
CACL: Efficient Fine-Grained Protection

for Objects

Joel Richardson Peter Schwarz Luis-Felipe Cabrera
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

Abstract

CACL is a protection scheme for objects that offers a
simple and flexible model of protection and has an
efficient, software-only implementation. The model,
based on Access Control Lists (ACLs) integrated
with the type system, allows owners to control who
may invoke which methods on which objects, per-
mits cooperation between mutually suspicious princi-
pals, allows ownership of objects to be transferred
safely, prevents unwanted propagation of authority
between principals, and allows changes to the autho-
rization information to take effect on the next method
invocation. The implementation, based on the inte-
gration of Capabilities with method dispatch, avoids
the overhead of access checking in the majority of
invocations, at the cost of space for extra dispatch
vectors. CACL offers a viable mechanism for fine-
grained protection in an object-oriented database sys-
tem.

1 Introduction

For a number of years, object-oriented database sys-
tems (OODBs) have been an active area of research.
Most of the attention has been given to traditional
database concerns, such as defining more expressive
data models, inventing query languages for objects,
and devising schemes for concurrency control and
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1992 ACM 0-89791~539-9/92/0010/0263...$1.50

recovery. Substantially less attention has been paid to
the problem of protection. In some systems, e.g., 02
[8], protection is not addressed at all (at least, in the
published literature). Presumably, one would protect
objects by protecting the operating system files in
which they reside. Many other OODBs protect
objects at the segment level [1][9]. A user can grant
(or deny) to other users the ability to read or write the
objects in his/her segments. One disadvantage of
these approaches is that the granularity of protection
is coarse. The entire object-base is partitioned into
relatively few operating system files or object seg-
ments. While in theory, individual objects could be
assigned to individual files or segments, doing so
would carry sizeable overhead, both in administra-
tive complexity and in system resources. Another
disadvantage is that the model of protection is differ-
ent from the model of the objects being protected. By
offering only Read/Write/Execute protection, the
protection model treats all objects as if they were of
type File. Not only is this counterintuitive for the
user, but it is probably sufficient only for get- and
put-style methods. An object usually hides much
complexity behind a relatively simple interface.
What may appear to be a retrieval from a given
object may actually involve “reading” many different
objects and “writing” others. It appears that any
assignment of rights to a user either grants too little
privilege to get the job done or far too much to be
safe.

There have been attempts to provide more sophisti-
cated models of protection for OODBs. For example,
a recent proposal allows both explicit and implicit
authorizations[lo]. An explicit authorization on one
part of the database implies certain rights over other

parts, unless overridden by another explicit authori-
zation. The scope and interaction of authorizations is
tied to the semantics of the various abstractions
offered by the model, e.g., classes, objects, compos-
ite objects, versions, and methods. This protection
model is certainly integrated with the data model to
which it applies. However, it is quite intricate, and
given an arbitrary set of explicit authorizations, it is
not immediately clear whether a given invocation by
a given user will succeed. Nor is it obvious what will
be the overall effect of a given change in authoriza-
tions.

Clearly, some form of protection is needed in any
system that intends to manage objects of value to its
users. However, we believe that a protection mecha-
nism must balance the sophistication of its protection
model against the ability of the users to understand it.
CACL offers a very simple model. Essentially, the
owner of an object controls who may invoke which
of the object’s methods. As we shall see, however,
this simple model is quite effective in solving some
interesting protection problems.

The seamless nature of an integrated object-oriented
system also forces one to consider the issue of when
authorization checks should be carried out. In con-
ventional operating systems, a process’ right to
access a file can be checked at a distinguished point
in the process’ execution, i.e., when the file is
opened. In an integrated object-oriented system, such
distinguished points do not exist; a program, begin-
ning at some root of persistence, simply follows ref-
erences and invokes methods on objects. It may be
necessary to check authorization at any point in the
propram’s execution. Furthermore, access rights may
be revoked or granted at arbitrary times. If such revo-
cations and restorations are to appear to be “immedi-
ate,” access rights must be checked (conceptually) at
every invocation.

Clearly, the kind of mechanism we are suggesting
poses major implementation challenges. In particu-
lar, if we literally place an authorization check in the
path of every method invocation, performance will
be severely degraded. Furthermore, we believe the
vast majority of such checks will succeed because
they are, in fact, unnecessary. There are three reasons
for this. First, experience shows that most objects
exist only to implement a higher-level abstraction.
Method invocations that occur “inside” the larger

object should not be subject to access checks. Sec-
ond, we expect revocation and restoration of rights to
occur far less frequently than method invocation.
This means that in most cases, a process’ right to
access an object will not change from one invocation
to the next. Third, we expect that a large percentage
of all invocations will occur because a public method
invokes a series of other public or private methods on
self. If the caller has the right to invoke the public
method, that should imply the right of the method to
execute without further hindrance. Thus any practical
implementation must meet the rather severe require-
ment of doing little or no work on each method invo-
cation, yet giving the appearance of performing a full
access check.

CACL is a fine-grained protection mechanism for
strongly-typed, object-oriented programming envi-
ronments or database systems. In this paper, we will
discuss the model’s semantics and its efficient imple-
mentation. The protection model is easy to under-
stand, yet flexible enough to solve realistic protection
problems. Our implementation meets the stringent
performance requirement stated above, paying the
cost primarily in the space required for additional
dispatch vectors. The name, CACL, is a combination
of Capabilities and Access Control Lists, the two pro-
tection mechanisms whose properties are combined
in this design. While the semantics of CACL can be
described in terms of access control lists integrated
with the type system, the implementation can be seen
as capabilities integrated with method dispatch.

The remainder of the paper is organized as follows.
In the next section, we describe some basic assump-
tions concerning the object model and runtime envi-
ronment required by CACL. Section 3 describes the
CACL protection model, and Section 4 provides
some examples of its use. Section 5 describes an
implementation of CACL that does not require spe-
cialized support from the underlying operating sys-
tem or hardware, relying instead on cooperation
between the language compiler and runtime system.
Section 6 reviews related work, and Section 7 sum-
marizes the contributions of this work.

264

2 Assumptions tern requires several protection mechanisms in addi-
tion to CACL.

The design and implementation of CACL assumes
certain properties of the object model and runtime
environment in which it operates. While CACL was
developed in the context of a specific object model
(Melampus [2][ll]), the essential ideas are widely
applicable. In this paper, therefore, we shall limit the
set of assumptions to a minimum.

The first assumption is that every protected object is
an instance of an abstract type. An abstract type spec-
ifies an interface and an implementation for its
instances. An interface consists of a set of signatures
that syntactically define what operations may be per-
formed on an instance. The implementation consists
of a representation for instances and a set of proce-
dures which implement the operations in the inter-
face. For the purposes of this paper, the key feature
of an abstract type is that instances are encapsulated;
there is no way for a program to access an object
except by invoking its operations. Note that the
object model may or may not also support subtyping.
While such an assumption is made for this paper, it is
not strictly necessary.

The first assumption leads to the second, which is
that all methods and application code are written in a
strongly typed language. In particular, it must not be
possible to forge a reference (e.g., by casting) nor to
invoke any operation on an object that is not sup-
ported by the object’s implementation. This implies
that the compiler must be a trusted component of the
object system; indeed, in Section 5 we shall see how
the implementation of CACL relies on the type
checking performed by the compiler.

The last assumption is that the runtime environment
is safe from outside attack. CACL is designed to pro-
vide protection within the confines of a particular
data model that conforms to the assumptions
described above, but if the model’s implementation is
embedded in a hostile environment, additional mech-
anisms may be required. In particular, we assume
that all users of the system are reliably authenticated,
that communication channels are safe from message
replay and insertion, and that only trusted utilities
and programs compiled by a trusted compiler can
access the runtime interface. Clearly, a complete sys-

3 The Protection Model

This section describes the CACL model of protec-
tion. We will describe the basic concepts around
which the model is built, followed by a description of
the properties of certain critical events: method invo-
cation, object creation, and transferral of authority
between users.

3.1 Principals

In CACL, the locus of authority is called a princi-
pal[121. A principal may correspond to a human user,
a project group, or any other abstract entity on whose
behalf actions are carried out within the system. We
make no assumptions as to whether principals are
themselves modeled as objects in the system, subject
to protection. We assume only that principals are
authenticated to the system and that there is some
representation for a principal’s identity. Principals
appear in four different roles in CACL:

1. Each object has an owner, the principal
responsible for authorizing access to the
object. For any object O, Owner(o) returns
the identifier of the principal that owns o.

2. Each object has a method principal (MP)
on whose behalf the object’s methods will
execute. The MP is often, but not always, the
object’s owner. This point will be explained
shortly. MP(o) returns the identifier of the
method principal for u.

3. At runtime, the MP of the currently exe-
cuting method is called the current principal
(0). Since CPs are pushed and popped
along with activation records, we often speak
of the principal stack associated with an exe-
cution thread. CP() returns the identifier of
the current principal.

4. Finally, each implementation has an
implementor, the principal responsible for
the correctness of the implementation.
Zmpf(o) returns the identifier of the principal
that defined the implementation of O.

265

3.2 Access Control Lists

An object’s owner controls which principals may
invoke which operations by means of an access con-
trol list (ACL). A default ACL is attached to an object
when the object is created. Conceptually, the com-
plete set of ACLs in the system constitutes a map-
ping:

ACL(Object x Principal) + {Method)

That is, p is allowed to invoke method m on object o
only if m E ACL (0, p) . The primary motivation
for CACL is to enforce the semantics of ACL-based
protection for objects, while avoiding the cost of
checking an ACL on every method invocation. As
with principals, we do not specify whether ACLs are
modelled as objects.

