requirement stated above, paying the 
cost primarily in the space required for additional 
dispatch vectors. The name, CACL, is a combination 
of Capabilities and Access Control Lists, the two pro- 
tection mechanisms whose properties are combined 
in this design. While the semantics of CACL can be 
described in terms of access control lists integrated 
with the type system, the implementation can be seen 
as capabilities integrated with method dispatch. 

The remainder of the paper is organized as follows. 
In the next section, we describe some basic assump- 
tions concerning the object model and runtime envi- 
ronment required by CACL. Section 3 describes the 
CACL protection model, and Section 4 provides 
some examples of its use. Section 5 describes an 
implementation of CACL that does not require spe- 
cialized support from the underlying operating sys- 
tem or hardware, relying instead on cooperation 
between the language compiler and runtime system. 
Section 6 reviews related work, and Section 7 sum- 
marizes the contributions of this work. 
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2 Assumptions tern requires several protection mechanisms in addi- 
tion to CACL. 

The design and implementation of CACL assumes 
certain properties of the object model and runtime 
environment in which it operates. While CACL was 
developed in the context of a specific object model 
(Melampus [2][ ll]), the essential ideas are widely 
applicable. In this paper, therefore, we shall limit the 
set of assumptions to a minimum. 

The first assumption is that every protected object is 
an instance of an abstract type. An abstract type spec- 
ifies an interface and an implementation for its 
instances. An interface consists of a set of signatures 
that syntactically define what operations may be per- 
formed on an instance. The implementation consists 
of a representation for instances and a set of proce- 
dures which implement the operations in the inter- 
face. For the purposes of this paper, the key feature 
of an abstract type is that instances are encapsulated; 
there is no way for a program to access an object 
except by invoking its operations. Note that the 
object model may or may not also support subtyping. 
While such an assumption is made for this paper, it is 
not strictly necessary. 

The first assumption leads to the second, which is 
that all methods and application code are written in a 
strongly typed language. In particular, it must not be 
possible to forge a reference (e.g., by casting) nor to 
invoke any operation on an object that is not sup- 
ported by the object’s implementation. This implies 
that the compiler must be a trusted component of the 
object system; indeed, in Section 5 we shall see how 
the implementation of CACL relies on the type 
checking performed by the compiler. 

The last assumption is that the runtime environment 
is safe from outside attack. CACL is designed to pro- 
vide protection within the confines of a particular 
data model that conforms to the assumptions 
described above, but if the model’s implementation is 
embedded in a hostile environment, additional mech- 
anisms may be required. In particular, we assume 
that all users of the system are reliably authenticated, 
that communication channels are safe from message 
replay and insertion, and that only trusted utilities 
and programs compiled by a trusted compiler can 
access the runtime interface. Clearly, a complete sys- 

3 The Protection Model 

This section describes the CACL model of protec- 
tion. We will describe the basic concepts around 
which the model is built, followed by a description of 
the properties of certain critical events: method invo- 
cation, object creation, and transferral of authority 
between users. 

3.1 Principals 

In CACL, the locus of authority is called a princi- 
pal[ 121. A principal may correspond to a human user, 
a project group, or any other abstract entity on whose 
behalf actions are carried out within the system. We 
make no assumptions as to whether principals are 
themselves modeled as objects in the system, subject 
to protection. We assume only that principals are 
authenticated to the system and that there is some 
representation for a principal’s identity. Principals 
appear in four different roles in CACL: 

1. Each object has an owner, the principal 
responsible for authorizing access to the 
object. For any object O, Owner(o) returns 
the identifier of the principal that owns o. 

2. Each object has a method principal (MP) 
on whose behalf the object’s methods will 
execute. The MP is often, but not always, the 
object’s owner. This point will be explained 
shortly. MP(o) returns the identifier of the 
method principal for u. 

3. At runtime, the MP of the currently exe- 
cuting method is called the current principal 
(0). Since CPs are pushed and popped 
along with activation records, we often speak 
of the principal stack associated with an exe- 
cution thread. CP() returns the identifier of 
the current principal. 

4. Finally, each implementation has an 
implementor, the principal responsible for 
the correctness of the implementation. 
Zmpf(o) returns the identifier of the principal 
that defined the implementation of O. 
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3.2 Access Control Lists 

An object’s owner controls which principals may 
invoke which operations by means of an access con- 
trol list (ACL). A default ACL is attached to an object 
when the object is created. Conceptually, the com- 
plete set of ACLs in the system constitutes a map- 
ping: 

ACL(Object x Principal) + {Method) 

That is, p is allowed to invoke method m on object o 
only if m E ACL (0, p) . The primary motivation 
for CACL is to enforce the semantics of ACL-based 
protection for objects, while avoiding the cost of 
checking an ACL on every method invocation. As 
with principals, we do not specify whether ACLs are 
modelled as objects. 

3.3 Typed References 

Objects are accessed by means of typed references. 
The effective type of a reference is the interface 
described by the intersection of the following three 
components: 1) the interface of the declared type of 
the variable containing the reference (the reference’s 
static type), 2) the interface of the type of the object 
denoted by the reference (the object’s creation type), 
and 3) the interface specified in the object’s ACL for 
the current principal (the principal’s authorization 
type). The relationship between these types is illus- 
trated in Figure 1. Static type checking ensures that 

Statically Typed Reference 

Figure 1. Types Associated with an Object 

the static type of the reference is always a subset of 
the creation type of the object to which it refers, 
Likewise, the authorization type (by definition) must 
always be a subset of the creation type. The relation- 
ship between the static type and the authorization 
type, however, depends on the principal who is 
accessing the object and the permissions given to that 
principal in the object’s ACL. In this example, the 
effective type is narrower than the static type, as indi- 
cated by the shading. 

3.4 Method Invocation 

From the point of view of protection, an execution 
thread is simply a sequence of method invocations. 
CACL focuses on this event and maintains the fol- 
lowing invariant: 

A method invocation succeeds if and only 
if that method is part of the eflective type of 
the reference at the time of the invocation. 

Conceptually, the maintenance of this invariant 
requires an access check with every method invoca- 
tion. As we will see, however, the implementation of 
CACL maintains the invariant in a way that stresses 
fast invocation for those cases (expected to be the 
majority) in which access checks are not needed. 

Although we have described protection in terms of 
type checking, there is an important difference for 
the programmer between the assurances provided by 
static type checking and those provided by the pro- 
tection mechanism. In a conventional statically-typed 
programming language, the programmer is assured 
that a program which compiles without type errors 
will be free from type errors during execution. Pro- 
tection violations, however, by their very nature, can- 
not be detected at compile time. Access permissions 
vary from instance to instance within a class, and the 
specific objects to which a method will be applied are 
not known until runtime. Furthermore, access per- 
missions may be changed at any time, and our desire 
to make such changes take effect on the next invoca- 
tion further constrains any attempt to do protection 
checking in advance of method invocation. 

We wish to stress, therefore, that although protection 
violations appear as runtime type errors in CACL, 
the runtime nature of such errors is inevitable and 
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does not represent any loss of type safety. Any type 
errors that would be detected in a conventional 
approach will be detected by static checking, as 
usual. 

3.5 Object Creation 

Principals create objects with a system operation, 
new, which requires its caller to designate an imple- 
mentation to be used for the new object. The current 
principal becomes the new object’s owner and the 
implementation’s implementor becomes the object’s 
method principal. The reason that the object’s initial 
MP is the implementor (and not the CP), will be dis- 
cussed shortly. The object’s initial ACL grants all 
rights to the owner, and none to any other principal. 
Object creation is summarized in Table 1. 

Owner(o) t CP 
MP(o) t Impl(o) 
ACL(o, p) = 4. if p z Owner(o) 
ACL(o, Owner(o)) = CreationType 

TABLE 1. Object Creation 

3.6 Changing the Owner and Method 
Principal 

The owner of an object can transfer ownership to any 
other principal by means of the operation Change- 
Owner(o, p). In so doing, the former owner transfers 
the right to manipulate the object’s ACL to the new 
owner. However, the object’s method principal does 
not change. The current owner of an object can set 
the object’s method principal to him/her self, but not 
to any other principal, with the operation Set- 
MethodPrincipal( Together, these two operations 
provide for controlled transfer of an object between a 
donor and a recipient in a way the exposes neither 
party to involuntary risk. In the first phase of the 
transfer, an owner delegates the ability to update the 
object’s ACL to another principal. This unilateral 
action does not pose a risk for the recipient, since the 
object’s methods still execute with the authority of 
the old MP, i.e., it is not possible for an attacker to 
create an object of his/her choosing, “give” it to an 
unsuspecting user, then invoke the object’s methods 

with the authority of the victim. In the second phase 
of the transfer, the recipient agrees to accept respon- 
sibility for the object’s behavior by becoming the 
method principal. Here, the recipient accepts some 
risk, but only voluntarily. It is assumed that the recip- 
ient will first verify that the object is not a Trojan 
Horse, before agreeing to become MP 

4 Discussion and Examples 

In this section, we discuss the features of the CACL 
protection model and show how they can be used to 
solve several important protection problems. 

4.1 Trust Among Principals 

CACL was designed with the assumption that differ- 
ent levels of trust exist between the principals who 
implement, administer, and use objects. In order to 
accomplish any cooperative work in a computer sys- 
tem, some mutual trust is obviously necessary. The 
client of a document editor entrusts the editor to 
make changes to a given document. Users of a mail 
system trust that mail will be delivered to all of (and 
only) the named recipients. All users trust the kernel 
to implement its abstractions correctly. However, 
“some trust” is not the same as blind faith. Allowing 
the document editor to update a particular document 
should not (necessarily) imply the granting of rights 
to any of the client’s other objects. Furthermore, 
while the client may trust the editor, he/she may not 
trust the owner of the editor. Thus, allowing the edi- 
tor to read a document should not imply the right of 
the editor’s owner to read the document. These argu- 
ments led to the explicit support in CACL for the role 
of the implementor and to the separation of owner 
and method principal. 

When a method executes, code written by the imple- 
mentor executes on behalf of the method principal. 
Any client that invokes the method, passing it object 
references as parameters, must therefore grant to the 
MP enough rights over the parameter objects to allow 
the invoked method to execute properly. The set of 
methods required by the invoked method is likely to 
be advertised to the client as the static type of the 
parameter. If the client is unwilling to grant that 
many rights to the MP, then he/she cannot use the 
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service (and is free to go elsewhere). There is a moti- 
vation here, familiar to software engineers, for an 
implementor to declare parameter types that are no 
more specific than necessary to perform the service. 

Even though a client may trust a particular imple- 
mentation to perform some function, the method 
principal may not be the implementor, but some other 
principal. In this case, the client still has a measure of 
protection in using the service, even though the MP 
may not be trusted in general. The reason is that pass- 
ing the object to the method is not equivalent to sim- 
ply handing the reference to the method principal; his 
ability to use the reference is constrained by the 
implementor’s design, If the MP has no other access 
to the client’s object, and if the implementation is 
sufticiently trusted, then the client can grant the 
required rights to the MP, even if the MP is not 
trusted. 

4.2 Examples 

4.2.1 Mutual Suspicion 

Consider a scenario in which two mutually suspi- 
cious principals wish to cooperate to accomplish 
some task. Neither principal wishes to grant the other 
more than the minimal authorizations needed to 
accomplish the task. The fine-granularity protection 
supported by CACL makes this possible. Each prin- 
cipal need only authorize the other to perform exactly 
those operations on exactly those objects that are 
necessary to get the job done, and this authorization 
can be revoked immediately once the need for coop- 
eration has ended. Furthermore, because references 
are unforgeable, neither principal can even attempt to 
invoke operations on objects that were not explicitly 
given to them. 

For instance, suppose Joel wishes to print one of his 
documents using a printer owned by Peter. For the 
moment, let us also assume that Peter is the method 
principal for the printer’s methods. Joel obtains a ref- 
erence to the object that represents the printer, and 
invokes the Print method. If Peter has agreed to let 
Joel USC his printer, the authorization type for Joel in 
the printer’s ACL will include this method and the 
invocation will succeed. Once invoked, the Print 
method invokes various methods on Joel’s document 

object to extract the document’s text for printing. 
Since Peter is the method principal, these invocations 
will only succeed if the authorization type for Peter 
in the document’s ACL includes these methods. 
Note, however, that the printer software has no need 
to update the document, and hence Peter need not be 
authorized to do so. Furthermore, by granting Peter 
access to this document, Joel does not grant Peter 
access to any of his other documents. Likewise, Peter 
does not need to grant Joel authority to use any other 
printer. 

4.2.2 Trusted Implementations 

In some cases, a principal may own, and wish to con- 
trol access to, a resource which requires authority 
exceeding his own in order to operate correctly. For 
instance, the printer owned by Peter in the preceding 
example may require access to a proprietary font 
database in order to print documents. Only the imple- 
mentor of the printer software, Acme Software, 
should be permitted to access this database. CACL 
provides the tools to solve this problem. As the 
implementor of the printer software, Acme Software 
is (by default) the method principal of the Print 
method when Peter instantiates a new printer object. 
The printer object will be owned by Peter, who can 
therefore control which other users may print on it, 
but Peter need not be authorized to access the font 
database because the CP during execution of the 
Print method will be Acme Software. As owner of 
the printer, Peter can make himself the method prin- 
cipal at any time, but thereafter the software will sim- 
ply cease to work because he is not authorized to 
access the font database. 

Note that in our revised example, Joel must authorize 
Acme Software, but not Peter, to access his docu- 
ment. This represents an additional reduction in the 
amount of trust Joel must place in Peter in order to 
use his resource. Joel must simply trust the (immuta- 
ble) implementation of the Print method supplied by 
Acme Software. 

Finally, we note that a considerable amount of 
mutual protection can be obtained even when the 
method principal is not a trusted third party, as in the 
example above. Suppose the Print method requires 
access to an audit file proprietary to Peter, instead of 
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the font database, and therefore the method principal 
must be Peter. If Joel trusts Acme Software’s imple- 
mentation sufficiently, he will be willing to authorize 
Peter to read his document even though he doesn’t 
trust Peter. This is because, as long as Peter cannot 
obtain a reference to the document through some 
other means, his ability to access the document is 
constrained by Acme’s trusted implementation. 

5 An Implementation Design for 
CACL 

5.1 Introduction 

A naive implementation of the CACL protection 
model would simply check the ACL of the target 
object before each method invocation. As we noted 
in Section 1, such an implementation would be pro- 
hibitively and unnecessarily costly. In designing a 
practical implementation for CACL, we sought to 
take advantage of the observation that the effective 
type of a reference can only change as a result of cer- 
tain relatively infrequent events: 

1. Crossing a Protection Domain Bound- 
ary: If a method executing with pl as current 
principal invokes a method that will execute 
on behalf of principal ~2, the effective type 
of each reference passed as a parameter must 
be recomputed based on ~2’s authorization 
type for each referenced object. A similar 
recomputation must be performed for each 
reference that p2 returns to ~1. 

2. Widening: Object models that support 
subtyping often allow assignments in which 
the static type of the destination variable is a 
subtype of the static type of the source vari- 
able, provided that the creation type of the 
referenced object (as determined by a runt- 
ime check) is a subtype of the type of the 
destination variable. If a method executing 
with pl as current principal holds a reference 
of static type T, and tries to widen its view to 
type T2, the effective type must be recom- 
puted based on both the referenced object’s 
creation type and its authorization type for 

PI* 

3. Changing an Object’s Method Princi- 
pal: Each instance variable in an object is a 
reference whose effective type is limited by 
the method principal’s authorization type for 
the referenced object. If the method principal 
changes from pI to ~2, the effective type of 
each instance variable must be recomputed 
based on p2’s authorization type for the ref- 
erenced object. 

4. Update to an ACL: If the ACL for an 
object is modified or replaced, the effective 
type of every reference to the object must be 
recomputed. 

Unless one of these events occurs, possession of a 
reference with a particular effective type is very 
much like having a capability for the referenced 
object. Possession of the reference, like possession of 
a capability, represents the authority to invoke a 
specified set of operations on the referenced object. 
In particular, there is no need to consult the ACL 
before allowing the invocation to proceed. CACL 
treats references like capabilities that are revoked 
when the reference’s effective type changes as a 
result of one of the four events listed above. CACL 
also takes advantage of the fact that even if one of 
these events does occur, there is no need to recom- 
pute the effective type until just prior to the refer- 
ence’s next use. 

Our proposed implementation for CACL is derived 
from a standard implementation of late binding in 
object-oriented systems. Such implementations use a 
dispatch vector (DV) to map an invocation in the 
user’s program to the address of actual method code 
at runtime. CACL augments the role of the DV to 
include caching of authorization information. Instead 
of one DV per type, as in the standard implementa- 
tion, our design requires one or more DVs per pro- 
tected object. An entry in a DV may point to method 
code, as usual, or to a system procedure called the 
Protection Manager (PM). Depending on the con- 
tents of the DV, a method invocation will therefore 
be dispatched either to the appropriate method or, if 
an authorization check is needed, to the protection 
subsystem. The PM is responsible for checking the 
rights of the caller with respect to the target object, 
and will either raise an exception or continue the 
original invocation. The only “nonstandard” technol- 
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Figure 2. Overview Example 

ogy required by this scheme is a small amount of 
assembly code that allows the PM to continue the 
original invocation without pushing a new stack 
frame. 

Each of an object’s DVs contains a combination of 
method and PM pointers that reflects a specific effec- 
tive type. Object references contain two pointers: one 
to the referenced object and one to an appropriate 
DV.’ Method invocation follows the DV pointer in 
the reference, and thus different references to the 

1. One could eliminate the object pointer, and access the 
object indirectly through a pointer in the DV, This altema- 
tive would save space, but increase the time cost of com- 
paring two references to determine whether they denote 
the same object. 

same object may behave differently, depending on 
the access rights granted to the principal holding each 
reference. By dynamically altering the contents of a 
reference and/or a DV when a reference’s effective 
type changes, the system forces subsequent invoca- 
tions to be directed to the PM to recheck the caller’s 
access rights 

An example of these data structures is given in 
Figure 2. References X and Y both refer to object A, 
which has two dispatch vectors, DVA,, and DVA,,. 
However, the principal holding reference X, which 
refers to DVA,,, is authorized to invoke any of A’s 
methods, while the principal holding Y, which refers 
to DVA,+ is only authorized to invoke method M2. If 
method MO or Ml is invoked via Y, control is trans- 
ferred to the PM. 

Although the design described here eliminates many 
unnecessary authorization checks, the performance 
improvements do not come for free. Using one or 
more DVs per object, instead of one per type, and the 
expansion of references to two pointers, represent 
time-space tradeoffs that increase performance at the 
cost of increased use of space. 

The next two sections describe the data structures 
and algorithm that constitute our design in greater 
detail. 

5.2 Data Structures 

We assume that all data structures used to implement 
CACL are persistent, and that a separate mechanism 
is used to fault objects and method code into memory 
as needed. 

5.2.1 Objects 

An object consists of references to other objects 
(instance variables) plus some auxiliary data used for 
protection purposes. Every object has an owner field 
(OP), a method principal field (MP), and a pointer to 
the list of the object’s dispatch vectors (DVp). The 
structure of an object is shown in Figure 3. 
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OP MP DVp Instance Variables 

Figure 3. An Object 

5.2.2 Keferences 

An object reference consists of two fields: a pointer 
to the object (OBJp) and a pointer to a dispatch vec- 
tor (DVp). An object reference is shown in Figure 4. 

OBJp DVp 

/ \ 

OBJ DV 

Figure 4. An Object Reference 

5.2.3 Dispatch Vectors 

A dispatch vector (DV) consists of an array of code 
pointers plus two additional pointers. If all of the 
code pointers in a DV point to the Protection Man- 
ager, we call it a PMDV. One of the extra pointers in 
the DV (PMDVp) points to a PMDV, if one has been 
created for the object. The other extra pointer 
(DVnext) is used to link together all of an object’s 
DVs. There is no significance to the order in which 
the DVs appear in the list. Figure 5 shows an object 
with three DVs. The first contains all method point- 
ers, the second contains one method pointer and two 
PM pointers, and the third contains all PM pointers 
(and thus is a PMDV). 

While an object supporting n methods could theoreti- 
cally have as many as 2n DVs, we expect that most 
objects will be “private” objects used only within the 
implementation of some higher-level abstraction. 
Such objects will have exactly one DV. Furthermore, 
we expect that for most object types, only a small 
number of combinations of access rights will corre- 
spond to useful abstractions. Hence, even most “pub- 
lic” objects will only have a few DVs. 

I I 
- PMDVp PMDVp 

DVnext/ DVnextJ 
\ 1 

1 PMW 1 

Figure 5. An Object and its DVs 

5.3 Algorithms 

Our algorithms stress fast invocation, based on the 
assumption that method invocation occurs far more 
frequently than any other operation of concern to the 
protection subsystem. Moreover, we also assume that 
the vast majority of all invocations are authorized, 
and will succeed. Thus, only when one of the four 
infrequent events listed in Section 5.1 has occurred 
will it be necessary for invocations to be directed to 
the PM. In the following subsections, we describe 
what processing steps occur for each event of inter- 
est. 

