
Bottom-up parsing

S

A C $

B C da

b B

b B

d

c

A bottom-up parse is essentially a right-
most derivation, run in reverse. Instead
of replacing a nonterminal by a string,
we recognize the string as reducing to
the nonterminal.

1 S A C $
2 C c
3
4 A a B C d
5 B Q
6
7 B b B
8 d
9 Q q

S A C $
A c $
a B C d c $
a B d c $
a b B d c $
a b b B d c $
a b b d d c $

The parsing engine issues the following instructions:

shift: a symbol is moved from input to top-of-stack.

reduce : the stack is modified by applying rule .

Copyright c 1994 Ron K. Cytron. All rights reserved – 57 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Shift

Before

a
After

a

Like the top-down parser, the bottom-up parser checks for errors on a shift. The
parse table we shall construct indicates when a shift is error-free.

Actually, instead of pushing a symbol onto the stack, we push a state, which
indexes the parse table and represents the current possibilities of the parse.

Copyright c 1994 Ron K. Cytron. All rights reserved – 58 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Reduce

Before

aα
β
γ

After

N a

If the rule applied is , where has symbols, then symbols are popped
off the stack, and a symbol representing is pushed.

It’s important to remember that a canonical parse can perform reductions only
at the top-of-stack.

Copyright c 1994 Ron K. Cytron. All rights reserved – 59 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Rightmost derivation in reverse – slow motion

Stack Input Activity
a b b d d c $ Shift

a b b d d c $ Shift
a b b d d c $ Shift
a b b d d c $ Shift
a b b d d c $ Reduce
a b b B d c $ Reduce
a b B d c $ Reduce
a B d c $ Reduce
a B C d c $ Shift
a B C d c $ Reduce
A c $ Shift
A c $ Reduce
A C $ Shift
A C $ Reduce $
S Accept

This is -style parsing: a scan from the left that produces a rightmost derivation.

We could have tried to apply at any point during the parse, but most would
not have made progress toward an accept. Where parse table construction is
successful, the table directs the parse towards an accept if one is possible.

Copyright c 1994 Ron K. Cytron. All rights reserved – 60 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

LR table construction

Each state of the parser represents pars-
ing possibilities after processing a given
prefix of the input string.

To construct the canonical 0 set of
states:

1. Each state begins with a kernel that
represents progress through certain
rules of the grammar:

(3) X y z
W x z y A
F a B C y

The dot () shows the progress
through the rule achieved by mov-
ing into this state.

2. When is next to a nonterminal, we
must add into this state the closure
by expanding all rules of the nonter-
minal:

(3) A b c d
A z A

We then label each component of the
state with an action, indicating transfer
to some other state, reduction by a rule,
or accept:

(3) X y z Goto
State 17

W x z y A Goto
State 5

F a B C y Reduce
by rule 5

A b c d Goto
State 2

A z A Goto
State 17

which may create a new state:

(17) X y z Reduce
by rule 10

A z A Goto
State 1

A b c d Goto
State 2

A z A Goto
State 18

Copyright c 1994 Ron K. Cytron. All rights reserved – 61 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Table construction

(1) S A C $ Goto
State 2

A a B C d Goto
State 3

B Q Goto
State 4

Reduce
by rule 6

B b B Goto
State 5

d Goto
State 6

(2) S A C $ Goto
State 7

C c Goto
State 8

Reduce
by rule 3

(3) A a B C d Goto
State 9

B b B Goto
State 5

d Goto
State 6

(4) A B Q Goto
State 10

Q q Goto
State 11

(5) B b B Goto
State 12

B b B Goto
State 5

d Goto
State 6

(6) B d Reduce
by rule 8

(7) S A C $ Goto
State 13

(8) C c Reduce
by rule 2

(9) A a B C d Goto
State 14

C c Goto
State 8

Reduce
by rule 3

(10) A B Q Reduce
by rule 5

(11) Q q Reduce
by rule 9

(12) B b B Reduce
by rule 7

(13) S A C $

(14) A a B C d Goto
State 15

(15) A a B C d Reduce
by rule 4

Copyright c 1994 Ron K. Cytron. All rights reserved – 62 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Conflict resolution

1 S A C $
2 C c
3
4 A a B C d
5 B Q
6
7 B b B
8 d
9 Q q

First Follow
$

$

$
$

Within a state, how do we resolve
whether to shift or reduce when either
action seems appropriate?