3.3 Typed References

Objects are accessed by means of typed references.
The effective type of a reference is the interface
described by the intersection of the following three
components: 1) the interface of the declared type of
the variable containing the reference (the reference’s
static type), 2) the interface of the type of the object
denoted by the reference (the object’s creation type),
and 3) the interface specified in the object’s ACL for
the current principal (the principal’s authorization
type). The relationship between these types is illus-
trated in Figure 1. Static type checking ensures that

Statically Typed Reference

Figure 1. Types Associated with an Object

the static type of the reference is always a subset of
the creation type of the object to which it refers,
Likewise, the authorization type (by definition) must
always be a subset of the creation type. The relation-
ship between the static type and the authorization
type, however, depends on the principal who is
accessing the object and the permissions given to that
principal in the object’s ACL. In this example, the
effective type is narrower than the static type, as indi-
cated by the shading.

3.4 Method Invocation

From the point of view of protection, an execution
thread is simply a sequence of method invocations.
CACL focuses on this event and maintains the fol-
lowing invariant:

A method invocation succeeds if and only
if that method is part of the eflective type of
the reference at the time of the invocation.

Conceptually, the maintenance of this invariant
requires an access check with every method invoca-
tion. As we will see, however, the implementation of
CACL maintains the invariant in a way that stresses
fast invocation for those cases (expected to be the
majority) in which access checks are not needed.

Although we have described protection in terms of
type checking, there is an important difference for
the programmer between the assurances provided by
static type checking and those provided by the pro-
tection mechanism. In a conventional statically-typed
programming language, the programmer is assured
that a program which compiles without type errors
will be free from type errors during execution. Pro-
tection violations, however, by their very nature, can-
not be detected at compile time. Access permissions
vary from instance to instance within a class, and the
specific objects to which a method will be applied are
not known until runtime. Furthermore, access per-
missions may be changed at any time, and our desire
to make such changes take effect on the next invoca-
tion further constrains any attempt to do protection
checking in advance of method invocation.

We wish to stress, therefore, that although protection
violations appear as runtime type errors in CACL,
the runtime nature of such errors is inevitable and

266

does not represent any loss of type safety. Any type
errors that would be detected in a conventional
approach will be detected by static checking, as
usual.

3.5 Object Creation

Principals create objects with a system operation,
new, which requires its caller to designate an imple-
mentation to be used for the new object. The current
principal becomes the new object’s owner and the
implementation’s implementor becomes the object’s
method principal. The reason that the object’s initial
MP is the implementor (and not the CP), will be dis-
cussed shortly. The object’s initial ACL grants all
rights to the owner, and none to any other principal.
Object creation is summarized in Table 1.

Owner(o) t CP
MP(o) t Impl(o)
ACL(o, p) = 4. if p z Owner(o)
ACL(o, Owner(o)) = CreationType

TABLE 1. Object Creation

3.6 Changing the Owner and Method
Principal

The owner of an object can transfer ownership to any
other principal by means of the operation Change-
Owner(o, p). In so doing, the former owner transfers
the right to manipulate the object’s ACL to the new
owner. However, the object’s method principal does
not change. The current owner of an object can set
the object’s method principal to him/her self, but not
to any other principal, with the operation Set-
MethodPrincipal(Together, these two operations
provide for controlled transfer of an object between a
donor and a recipient in a way the exposes neither
party to involuntary risk. In the first phase of the
transfer, an owner delegates the ability to update the
object’s ACL to another principal. This unilateral
action does not pose a risk for the recipient, since the
object’s methods still execute with the authority of
the old MP, i.e., it is not possible for an attacker to
create an object of his/her choosing, “give” it to an
unsuspecting user, then invoke the object’s methods

with the authority of the victim. In the second phase
of the transfer, the recipient agrees to accept respon-
sibility for the object’s behavior by becoming the
method principal. Here, the recipient accepts some
risk, but only voluntarily. It is assumed that the recip-
ient will first verify that the object is not a Trojan
Horse, before agreeing to become MP

4 Discussion and Examples

In this section, we discuss the features of the CACL
protection model and show how they can be used to
solve several important protection problems.

4.1 Trust Among Principals

CACL was designed with the assumption that differ-
ent levels of trust exist between the principals who
implement, administer, and use objects. In order to
accomplish any cooperative work in a computer sys-
tem, some mutual trust is obviously necessary. The
client of a document editor entrusts the editor to
make changes to a given document. Users of a mail
system trust that mail will be delivered to all of (and
only) the named recipients. All users trust the kernel
to implement its abstractions correctly. However,
“some trust” is not the same as blind faith. Allowing
the document editor to update a particular document
should not (necessarily) imply the granting of rights
to any of the client’s other objects. Furthermore,
while the client may trust the editor, he/she may not
trust the owner of the editor. Thus, allowing the edi-
tor to read a document should not imply the right of
the editor’s owner to read the document. These argu-
ments led to the explicit support in CACL for the role
of the implementor and to the separation of owner
and method principal.

When a method executes, code written by the imple-
mentor executes on behalf of the method principal.
Any client that invokes the method, passing it object
references as parameters, must therefore grant to the
MP enough rights over the parameter objects to allow
the invoked method to execute properly. The set of
methods required by the invoked method is likely to
be advertised to the client as the static type of the
parameter. If the client is unwilling to grant that
many rights to the MP, then he/she cannot use the

267

service (and is free to go elsewhere). There is a moti-
vation here, familiar to software engineers, for an
implementor to declare parameter types that are no
more specific than necessary to perform the service.