5.3.1 Method Invocation 

Method invocation consists of two steps. In the first 
step, the current principal is compared to the method 
principal field (MP) of the object that is the target of 
the invocation. If they differ, a boundary between 
protection domains will be crossed and special argu- 
ment processing, described below, will be required. 
This step can be eliminated if it is possible to deter- 
mine at compile time that the invocation cannot 
result in a change of principal. Two simple cases in 
which such a determination is possible are: 1) invo- 
cation of a “private” method not exported by the 
object’s implementation, and 2) invocation of a 
method by another method of the same object. 
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In the second step, after evaluating arguments, the 
invocation sequence at the point of call indexes into 
the DV denoted by the DVp in the target object refer- 
ence, and calls the procedure whose address is 
retrieved. This may result in an invocation of either 
the target method or the Protection Manager. The 
required index is generated by the compiler based on 
the method to be invoked, just as it would be in a 
standard implementation of late binding. 

5.3.2 Crossing a Protection Domain 
Boundary 

As we noted in Section 5.1, when a reference is 
passed across a protection domain boundary, its 
effective type may change. Rather than immediately 
recalculating the effective type based on the new 
principal’s authorization type, CACL delays this 
determination until the reference’s next use. As each 
reference is copied onto the argument stack, its DVp 
is updated to point to a PMDV. If a PMDV already 
exists for the object, its address can be obtained from 
the PMDVp in the DV associated with the old princi- 
pal. If the PMDVp in this DV is null, a new PMDV 
must be allocated. Making the reference point to a 
PMDV ensures that the new principal’s first method 
invocation using the reference will be directed to the 
Protection Manager for authorization checking. 

5.3.4 Change of Ownership 

Change of ownership does not change the effective 
type of references, but a check is required to make 
sure that the current principal of the process request- 
ing the ownership change is the current owner of the 
object. This is done by comparing the current princi- 
pal to the contents of the owner (OP) field of the 
object. 

5.3.5 Change of Method Principal 

A change of method principal is not permitted unless 
the object’s owner (OP) field is equal to the current 
principal, in which case the method principal (MP) 
field is set equal to the OP. In addition, if the change 
succeeds, each reference in the object has effectively 
been passed to a new protection domain. Each refer- 
ence’s DVp field is therefore updated to point to a 
PMDV. The next invocation through each reference 
will be directed to the PM, to recompute the effective 

type. 

5.3.6 Replacement or Modification of an 
Object’s ACL 

When an object’s ACL is modified or replaced, every 
reference to the object is potentially affected. Locat- 

This algorithm is used whenever invoking a method 
ing all references and recomputing effective types 

or returning from one causes a reference to cross a 
accordingly is impractical. Instead, the system 

protection domain boundary. We feel this lazy 
traverses the list of the object’s DVs, and transforms 

approach to protection checking will be more effi- 
each one into a PMDV by overwriting all method 

cient than the eager alternative, because references 
code pointers with the address of the entry point of 

obtained by a method may not actually be used, but 
the PM. Subsequent method invocations through any 

rather simply stored or passed on to other methods. 
reference to the object will be redirected to the PM. 
The next section describes how references are revali- 
dated, so that there is no permanent penalty for 

5.3.3 Widening a Reference changing authorization information. 

Widening a reference requires a runtime inspection 
of the referenced object to determine its creation 5.3.7 Processing in the Protection Manager 

type, regardless of any protection concern. One could 
recompute the effective type at this time, but to be 

We have previously described several situations in 

consistent, we take the same lazy approach used 
which a method invocation is redirected to the Pro- 

when a reference is passed across a protection 
tection Manager. This section describes how the PM 

domain boundary. That is, the reference is copied and 
handles these invocations. The PM must perform two 

the new reference’s DVp is set to point to a PMDV, 
tasks: 1) compute the reference’s effective type, 

The first method invocation through the widened ref- 
check whether the invocation is allowed to proceed, 

erence will be intercepted by the PM. 
and either continue the invocation in a manner that is 
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transparent to the method’s caller or raise an excep- 
tion, and 2) modify the reference that was used to 
perform the invocation so that future invocations 
compatible with the reference’s effective type are no 
longer intercepted by the PM. 