(1) S A C $ Goto
State 2

A a B C d Goto
State 3

B Q Goto
State 4

Reduce
by rule 6

B b B Goto
State 5

d Goto
State 6

Examining the information shows
that only those input symbols in $
can followan . In state (1)we therefore
Reduce
by rule 6 only when “c” or “$” appears
next in the input. Since these symbols
are disjoint from the input symbols that
cause shifts into other states (),
we can resolve the apparent conflict.

In general, a state might have an apparent shift/reduce or reduce/reduce conflict.
The more expensive table construction methods generally provide better conflict
resolution.

Copyright c 1994 Ron K. Cytron. All rights reserved – 63 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Table for our example

State a b c d q $ A B C Q
1 Goto

State 3 Goto
State 5 Reduce

by rule 6 Goto
State 6 Reduce

by rule 6 Goto
State 2 Goto

State 4
2 Goto

State 8 Reduce
by rule 3 Reduce

by rule 3 Goto
State 7

3 Goto
State 5 Goto

State 6 Goto
State 9

4 Goto
State 11 Goto

State 10
5 Goto

State 5 Goto
State 6 Goto

State 12
6 Reduce

by rule 8 Reduce
by rule 8

7 Goto
State 13

8 Reduce
by rule 2 Reduce

by rule 2
9 Goto

State 8 Reduce
by rule 3 Reduce

by rule 3 Goto
State 14

10 Reduce
by rule 5 Reduce

by rule 5
11 Reduce

by rule 9 Reduce
by rule 9

12 Reduce
by rule 7 Reduce

by rule 7

13
14 Goto

State 15
15 Reduce

by rule 4 Reduce
by rule 4

Copyright c 1994 Ron K. Cytron. All rights reserved – 64 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Using the table

State a b c d q $ A B C Q
1 3 5 6 6 6 2 4
2 8 3 3 7
3 5 6 9
4 11 10
5 5 6 12
6 8 8
7 13
8 2 2
9 8 3 3 14
10 5 5
11 9 9
12 7 7

13
14 15
15 4 4

1
a b b d d c $

a

1
a
3

b b d d c $

b

1
a
3

b
5

b d d c $

1
a
3

b
5

b d d c $

b

1
a
3

b
5

b
5

d d c $

d

1
a
3

b
5

b
5

d
6

d c $

d B

1
a
3

b
5

b
5

B d c $

B

1
a
3

b
5

b
5

B
12

d c $

b B B

1
a
3

b
5

B d c $

B

1
a
3

b
5

B
12

d c $

b B B

1
a
3

B d c $

Copyright c 1994 Ron K. Cytron. All rights reserved – 65 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Using the table (cont’d)

State a b c d q $ A B C Q
1 3 5 6 6 6 2 4
2 8 3 3 7
3 5 6 9
4 11 10
5 5 6 12
6 8 8
7 13
8 2 2
9 8 3 3 14
10 5 5
11 9 9
12 7 7

13
14 15
15 4 4

1
a
3

B d c $

B

1
a
3

B
9

d c $

C

1
a
3

B
9

C
14

d c $

1
a
3

B
9

C
14

d c $

d

1
a
3

B
9

C
14

d
15

c $

a B C d A

1
A c $

A

1
A
2

c $

c

1
A
2

c
8

$

c C

1
A
2

C $

C

1
A
2

C
7

$

$

1
A
2

C
7

$
13

Copyright c 1994 Ron K. Cytron. All rights reserved – 66 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Set of items construction for our expression grammar

1 S E $
2 E E + T
3 T
4 T T F
5 F
6 F (E)
7 a

(1) S E $ Goto
State 2

E E + T Goto
State 2

T Goto
State 3

T T F Goto
State 3

F Goto
State 4

F (E) Goto
State 5

a Goto
State 6

(2) S E $ Goto
State 7

E E + T Goto
State 8

First Follow

$
$
$

(3) E T Reduce
by rule 3

T T F Goto
State 9

The above shift/reduce conflict is re-
solved by noting that .

