
A small example of language translation

sums of two digits, expressed

expressed in the usual (infix)

notation

That’s not very formal. What do we
mean by this?

0 4 3 7

input(s)
case (s)
of("0+0") return(OK)
...
of("9+9") return(OK)
default return(BAD)

endcase

The program shown on the left recog-
nizes the language. Suppose we
want to translate strings in into their
sum, expressed base-4.
input(s)
case (s)
of("0+0") return("0")
...
of("5+7") return("30")
...
of("9+9") return("102")
default oops(BAD)

endcase

A language is a set of strings. With 100 possibilities, we could easily list all strings in this
(small) language. This approach seems like lots of work, especially for languages with
infinite numbers of strings, like C. We need a finite specification for such languages.

Copyright c 1994 Ron K. Cytron. All rights reserved – 16 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Grammars

The grammar below generates the
language:

S D + D
D 0

1
2
...
9

A grammar is formally

where

is the set of nonterminals. These ap-
pear on the left side of rules.

is an alphabet of terminal symbols,
that cannot be rewritten.

is a set of rewrite rules.

is the start or goal symbol.

The process by which a terminal string is
created is called a derivation.

S D + D
8 + D
8 + 4

This is a leftmostderivation, since a string
of nonterminals is rewritten from the left.
A tree illustrates how the grammar and
the derivation structure the string:

+

S

D

8 4

D

The above could be called a derivation
tree, a (concrete) syntax tree, or a parse
tree.

Strings in are constructed by rewriting the symbol according to the rules of
until a terminal string is derived.
Copyright c 1994 Ron K. Cytron. All rights reserved – 17 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Sums of two numbers

Consider the set of strings that represent the sum of two numbers, such as 405 26.
We could rewrite the grammar, as shown below:

S D + D
D D d

d
d 0

1
...
9

D

D d

d

4

0

+

S

D D

d D d

d5

2

6

Another solution would be to have a separate tokenizing process feed “D”s to the
grammar, so that the grammar remains unchanged.

4 0 5 + 2 6

+ DD

Scanner

Parser

Input

Copyright c 1994 Ron K. Cytron. All rights reserved – 18 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Scanners

Scanners are often the ugliest part of a compiler, but when cleverly designed, they
can greatly simplify the design and implementation of a parser.

Typical tasks for a scanner:

Recognize reserved keywords.

Find integer and floating-point con-
stants.

Ignore comments.

Treat blank space appropriately.

Find string and character constants.

Find identifiers (variables).

The C statement

if (++x==5) foo(3);

might be tokenized as

if (ID 5) ID (int)

Unusual tasks for a scanner:

In (older) FORTRAN, blanks are op-
tional. Thus, the phrases

DO10I=1,5 and DO10I=1.5

are distinguished only by the
comma vs. the decimal. The first
statement is the start of a DO loop,
while the second statement assigns
the variable DO10I.

In C, variables can be declared
by built-in or by user-defined types.
Thus, in

foo x,y;

the C grammar needs to know that
foo is a type name, and not a vari-
able name.

The balance of work between scanner and parser is typically dictated by restrictions
of the parsing method and by a desire to make the grammar as simple as possible.
Copyright c 1994 Ron K. Cytron. All rights reserved – 19 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Scanners and Regular Languages

Most scanners are based on a simple
computational model called the finite-
state automaton.

6 4
5

blanks

1

3 2

ch

ch+dig

dig

dig

blank
ch

blank

These machines recognize regular lan-
guages.

To implement a finite-state transducer
one begins with a GOTO table that de-
fines transitions between states:

GOTO table
State ch dig blank
1 3 2 1
2 5 2 4
3 3 3 6
4 3 2 4
5 5 5 5
6 3 2 6

which is processed by the driver

1

while true do

/ Do action ACTION[][] /
GOTO

od

Notice the similarity between states 1, 4, and 6.

Copyright c 1994 Ron K. Cytron. All rights reserved – 20 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Transduction

While the finite-state mechanism recognizes appropriate strings, action must now be
taken to construct and supply tokens to the parser. Between states, actions are
performed as prescribed by the ACTION table shown below.