In order to perform the first task, the PM must be able 
to ascertain which method is being invoked on which 
object, and on which principal’s behalf. This is 
accomplished by suitable calling conventions imple- 
mented in the compiler, and will vary from system to 
system. Similarly, the mechanics of transparently 
intercepting and continuing a procedure call will vary 
from system to system. These aspects will not be dis- 
cussed further in this paper. 

To prevent future invocations using the reference 
from being redirected to the PM, the PM scans the 
list of the object’s DVs for one that corresponds to 
the reference’s (newly-computed) effective type. If 
none is found, a new DV is created and linked into 
the list. The reference’s DVp is then updated to point 
to this DV. Note that in order for such modification to 
be useful, the method calling convention must permit 
the PM to locate the actual reference that was used to 
perform the invocation, rather than a copy of the ref- 
erence. 

Since references are often copied to temporary vari- 
ables before being used to invoke methods, the 
scheme described above may not discover and con- 
vert all outstanding references that point to a PMDV. 
A special process that runs in conjunction with the 
garbage collector can be used to locate and update 
such references. Garbage collection must also be 
used to reclaim unreferenced DVs and PMDVs. 

6 Related Work 

Protection mechanisms have received considerable 
attention in both experimental and commercial sys- 
tems, and we cannot possibly review all of this work 
here. However, we know of no prior work that is both 
as flexible and as efficient as CACL. Object-oriented 
databases, and other systems that require method 
invocation to be extremely efficient tend to offer rela- 
tively simple protection mechanisms. Conversely, the 
most flexible and sophisticated protection mecha- 
nisms are typically found in operating systems, file 

systems, and distributed systems, in which the opera- 
tions to be performed are relatively complex, and 
hence the need for an extremely efficient authoriza- 
tion mechanism is reduced. We give some represen- 
tative examples of both types of systems below. 

Traditionally, protection mechanisms have fallen 
under the purview of operating systems. Two notable 
examples of systems that use Access Control Lists 
are Multics[ 121 and the Andrew File System[ 141. In 
both systems, the ACL associated with an object 
(segment or file) specifies the permitted access in 
terms of Read/Write/Execute permissions. One can 
view these systems as providing type-specific protec- 
tion for a small, fixed set of data types, while the 
CACL mechanism supports an extensible set. A 
major difference between Multics, AFS, and CACL 
is the frequency of access checking and its effect on 
the semantics of revocation. When Multics maps a 
segment to a process’ address space, it performs a 
(long) access check and sets the appropriate permis- 
sion bits in the process’ descriptor word for that seg- 
ment. Thereafter, the hardware performs an access 
check on every machine reference. If the segment’s 
ACL is changed, Multics updates the segment 
descriptor word for that process (and for any other 
process that has the same segment mapped). Thus 
revocation in Multics is truly immediate. In AFS, a 
process requests certain access modes when it opens 
a file, and its permissions are checked at that point. 
Subsequent access to the opened file is not checked, 
except that the access must be one of those requested 
in the open call. If the file’s ACL is changed in the 
meantime, the process will not observe the change 
until (and unless) it again opens the file. Thus revoca- 
tion in AFS may take arbitrarily long to take effect. 
CACL takes an intermediate approach by checking 
access at every method invocation. As in AFS, revo- 
cation may take arbitrarily long to take effect, since a 
process may already be executing a method at the 
time its permission to that method is revoked. In this 
case, however, the implementor’s code, not the cli- 
ent’s, determines the length of the delay. Finally, by 
assuming a tight integration with an object-oriented 
data model, CACL’s access checking can be done 
very efficiently, essentially by avoiding checks in 
most cases. 