Even though a client may trust a particular imple-
mentation to perform some function, the method
principal may not be the implementor, but some other
principal. In this case, the client still has a measure of
protection in using the service, even though the MP
may not be trusted in general. The reason is that pass-
ing the object to the method is not equivalent to sim-
ply handing the reference to the method principal; his
ability to use the reference is constrained by the
implementor’s design, If the MP has no other access
to the client’s object, and if the implementation is
sufticiently trusted, then the client can grant the
required rights to the MP, even if the MP is not
trusted.

4.2 Examples

4.2.1 Mutual Suspicion

Consider a scenario in which two mutually suspi-
cious principals wish to cooperate to accomplish
some task. Neither principal wishes to grant the other
more than the minimal authorizations needed to
accomplish the task. The fine-granularity protection
supported by CACL makes this possible. Each prin-
cipal need only authorize the other to perform exactly
those operations on exactly those objects that are
necessary to get the job done, and this authorization
can be revoked immediately once the need for coop-
eration has ended. Furthermore, because references
are unforgeable, neither principal can even attempt to
invoke operations on objects that were not explicitly
given to them.

For instance, suppose Joel wishes to print one of his
documents using a printer owned by Peter. For the
moment, let us also assume that Peter is the method
principal for the printer’s methods. Joel obtains a ref-
erence to the object that represents the printer, and
invokes the Print method. If Peter has agreed to let
Joel USC his printer, the authorization type for Joel in
the printer’s ACL will include this method and the
invocation will succeed. Once invoked, the Print
method invokes various methods on Joel’s document

object to extract the document’s text for printing.
Since Peter is the method principal, these invocations
will only succeed if the authorization type for Peter
in the document’s ACL includes these methods.
Note, however, that the printer software has no need
to update the document, and hence Peter need not be
authorized to do so. Furthermore, by granting Peter
access to this document, Joel does not grant Peter
access to any of his other documents. Likewise, Peter
does not need to grant Joel authority to use any other
printer.

4.2.2 Trusted Implementations

In some cases, a principal may own, and wish to con-
trol access to, a resource which requires authority
exceeding his own in order to operate correctly. For
instance, the printer owned by Peter in the preceding
example may require access to a proprietary font
database in order to print documents. Only the imple-
mentor of the printer software, Acme Software,
should be permitted to access this database. CACL
provides the tools to solve this problem. As the
implementor of the printer software, Acme Software
is (by default) the method principal of the Print
method when Peter instantiates a new printer object.
The printer object will be owned by Peter, who can
therefore control which other users may print on it,
but Peter need not be authorized to access the font
database because the CP during execution of the
Print method will be Acme Software. As owner of
the printer, Peter can make himself the method prin-
cipal at any time, but thereafter the software will sim-
ply cease to work because he is not authorized to
access the font database.

Note that in our revised example, Joel must authorize
Acme Software, but not Peter, to access his docu-
ment. This represents an additional reduction in the
amount of trust Joel must place in Peter in order to
use his resource. Joel must simply trust the (immuta-
ble) implementation of the Print method supplied by
Acme Software.

Finally, we note that a considerable amount of
mutual protection can be obtained even when the
method principal is not a trusted third party, as in the
example above. Suppose the Print method requires
access to an audit file proprietary to Peter, instead of

268

the font database, and therefore the method principal
must be Peter. If Joel trusts Acme Software’s imple-
mentation sufficiently, he will be willing to authorize
Peter to read his document even though he doesn’t
trust Peter. This is because, as long as Peter cannot
obtain a reference to the document through some
other means, his ability to access the document is
constrained by Acme’s trusted implementation.

5 An Implementation Design for
CACL

5.1 Introduction

A naive implementation of the CACL protection
model would simply check the ACL of the target
object before each method invocation. As we noted
in Section 1, such an implementation would be pro-
hibitively and unnecessarily costly. In designing a
practical implementation for CACL, we sought to
take advantage of the observation that the effective
type of a reference can only change as a result of cer-
tain relatively infrequent events:

1. Crossing a Protection Domain Bound-
ary: If a method executing with pl as current
principal invokes a method that will execute
on behalf of principal ~2, the effective type
of each reference passed as a parameter must
be recomputed based on ~2’s authorization
type for each referenced object. A similar
recomputation must be performed for each
reference that p2 returns to ~1.

2. Widening: Object models that support
subtyping often allow assignments in which
the static type of the destination variable is a
subtype of the static type of the source vari-
able, provided that the creation type of the
referenced object (as determined by a runt-
ime check) is a subtype of the type of the
destination variable. If a method executing
with pl as current principal holds a reference
of static type T, and tries to widen its view to
type T2, the effective type must be recom-
puted based on both the referenced object’s
creation type and its authorization type for

PI*

3. Changing an Object’s Method Princi-
pal: Each instance variable in an object is a
reference whose effective type is limited by
the method principal’s authorization type for
the referenced object. If the method principal
changes from pI to ~2, the effective type of
each instance variable must be recomputed
based on p2’s authorization type for the ref-
erenced object.

