
Code Generation

As with parsing, methods for code generation can be classified:

Ad hoc.

As with semantic processing, code
could be generated after the parse by
traversing the AST. Typically, a com-
bined pre- and post-order traversal suf-
fices, where a node’s type prompts the
codegenerator to emit aparameterized
template of code.

Systematic

Grammar-based [21].

Grammars with attributes [20].

Tree pattern-matching [17, 19].

By peephole processing [11].

These methods spend more time on in-
struction selection than can be afforded
or managed by ad hoc. methods.

In a compiler course, the choice of code generation strategy is key to a successful
experience. Many courses stop just before code generation, in which case the
students do not experience the elation of watching their compilers actually work.

If the target of translation is reasonably high-level (e.g., a LISP-like intermediate
langauge), then ad hoc. methods are feasible. In this case, an interpreter should be
provided to execute the translated programs.

Otherwise, experience with an automatic code generator is more beneficial. Watch
for developments in the lcc system [18], which canbe obtained by contactingDave
Hanson (drh@princeton.edu). If the MIPS instruction set were targeted, then Larus’s
SPIM simulator [30](Appendix A) can greatly facilitate debugging the generated
code.
Copyright c 1994 Ron K. Cytron. All rights reserved – 113– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Example of a high-level intermediate language

The language FRIL [10] was developed to ease code generation, primarily by
resembling LISP and by offering a declarative mechanism for storage association.
Each symbol FRIL is declared at most once as any procedure’s local or parameter.
Each “expression” declares the static depth of its frame, and provides a pointer to its
outer scope.

int a1;
extern int a2;
int one;
void main() {

int i;

int factorial(X)
int X;
{
int Y;
Y = X;
if (Y > 0) Y*factorial(X-1);
else one;

}

one = 1;
a1 = factorial(i=5);
a2 = factorial(3);

(Expression 1 /* factorial */
(PushLevel 5 (LinkExpressionID 2)
(Args (SymbolID 7) /* X */)
(Locals (SymbolID 8) /* Y */)

)
(Def (SymbolID 8) /* Y */
(Use (SymbolID 7) /* X */)

)
(-> 0
(CHOOSE
(
(NE 0

(GT (Use (SymbolID 8) /* Y */) 0)
)

(TIMES
(Use (SymbolID 8) /* Y */)
(-> 1
(MINUS
(Use (SymbolID 7) /* X */)
1

)
)

)
)
(1 (Use (SymbolID "one")))

)
)

)

Copyright c 1994 Ron K. Cytron. All rights reserved – 114– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Ad hoc. methods

For example, for a binary node, the code generator would be called recursively
to place the result of the left and right subtrees in two known locations (say, registers

1 and 2). Code would then be emitted to form the sum, placing the result in yet
another known location.

+

A B

(PLUS
/* Code for A */
/* Code for B */

)

I usually provide procedures for generating FRIL’s symbol table, for generating a
PushLevel, and for indenting and formatting the output. The students must decide
what constitutes an expression. For example, FRIL has only one control transfer
operator: the procedure call. Thus, the body of an iterative loop must be invoked
recursively to achieve iteration.

Students write some 200 lines of code to complete the ad hoc. code generator for
FRIL.

Copyright c 1994 Ron K. Cytron. All rights reserved – 115– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

A systematic method — Tree Rewriting

While the ad hoc. method services the AST a node at a time, tree rewriting systems
can examine larger subtrees and searching for more optimal instruction sequences.

The AST shown to the right is representa-
tive of the code fragment

(x+4)=a[k];

Note that left and right value analysis
has already taken place.

Let’s assume that from the perspective
of code generation, the nodes x, a,
and k represent constants. This would
be the case had the compiler assigned
storage to these variables. If not, then
the AST should reflect a level of indirec-
tion (probably off a popular register) to
reach those variables.

=

Use

+

a Use

k

+

Use

x

4

Given the richness of most instruction sets, trying all combinations of instructions to
cover the tree would be prohibitively expensive. Most tree matching algorithms use
dynamic programming, so that results previously holding for some subtree can be
reused without additional cost.
Copyright c 1994 Ron K. Cytron. All rights reserved – 116– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Tree rewriting

Rule Rewrite Instruction Cost

1
Ri

Ri+

const
+const 1

2

Ri

Ri

Use

+

const
M[+const] 5

3

Ri

const

Use

M[const] 3

Not shown are the rules that account for the symmetry of addition.

Copyright c 1994 Ron K. Cytron. All rights reserved – 117– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Tree rewriting

Rule Rewrite Instruction Cost

4
Ri

+

const

Rj

Rj=

M[+const] 5

5
Rj

UseRi

Rj=

M[] M[] 6

6
Riconst

const 1

7

Ri

Ri

+

Rj
+ 1

Copyright c 1994 Ron K. Cytron. All rights reserved – 118– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Example – one way to cover the nodes

=

Use

+

a Use

k

+

Use

x

4

=

Use

+

a Use

k

+

Use

x

4

Rule 4

Rule 3

Rule 3

Rule 2

Rule Instr Cost
2 M[+const] 5
3 M[const] 3
4 M[+const] 5

Rule Cost
3 3
2 5
3 3
4 5

16

Copyright c 1994 Ron K. Cytron. All rights reserved – 119– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Example – another way to cover the nodes

=

Use

+

a Use

k

+

Use

x

4

=

Use

+

a Use

k

+

Use

x

4

Rule 3

Rule 1

Rule 1

Rule 3

Rule 5

Rule Instr Cost
1 +const 1
3 M[const] 3
5 M[] M[] 6

Rule Cost
3 3
1 1
3 3
1 1
5 6

14

Copyright c 1994 Ron K. Cytron. All rights reserved – 120– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