Many object-oriented database systems, including 
Gemstone[ l] and ObjectStore[B], offer protection for 
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objects that is reminiscent of file protections in Unix 
or AFS. In these systems, users partition their objects 
into segments or “databases” and control Read/Write 
(and in ObjectStore, Execute) access at the partition 
level. In fact, ObjectStore provides a model of pro- 
tection and associated administration tools that 
closely resemble Unix; the name space is a hierarchy 
of directories and databases, both owners and groups 
are recognized, and there are ObjectStore analogues 
to the Unix commands chown, chgrp, chmod, etc. 
The SORION (Secure ORION) system1131 allows 
both principals and objects to be assigned security 
levels. SORION grants or denies access (in terms of 
Read and Write operations) based on the relative 
security levels of the requesting principal and the tar- 
get of the operation. Neither of these approaches is as 
flexible as CACL, which allows individual objects to 
be protected, and grants or denies the right to invoke 
specific methods on a principal-by-principal basis. 
The Itasca object-oriented database[4] allows princi- 
pals to be authorized to execute specific methods or 
to examine specific attributes, but, at least according 
to available product descriptions, such authorization 
applies to entire classes of objects, as opposed to 
individual instances. Authorization to instances is in 
terms of Read and Write. 

The fine-grain, type-specific protection supported by 
CACL is more common in capability-based operat- 
ing systems, such as Hydra[lS] and, more recently, 
Amoeba[6][7] and ICAP[3]. Classic capability-based 
systems such as Hydra do not support changes to 
authorization information. Once a capability for an 
object has been given out, the authorization it repre- 
sents cannot be revoked. In fact, the capability can be 
replicated or passed on to other principals without 
restriction. By contrast, CACL retains the ability to 
invalidate all outstanding references to an object and 
force access permissions to be recomputed. In so 
doing, CACL gives the owner of an object complete 
control over propagation of access rights, but does 
not allow an owner to delegate to another principal 
the authority to grant or revoke access. Some capa- 
bility-based systems, like Amoeba and ICAP, support 
revocation mechanisms that are more flexible than 
CACL. Both systems rely on encryption schemes 
using random numbers to prevent forgeries. When a 
capability is presented for use, the server responsible 
for the named object validates the capability, either 
by decryption (Amoeba) or by re-encryption (ICAP). 

Both systems support revocation by allowing the 
owner of an object to interact with the server and 
change the server’s internal key. One difference is 
that in Amoeba, revocation is universal, while in 
ICAP, revocation can be targeted to specific princi- 
pals. 

Recently, Luniewski, Stamos and Cabrera[S] 
described an access control mechanism for Melam- 
pus with properties similar to CACL. There are 
important differences, however, particularly in the 
implementations. The mechanism described in [5] 
depends on support from the underlying operating 
system and paging hardware, while CACL was 
designed to have an efficient, software-only imple- 
mentation. 

Finally, we should note that the manner in which 
CACL transparently intercepts procedure invocations 
is not itself new. For example, similar techniques are 
used, to implement dynamic linking. However, we 
know of no system in which this technique is used to 
implement an authorization mechanism. 

7 Summary 

Issues of data security, and hence access control 
mechanisms, will be of critical importance in future 
object-oriented programming environments and data- 
bases. This paper presented a software mechanism 
for fine-grained access control, called CACL, appli- 
cable to such systems. CACL combines the proper- 
ties of two traditional access control mechanisms: 
capabilities and access control lists. The result is that 
CACL allows the owner of an object to control the 
ability to invoke individual methods on a per-princi- 
pal, per-object basis. Our mechanism is based on the 
use of object-specific customized dispatch vectors 
that, once established, encode authorization informa- 
tion so that the system can directly invoke methods 
without explicit authorization checking. Neverthe- 
less, the mechanism retains the ability of a principal 
to change authorization information at will, with 
such changes taking effect on the next method invo- 
cation. Our mechanism requires support from the 
language compiler and runtime system, but no sup- 
port from the underlying hardware or operating sys- 
tem. 
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Finally, we should point out that there are many pos- 
sible variations to our implementation. For example, 
when a reference is passed across a protection bound- 
ary (Section 5.3.2), we could set the DVp field in the 
reference to NULL instead of retrieving the PMDVp. 
Doing so would require some cooperation from the 
operating system (to catch the null pointer derefer- 
ence) as well as additional convention in the calling 
sequence (to determine whether a null pointer deref- 
erence should trap to the PM or signal an error). Fur- 
thermore, the model itself can be improved. For 
example, CACL does not include a notion of protec- 
tion groups, i.e., an aggregation of objects (of the 
same type) that share the same ACL. Such an 
abstraction would be quite useful and could be imple- 
mentcd (in part) by sharing the list of DV’s among 
the objects. 
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