(4) T F Reduce
by rule 5

(5) F (E) Goto
State 10

E E + T Goto
State 10

T Goto
State 3

T T F Goto
State 3

F Goto
State 4

F (E) Goto
State 5

a Goto
State 6

(6) F a Reduce
by rule 7

Copyright c 1994 Ron K. Cytron. All rights reserved – 67 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Set of items construction for our expression grammar

1 S E $
2 E E + T
3 T
4 T T F
5 F
6 F (E)
7 a

(7) S E $

(8) E E + T Goto
State 11

T T F Goto
State 11

F Goto
State 4

F (E) Goto
State 5

a Goto
State 6

(9) T T F Goto
State 12

F (E) Goto
State 5

a Goto
State 6

First Follow

$
$
$

(10) E E + T Goto
State 8

F (E) Goto
State 13

(11) E E + T Reduce
by rule 2

T T F Goto
State 9

The above shift/reduce conflict is re-
solved by noting that .

(12) T T F Reduce
by rule 4

(13) F (E) Reduce
by rule 6

Copyright c 1994 Ron K. Cytron. All rights reserved – 68 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

The resulting parse table

State a + () $ E T F
1 Goto

State 6 Goto
State 5 Goto

State 2 Goto
State 3 Goto

State 4
2 Goto

State 8 Goto
State 7

3 Reduce
by rule 3 Goto

State 9 Reduce
by rule 3 Reduce

by rule 3
4 Reduce

by rule 5 Reduce
by rule 5

5 Goto
State 6 Goto

State 5 Goto
State 10 Goto

State 3 Goto
State 4

6 Reduce
by rule 7 Reduce

by rule 7

7
8 Goto

State 6 Goto
State 5 Goto

State 11 Goto
State 4

9 Goto
State 6 Goto

State 5 Goto
State 12

10 Goto
State 8 Goto

State 13
11 Reduce

by rule 2 Goto
State 9 Reduce

by rule 2 Reduce
by rule 2

12 Reduce
by rule 4 Reduce

by rule 4
13 Reduce

by rule 6 Reduce
by rule 6

Copyright c 1994 Ron K. Cytron. All rights reserved – 69 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Using the table

State a + () $ E T F
1 6 5 2 3 4
2 8 7
3 3 9 3 3
4 5 5
5 6 5 10 3 4
6 7 7

7
8 6 5 11 4
9 6 5 12
10 8 13
11 2 9 2 2
12 4 4
13 6 6

1
a + a (a + a) $

a

1
a
6

+ a (a + a) $

a F

1
F
4

+ a (a + a) $

1
F
4

+ a (a + a) $

F T

1
T
3

+ a (a + a) $

T E

1
E
2

+ a (a + a) $

+

1
E
2

+
8

a (a + a) $

a

1
E
2

+
8

a
6

(a + a) $

a F

1
E
2

+
8

F
4

(a + a) $

F T

1
E
2

+
8

T
11

(a + a) $

1
E
2

+
8

T
11 9

(a + a) $

Copyright c 1994 Ron K. Cytron. All rights reserved – 70 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Using the table

State a + () $ E T F
1 6 5 2 3 4
2 8 7
3 3 9 3 3
4 5 5
5 6 5 10 3 4
6 7 7

7
8 6 5 11 4
9 6 5 12
10 8 13
11 2 9 2 2
12 4 4
13 6 6

1
E
2

+
8

T
11 9

(a + a) $

(

1
E
2

+
8

T
11 9

(
5

a + a) $

a

1
E
2

+
8

T
11 9

(
5

a
6

+ a) $

1
E
2

+
8

T
11 9

(
5

a
6

+ a) $

a F

1
E
2

+
8

T
11 9

(
5

F
4

+ a) $

F T

1
E
2

+
8

T
11 9

(
5

T
3

+ a) $

T E

1
E
2

+
8

T
11 9

(
5

E
10

+ a) $

+

1
E
2

+
8

T
11 9

(
5

E
10

+
8

a) $

a

1
E
2

+
8

T
11 9

(
5

E
10

+
8

a
6

) $

A F

1
E
2

+
8

T
11 9

(
5

E
10

+
8

F
4

) $

F T

1
E
2

+
8

T
11 9

(
5

E
10

+
8

T
11

) $

Copyright c 1994 Ron K. Cytron. All rights reserved – 71 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Using the table

State a + () $ E T F
1 6 5 2 3 4
2 8 7
3 3 9 3 3
4 5 5
5 6 5 10 3 4
6 7 7

7
8 6 5 11 4
9 6 5 12
10 8 13
11 2 9 2 2
12 4 4
13 6 6

1
E
2

+
8

T
11 9

(
5

E
10

+
8

T
11

) $

E + T E

1
E
2

+
8

T
11 9

(
5

E
10

) $

)