ACTION table
State ch dig blank
1 1 2 3
2 4 5 6
3 7 7 8
4 1 2 3
5 4 4 4
6 1 2 3

Actions

1.

2.

3. Do nothing

4. Error

5. 10

6. return NUM

7.

8. return ID

Technically, the ability to perform arbitrary actions makes our tokenizer more pow-
erful than a finite-state automaton. Nonetheless, the underlying mechanism is quite
simple, and can in fact be automatically generated .

Copyright c 1994 Ron K. Cytron. All rights reserved – 21 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Regular grammars

6 4
5

blanks

1

3 2

ch

ch+dig

dig

dig

blank
ch

blank

1 blank 1
ch 3
dig 2

2 dig 2
ch 5
blank 4

3 ch 3
dig 3
blank 6

4
6

In a regular grammar, each rule is of the form

where and .

Copyright c 1994 Ron K. Cytron. All rights reserved – 22 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

LEX as a scanner

First, define character classes:

ucase [A-Z]
lcase [a-z]
letter (ucase | lcase)
zero 0
nonzero [1-9]
sign [+-]
digit (zero | nonzero)
blanks [t f]
newline n

Next, specify patterns and actions:

L (L | D)* String(yytext);
return(ID);

‘‘++’’ return(IncOP);

In selecting which pattern to apply, LEX
uses the following rules:

1. LEX always tries for the longest
match. If any pattern can “keep
going” then LEX will keep consum-
ing input until that pattern finishes or
“gives up”. This property frequently
results in buffer overflow for improp-
erly specified patterns.

2. LEX will choose the pattern and ac-
tion that succeeds byconsuming the
most input.

3. If there are ties, then the pattern
specified earliest to LEX wins.

The notation used above is regular expression notation, which allows for choice,
catenation, and repeats. One can show by construction that any language
accepted by a finite-state automaton has an equivalent regular expression.

Copyright c 1994 Ron K. Cytron. All rights reserved – 23 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

A comment

An interesting example is the C-like
comment specification, which might be
tempting to specify as:

"/-" .* "-/"

But in a longest match, this pattern will
match the beginning of the first com-
ment to the end of the last comment,
and everything in between. If LEX’s
buffers don’t overflow, most of the input
program will be ignored by this faulty
specification.

A better specification can be deter-
mined as follows:

1. Start with the wrong specification.

2. Construct the associated determin-
istic FSA.

3. Edit the FSA to cause acceptance at
the end of the first comment (shown
below).

4. Construct the regular expression as-
sociated with the resulting FSA.

/ -
-

c

/,c -

/

with the corresponding regular expression

/- [(/|c)* -(-)* c]* (/|c)* -(-)* /

Copyright c 1994 Ron K. Cytron. All rights reserved – 24 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Teaching regular languages and scanners

Classroom

1. Motivate the study with examples
from programming languages and
puzzles (THINK-A-DOT, etc.).

2. Present deterministic FSA (DFA).

3. Present nondeterministic FSA (NFA).

4. Show how to construct NFAs from
regular expressions.

5. Show good use of the empty string
(or).

6. Eliminate the empty string.

7. Eliminate nondeterminism.

8. Minimize any DFA.

9. Construction of regular expressions
from DFA.

10. Show the correspondence between
regular grammars and FSAs.

11. Thepumping lemmaandnonregular
languages.

Projects and Homework

1. Implement THINK-A-DOT.

2. Check if a YACC grammar is regular.
If so, then emit the GOTO table for a
finite-state driver.

3. Augment the above with ACTION

clauses.

4. Process a YACC file for reserved key-
word specifications:

%token <rk> then

and generate the appropriate pat-
tern and action for recognizing
these:

"then" return(THEN);

5. Show that regular expression nota-
tion is itself not regular.

Some useful resources: [24, 28, 16, 2, 26].
Copyright c 1994 Ron K. