
Some more sums

Grammar

E E + E
a

Leftmost derivation

E E +E
E+E +E
a+E+E
a+a+E
a+a+a

Another leftmost derivation

E E +E
a +E
a+E+E
a+a+E
a+a+a

a + a + a

E

E E

E

E

E E E

E

E

If the same string has two parse trees by a grammar , then is ambiguous.
Equivalently, there are two distinct leftmost derivations of some string. Note that
the language above is regular.

Copyright c 1994 Ron K. Cytron. All rights reserved – 27 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Ambiguity

The parse tree below structures the input
string as

E E E

E

E

a + a + a

The parse tree below structures the input
string as

a + a + a

E

E E

E

E

With addition, the two expressions may be semantically the same. What if the ’s
were the operands of subtraction?

How could a compiler choose between multiple parse trees for a given string?

Unfortunately, there is (provably) no mechanical procedure for determining if a
grammar is ambiguous; this is a job for human intelligence. However, compiler
construction tools such as YACC can greatly facilitate the location and resolution
of grammar ambiguities.

It’s important to emphasize the difference between a grammar being ambigu-
ous, and a language being (inherently) ambiguous. In the former case, a
different grammar may resolve the ambiguity; in the latter case, there exists
no unambiguous grammar for the language.

Copyright c 1994 Ron K. Cytron. All rights reserved – 28 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Syntactic ambiguity

A great source of humor in the English
language arises from our ability to con-
struct interesting syntactically ambigu-
ous phrases:

1. I fed the elephant inmy tennis shoes.
What does “in my tennis shoes” modify?

(a) Was I wearing my tennis shoes while feeding the
elephant?

(b) Was the elephant wearing or inside my tennis
shoes?

2. The purple people eater. What is purple?

(a) Is the eater purple?

(b) Are the people purple?

Suppose we modified the grammar for
C, so that any block could be
treated as a primary value.

int i; i=3*5; + 27;

would seem to have the value 42. But
if we just rearrange the white space, we
can get

int i; i=3*5;
+27;

which represents two statements, the
second of which begins with a unary
plus.

A good assignment along these lines is to modify the C grammar to allow this simple
language extension, and ask the students to determine what went wrong. The
students should be fairly comfortable using YACC before trying this experiment.

Copyright c 1994 Ron K. Cytron. All rights reserved – 29 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Semantic ambiguity

In English, we can construct sentences
that have only one parse, but still have
two different meanings:

1. Milk drinkers turn to powder. Are more

milk drinkers using powdered milk, or are milk drinkers

rapidly dehydrating?

2. I cannot recommend this student too
highly. Do words of praise escape me, or am I

unable to offer my support.

In programming languages, the lan-
guage standard must make the mean-
ing of such phrases clear, often by ap-
plying elements of context.

For example, the expression

could connote an integer or floating-
point sum, depending on the types of
and .

Copyright c 1994 Ron K. Cytron. All rights reserved – 30 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

A nonambiguous grammar

E (Plus E E)
(Minus E E)
a

It’s interesting to note that the above grammar, intended to generate LISP-like
expressions, is not ambiguous.

Plus((Plus a a) a)

E E

E

E

E

is the prefix equivalent of

(Plus a a)Plus()a

EE

E

E

E

is the prefix equivalent of

These are two different strings from this language, each associated explicitly with a
particular grouping of the terms. Essentially, the parentheses are syntactic sentinels
that simplify construction of an unambiguous grammar for this language.

Copyright c 1994 Ron K. Cytron. All rights reserved – 31 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Addressing ambiguity

E E + E
a

We’ll try to rewrite the above grammar, so that in a (leftmost) derivation, there’s only
one rule choice that derives longer strings.

E E + a
E - a
a

These rules are left recursive, and the
resulting derivations tend to associate
operations from the left:

a + a + a

E

E

E

E a + E
a - E
a

The grammar is still unambiguous, but
strings are now associated from the
right:

E

a + a + a

E

E

Copyright c 1994 Ron K. Cytron. All rights reserved – 32 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Addressing ambiguity (cont’d)

Our first try to expand our grammar
might be:

E E + a
E a
a

a a a

E

E

E

+ *
The above parse tree does not reflect
the usual precedence of over .

To obtain sums of products, we revise our
grammar:

E E + T
T

This generates strings of the form

Wenowalloweach to generate strings
of the form

E E + T
T

T T a
a

a a a+ *

T

T

E

T

E

Copyright c 1994 Ron K. Cytron. All rights reserved – 33 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Translating two-level expressions

Since our language is still regular, a finite-state machine could do the job. While the

machine

a

+ *
$

A B C,
could do the job, there’s not enough “structure”

to this machine to accomplish the prioritization of over . However, the machine
below can do the job.

/ 0

+ / 2

a / 1 a / 7

* / 3

a / 4

* / 5

$ / 9

$ / 8

+ / 6

0 0 5
1 6 ; 1
2 7
3 8
4 9 ; 1

Copyright c 1994 Ron K. Cytron. All rights reserved – 34 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Let’s add parentheses

While our grammar currently structures inputs appropriately for operator priorities,
parentheses are typically introduced to override default precedence. Since we
want a parenthesized expression to be treated “atomically”, we now generate sums
of products of parenthesized expressions.

E E + T
T

T T F
F

F (E)
a

This grammar generates a nonregular
language. Therefore, we need a more
sophisticated “machine” to parse and
translate its generated strings.

E

TE

a a (a

F

E

E T

T F

F

+*+

T

a)

F

T

F

The grammar we have developed thus far is the textbook “expression grammar”. Of
course, we shouldmake into a nonterminal that can generate identifiers, constants,
procedure calls, etc.

Copyright c 1994 Ron K. Cytron. All rights reserved – 35 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