4. Update to an ACL: If the ACL for an
object is modified or replaced, the effective
type of every reference to the object must be
recomputed.

Unless one of these events occurs, possession of a
reference with a particular effective type is very
much like having a capability for the referenced
object. Possession of the reference, like possession of
a capability, represents the authority to invoke a
specified set of operations on the referenced object.
In particular, there is no need to consult the ACL
before allowing the invocation to proceed. CACL
treats references like capabilities that are revoked
when the reference’s effective type changes as a
result of one of the four events listed above. CACL
also takes advantage of the fact that even if one of
these events does occur, there is no need to recom-
pute the effective type until just prior to the refer-
ence’s next use.

Our proposed implementation for CACL is derived
from a standard implementation of late binding in
object-oriented systems. Such implementations use a
dispatch vector (DV) to map an invocation in the
user’s program to the address of actual method code
at runtime. CACL augments the role of the DV to
include caching of authorization information. Instead
of one DV per type, as in the standard implementa-
tion, our design requires one or more DVs per pro-
tected object. An entry in a DV may point to method
code, as usual, or to a system procedure called the
Protection Manager (PM). Depending on the con-
tents of the DV, a method invocation will therefore
be dispatched either to the appropriate method or, if
an authorization check is needed, to the protection
subsystem. The PM is responsible for checking the
rights of the caller with respect to the target object,
and will either raise an exception or continue the
original invocation. The only “nonstandard” technol-

269

Figure 2. Overview Example

ogy required by this scheme is a small amount of
assembly code that allows the PM to continue the
original invocation without pushing a new stack
frame.

Each of an object’s DVs contains a combination of
method and PM pointers that reflects a specific effec-
tive type. Object references contain two pointers: one
to the referenced object and one to an appropriate
DV.’ Method invocation follows the DV pointer in
the reference, and thus different references to the

1. One could eliminate the object pointer, and access the
object indirectly through a pointer in the DV, This altema-
tive would save space, but increase the time cost of com-
paring two references to determine whether they denote
the same object.

same object may behave differently, depending on
the access rights granted to the principal holding each
reference. By dynamically altering the contents of a
reference and/or a DV when a reference’s effective
type changes, the system forces subsequent invoca-
tions to be directed to the PM to recheck the caller’s
access rights

An example of these data structures is given in
Figure 2. References X and Y both refer to object A,
which has two dispatch vectors, DVA,, and DVA,,.
However, the principal holding reference X, which
refers to DVA,,, is authorized to invoke any of A’s
methods, while the principal holding Y, which refers
to DVA,+ is only authorized to invoke method M2. If
method MO or Ml is invoked via Y, control is trans-
ferred to the PM.

Although the design described here eliminates many
unnecessary authorization checks, the performance
improvements do not come for free. Using one or
more DVs per object, instead of one per type, and the
expansion of references to two pointers, represent
time-space tradeoffs that increase performance at the
cost of increased use of space.

The next two sections describe the data structures
and algorithm that constitute our design in greater
detail.

5.2 Data Structures

We assume that all data structures used to implement
CACL are persistent, and that a separate mechanism
is used to fault objects and method code into memory
as needed.

5.2.1 Objects

An object consists of references to other objects
(instance variables) plus some auxiliary data used for
protection purposes. Every object has an owner field
(OP), a method principal field (MP), and a pointer to
the list of the object’s dispatch vectors (DVp). The
structure of an object is shown in Figure 3.

270

OP MP DVp Instance Variables

Figure 3. An Object

5.2.2 Keferences

An object reference consists of two fields: a pointer
to the object (OBJp) and a pointer to a dispatch vec-
tor (DVp). An object reference is shown in Figure 4.

OBJp DVp

/ \

OBJ DV

Figure 4. An Object Reference

5.2.3 Dispatch Vectors

A dispatch vector (DV) consists of an array of code
pointers plus two additional pointers. If all of the
code pointers in a DV point to the Protection Man-
ager, we call it a PMDV. One of the extra pointers in
the DV (PMDVp) points to a PMDV, if one has been
created for the object. The other extra pointer
(DVnext) is used to link together all of an object’s
DVs. There is no significance to the order in which
the DVs appear in the list. Figure 5 shows an object
with three DVs. The first contains all method point-
ers, the second contains one method pointer and two
PM pointers, and the third contains all PM pointers
(and thus is a PMDV).

While an object supporting n methods could theoreti-
cally have as many as 2n DVs, we expect that most
objects will be “private” objects used only within the
implementation of some higher-level abstraction.
Such objects will have exactly one DV. Furthermore,
we expect that for most object types, only a small
number of combinations of access rights will corre-
spond to useful abstractions. Hence, even most “pub-
lic” objects will only have a few DVs.

I I
- PMDVp PMDVp

DVnext/ DVnextJ
\ 1

1 PMW 1

Figure 5. An Object and its DVs

5.3 Algorithms

Our algorithms stress fast invocation, based on the
assumption that method invocation occurs far more
frequently than any other operation of concern to the
protection subsystem. Moreover, we also assume that
the vast majority of all invocations are authorized,
and will succeed. Thus, only when one of the four
infrequent events listed in Section 5.1 has occurred
will it be necessary for invocations to be directed to
the PM. In the following subsections, we describe
what processing steps occur for each event of inter-
est.

5.3.1 Method Invocation

Method invocation consists of two steps. In the first
step, the current principal is compared to the method
principal field (MP) of the object that is the target of
the invocation. If they differ, a boundary between
protection domains will be crossed and special argu-
ment processing, described below, will be required.
This step can be eliminated if it is possible to deter-
mine at compile time that the invocation cannot
result in a change of principal. Two simple cases in
which such a determination is possible are: 1) invo-
cation of a “private” method not exported by the
object’s implementation, and 2) invocation of a
method by another method of the same object.

273.

In the second step, after evaluating arguments, the
invocation sequence at the point of call indexes into
the DV denoted by the DVp in the target object refer-
ence, and calls the procedure whose address is
retrieved. This may result in an invocation of either
the target method or the Protection Manager. The
required index is generated by the compiler based on
the method to be invoked, just as it would be in a
standard implementation of late binding.

5.3.2 Crossing a Protection Domain
Boundary

As we noted in Section 5.1, when a reference is
passed across a protection domain boundary, its
effective type may change. Rather than immediately
recalculating the effective type based on the new
principal’s authorization type, CACL delays this
determination until the reference’s next use. As each
reference is copied onto the argument stack, its DVp
is updated to point to a PMDV. If a PMDV already
exists for the object, its address can be obtained from
the PMDVp in the DV associated with the old princi-
pal. If the PMDVp in this DV is null, a new PMDV
must be allocated. Making the reference point to a
PMDV ensures that the new principal’s first method
invocation using the reference will be directed to the
Protection Manager for authorization checking.

5.3.4 Change of Ownership

Change of ownership does not change the effective
type of references, but a check is required to make
sure that the current principal of the process request-
ing the ownership change is the current owner of the
object. This is done by comparing the current princi-
pal to the contents of the owner (OP) field of the
object.

5.3.5 Change of Method Principal

A change of method principal is not permitted unless
the object’s owner (OP) field is equal to the current
principal, in which case the method principal (MP)
field is set equal to the OP. In addition, if the change
succeeds, each reference in the object has effectively
been passed to a new protection domain. Each refer-
ence’s DVp field is therefore updated to point to a
PMDV. The next invocation through each reference
will be directed to the PM, to recompute the effective

type.

5.3.6 Replacement or Modification of an
Object’s ACL

When an object’s ACL is modified or replaced, every
reference to the object is potentially affected. Locat-

This algorithm is used whenever invoking a method
ing all references and recomputing effective types

or returning from one causes a reference to cross a
accordingly is impractical. Instead, the system

protection domain boundary. We feel this lazy
traverses the list of the object’s DVs, and transforms

approach to protection checking will be more effi-
each one into a PMDV by overwriting all method

cient than the eager alternative, because references
code pointers with the address of the entry point of

obtained by a method may not actually be used, but
the PM. Subsequent method invocations through any

rather simply stored or passed on to other methods.
reference to the object will be redirected to the PM.
The next section describes how references are revali-
dated, so that there is no permanent penalty for

5.3.3 Widening a Reference changing authorization information.

Widening a reference requires a runtime inspection
of the referenced object to determine its creation 5.3.7 Processing in the Protection Manager

type, regardless of any protection concern. One could
recompute the effective type at this time, but to be

We have previously described several situations in

consistent, we take the same lazy approach used
which a method invocation is redirected to the Pro-

when a reference is passed across a protection
tection Manager. This section describes how the PM

domain boundary. That is, the reference is copied and
handles these invocations. The PM must perform two

the new reference’s DVp is set to point to a PMDV,
tasks: 1) compute the reference’s effective type,

The first method invocation through the widened ref-
check whether the invocation is allowed to proceed,

erence will be intercepted by the PM.
and either continue the invocation in a manner that is

272

transparent to the method’s caller or raise an excep-
tion, and 2) modify the reference that was used to
perform the invocation so that future invocations
compatible with the reference’s effective type are no
longer intercepted by the PM.

In order to perform the first task, the PM must be able
to ascertain which method is being invoked on which
object, and on which principal’s behalf. This is
accomplished by suitable calling conventions imple-
mented in the compiler, and will vary from system to
system. Similarly, the mechanics of transparently
intercepting and continuing a procedure call will vary
from system to system. These aspects will not be dis-
cussed further in this paper.

To prevent future invocations using the reference
from being redirected to the PM, the PM scans the
list of the object’s DVs for one that corresponds to
the reference’s (newly-computed) effective type. If
none is found, a new DV is created and linked into
the list. The reference’s DVp is then updated to point
to this DV. Note that in order for such modification to
be useful, the method calling convention must permit
the PM to locate the actual reference that was used to
perform the invocation, rather than a copy of the ref-
erence.