1
E
2

+
8

T
11 9

(
5

E
10

)
13

$

1
E
2

+
8

T
11 9

(
5

E
10

)
13

$

(E) F

1
E
2

+
8

T
11 9

F
12

$

T F T

1
E
2

+
8

T
11

$

E + T E

1
E
2

$

$

1
E
2

$
7

E

TE

a a (a

F

E

E T

T F

F

+*+

T

a)

F

T

F

Copyright c 1994 Ron K. Cytron. All rights reserved – 72 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Summary of LR table construction methods

LR(0): If the table contains no conflicts,
then the grammar is unambiguous
and each state clearly indicates
precise shifts and reduces.

SLR(k): Where conflicts exist,
this method analyzes the grammar
to obtain sets of at the k symbols that
can follow each nonterminal. For an
item containing

(1) A B C
D C F
G C

if the k symbols that can follow A are
disjoint from each of the strings of k
symbols derivable from F, then the
shift/reduce conflict is resolved. If
the k symbols that can follow A are
different from those that can follow
G, then the reduce/reduce conflict
is resolved.

LR(k): While the SLR method analyzes
the grammar for follow information,
the LR(k) method begins with amore
elaborate set of items that already
incorporates follow information. For
example, given

(3) A E

(4) B (E)

the SLR method would assume that
“ ” or “)” could follow an E in any
context. The LR(k) method carries
into each state the relevant follow
set. Thus, the table constructed by
LR can have many more states than
the table constructed by SLR.

LALR(k): is a compromise between SLR
and LR. The table is the same size as
SLR, but conflict resolution is sharper.

The methods described above are successful only for unambiguous grammars.
Earley’s algorithm [1, 16] can construct parses (and derivations) for ambiguous
grammars. Note that LR parsing is more powerful that LL parsing.
Copyright c 1994 Ron K. Cytron. All rights reserved – 73 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

What happens when LR(k) constructions fail?

If table construction reveals an inadequate state, one of the following must hold:

The grammar is ambiguous.

If the language is not itself inherently
ambiguous, then perhaps the grammar
can be modified to generate the same
language, but unambiguously.

This is a task for human intelligence, as
it’s provably undecidable (i.e., there is
no mechanical process to decide) that
a grammar is ambiguous.

A method that works well is to identify
the inadequate states, and then work
into and out of the state to generate a
string that has more than one derivation.
The conflicts (identified, for example, by
YACC) are helpful in this process.

Underfueled table construction

1. Generally, SLR is more powerful than
LR(0); LALR ismore powerful than SLR;
LR is the most powerful (canonical)
bottom-up parsing method.

2. Canonical LR parsers must form their
reductions on top-of-stack. For
some grammars (an example fol-
lows), no bounded amount of looka-
head (bounded at table construc-
tion time) suffices to disambiguate
some state.

A good exercise is to attempt adding
nested procedures into theANSI C gram-
mar. foo(,,, ,) becomes prob-
lematic: One can’t tell whether foo is a
procedure definition or invocation until
the arbitrarily distant opening brace is
seen.

Copyright c 1994 Ron K. Cytron. All rights reserved – 74 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Identifying the cause of ambiguity

E E + E
a

YACC finds a shift/reduce conflict in the following state:

(4) E E + E Goto
State 3

E E + E Reduce
by rule 1

Lining up the “dots” shows we can reach this state with the prefix E + E, and one
rule shows how to continue this string to E + E + E . We can now easily construct
two parses: one assumes state 4 shifts (bottom), one assumes state 4 reduces (top).

a + a + a

E

E E

E

E

E E E

E

E

Copyright c 1994 Ron K. Cytron. All rights reserved – 75 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

A grammar that is not LR(k) for any k

S A a
B b

A A d
d

B B d
d

In the abovegrammar, a reductionmust
occur for the first “d” in the input, but
the lookahead necessary for deciding
whether to reduce A d or B d could
be arbitrarily large.

If the right-hand sides of the first rules
for A and B were reversed, then the
grammar is LR(1), but the stack grows
arbitrarily large at parse time.

S

d

d

d

d

?

?

?

?

a ? b

Often the grammar can be modified to become LR(k), since this problem usually
pertains to how the language is structured by the grammar.

Copyright c 1994 Ron K. Cytron. All rights reserved – 76 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