Since references are often copied to temporary vari-
ables before being used to invoke methods, the
scheme described above may not discover and con-
vert all outstanding references that point to a PMDV.
A special process that runs in conjunction with the
garbage collector can be used to locate and update
such references. Garbage collection must also be
used to reclaim unreferenced DVs and PMDVs.

6 Related Work

Protection mechanisms have received considerable
attention in both experimental and commercial sys-
tems, and we cannot possibly review all of this work
here. However, we know of no prior work that is both
as flexible and as efficient as CACL. Object-oriented
databases, and other systems that require method
invocation to be extremely efficient tend to offer rela-
tively simple protection mechanisms. Conversely, the
most flexible and sophisticated protection mecha-
nisms are typically found in operating systems, file

systems, and distributed systems, in which the opera-
tions to be performed are relatively complex, and
hence the need for an extremely efficient authoriza-
tion mechanism is reduced. We give some represen-
tative examples of both types of systems below.

Traditionally, protection mechanisms have fallen
under the purview of operating systems. Two notable
examples of systems that use Access Control Lists
are Multics[121 and the Andrew File System[141. In
both systems, the ACL associated with an object
(segment or file) specifies the permitted access in
terms of Read/Write/Execute permissions. One can
view these systems as providing type-specific protec-
tion for a small, fixed set of data types, while the
CACL mechanism supports an extensible set. A
major difference between Multics, AFS, and CACL
is the frequency of access checking and its effect on
the semantics of revocation. When Multics maps a
segment to a process’ address space, it performs a
(long) access check and sets the appropriate permis-
sion bits in the process’ descriptor word for that seg-
ment. Thereafter, the hardware performs an access
check on every machine reference. If the segment’s
ACL is changed, Multics updates the segment
descriptor word for that process (and for any other
process that has the same segment mapped). Thus
revocation in Multics is truly immediate. In AFS, a
process requests certain access modes when it opens
a file, and its permissions are checked at that point.
Subsequent access to the opened file is not checked,
except that the access must be one of those requested
in the open call. If the file’s ACL is changed in the
meantime, the process will not observe the change
until (and unless) it again opens the file. Thus revoca-
tion in AFS may take arbitrarily long to take effect.
CACL takes an intermediate approach by checking
access at every method invocation. As in AFS, revo-
cation may take arbitrarily long to take effect, since a
process may already be executing a method at the
time its permission to that method is revoked. In this
case, however, the implementor’s code, not the cli-
ent’s, determines the length of the delay. Finally, by
assuming a tight integration with an object-oriented
data model, CACL’s access checking can be done
very efficiently, essentially by avoiding checks in
most cases.

Many object-oriented database systems, including
Gemstone[l] and ObjectStore[B], offer protection for

273

objects that is reminiscent of file protections in Unix
or AFS. In these systems, users partition their objects
into segments or “databases” and control Read/Write
(and in ObjectStore, Execute) access at the partition
level. In fact, ObjectStore provides a model of pro-
tection and associated administration tools that
closely resemble Unix; the name space is a hierarchy
of directories and databases, both owners and groups
are recognized, and there are ObjectStore analogues
to the Unix commands chown, chgrp, chmod, etc.
The SORION (Secure ORION) system1131 allows
both principals and objects to be assigned security
levels. SORION grants or denies access (in terms of
Read and Write operations) based on the relative
security levels of the requesting principal and the tar-
get of the operation. Neither of these approaches is as
flexible as CACL, which allows individual objects to
be protected, and grants or denies the right to invoke
specific methods on a principal-by-principal basis.
The Itasca object-oriented database[4] allows princi-
pals to be authorized to execute specific methods or
to examine specific attributes, but, at least according
to available product descriptions, such authorization
applies to entire classes of objects, as opposed to
individual instances. Authorization to instances is in
terms of Read and Write.

The fine-grain, type-specific protection supported by
CACL is more common in capability-based operat-
ing systems, such as Hydra[lS] and, more recently,
Amoeba[6][7] and ICAP[3]. Classic capability-based
systems such as Hydra do not support changes to
authorization information. Once a capability for an
object has been given out, the authorization it repre-
sents cannot be revoked. In fact, the capability can be
replicated or passed on to other principals without
restriction. By contrast, CACL retains the ability to
invalidate all outstanding references to an object and
force access permissions to be recomputed. In so
doing, CACL gives the owner of an object complete
control over propagation of access rights, but does
not allow an owner to delegate to another principal
the authority to grant or revoke access. Some capa-
bility-based systems, like Amoeba and ICAP, support
revocation mechanisms that are more flexible than
CACL. Both systems rely on encryption schemes
using random numbers to prevent forgeries. When a
capability is presented for use, the server responsible
for the named object validates the capability, either
by decryption (Amoeba) or by re-encryption (ICAP).

Both systems support revocation by allowing the
owner of an object to interact with the server and
change the server’s internal key. One difference is
that in Amoeba, revocation is universal, while in
ICAP, revocation can be targeted to specific princi-
pals.

Recently, Luniewski, Stamos and Cabrera[S]
described an access control mechanism for Melam-
pus with properties similar to CACL. There are
important differences, however, particularly in the
implementations. The mechanism described in [5]
depends on support from the underlying operating
system and paging hardware, while CACL was
designed to have an efficient, software-only imple-
mentation.

Finally, we should note that the manner in which
CACL transparently intercepts procedure invocations
is not itself new. For example, similar techniques are
used, to implement dynamic linking. However, we
know of no system in which this technique is used to
implement an authorization mechanism.

7 Summary

Issues of data security, and hence access control
mechanisms, will be of critical importance in future
object-oriented programming environments and data-
bases. This paper presented a software mechanism
for fine-grained access control, called CACL, appli-
cable to such systems. CACL combines the proper-
ties of two traditional access control mechanisms:
capabilities and access control lists. The result is that
CACL allows the owner of an object to control the
ability to invoke individual methods on a per-princi-
pal, per-object basis. Our mechanism is based on the
use of object-specific customized dispatch vectors
that, once established, encode authorization informa-
tion so that the system can directly invoke methods
without explicit authorization checking. Neverthe-
less, the mechanism retains the ability of a principal
to change authorization information at will, with
such changes taking effect on the next method invo-
cation. Our mechanism requires support from the
language compiler and runtime system, but no sup-
port from the underlying hardware or operating sys-
tem.

274

Finally, we should point out that there are many pos-
sible variations to our implementation. For example,
when a reference is passed across a protection bound-
ary (Section 5.3.2), we could set the DVp field in the
reference to NULL instead of retrieving the PMDVp.
Doing so would require some cooperation from the
operating system (to catch the null pointer derefer-
ence) as well as additional convention in the calling
sequence (to determine whether a null pointer deref-
erence should trap to the PM or signal an error). Fur-
thermore, the model itself can be improved. For
example, CACL does not include a notion of protec-
tion groups, i.e., an aggregation of objects (of the
same type) that share the same ACL. Such an
abstraction would be quite useful and could be imple-
mentcd (in part) by sharing the list of DV’s among
the objects.

8 Acknowledgements

We would like to thank the other members of the
Melampus group, especially Alan Luniewski and Jim
Stamos, for numerous discussions and helpful com-
ments.

9 References

[I] R. Bretl, D. Maier, A.Otis, J. Penney, B. Schucha-
rdt, J. Stein, E. H. Williams and M. Williams. “The
Gemstone Data Management System” in Object-
Oriented Concepts, Databases, and Applications, W.
Kim and F. Lochovsky, eds., ACM Press, 1989.

[2] L.F. Cabrera, L. Haas, J. Richardson, P Schwan,
and J. Stamos, “The Melampus Project: Toward an
Omniscient Computing System,” IBM Research
Report #RJ 75 15, June 1990.

[3] L. Gong. “A Secure Identity-Based Capability
System” in Proc. 1989 IEEE Computer Sot. Sympo-
sium on Security and Privacy. Computer Society
Press, Oakland CA, 1989.

[4] Itasca Systems, Inc. Itusca Technical Summary.
June 1990.

[5] A. Luniewski, J. Stamos, and L.-F. Cabrera. “A
Design for Fine-Grained Access Control in Melam-
pus” in Proc. of 1991 International Workshop on
Object-Orientation in Operating Systems, Palo Alto
CA, October 1991.

[6] S.J. Mullender, G. van Rossum, A.S. Tanenbaum,
R. van Renesse, and H. van Staveren, “Amoeba: A
Distributed Operating System for the 1990s” in
IEEE Computer, 23(5), May 1990.

[7] S.J. Mullender and A.S. Tanenbaum, “The
Design of a Capability-Based Distributed Operating
System,” in The Computer Journal, 29(4), 1986.

[8] 0. Deux, et. al., “The Story of 02,” in IEEE
Transactions on Knowledge and Data Engineering,
2(l), March 1990.

[9] Object Design, Inc. ObjectStore User’s Guide.

[lo] F. Rabitti, E. Bertino, W. Kim, and D. Woelk, “A
Mode1 of Authorization for Next-Generation Data-
base Systems,” in ACM Transactions of Database
Systems, 16(l), March 1991.

[111 J. Richardson and P. Schwarz, “MDM: An
Object-Oriented Data Model,” in Third Znt’l Work-
shop on Database Programming Languages, Naf-
plion, Greece, August 1991. Also available as IBM
Research Report #RJ 8228, July 1991.

[12] J.H. Saltzer, “Protection and the Control of
Information Sharing in Multics,” in CACM, 17(7),
July 1974.

[131 M. B. Thuraisingham. “Mandatory Security in
Object-Oriented Database Systems” in Proc. Conf.
on Object-Oriented Programming: Systems, Lan-
guages and Applications. ACM Press, New Orleans
LA, October 1989.

[141 Transarc Corp. AFS 3.0 User’s Guide. Pittsburgh
PA, 1990.

[15] W. Wulf, R. Levin, and S. Harbison. Hydra/
C.mmp: An Experimental Computer System.
McGraw-Hill, 1981.

275

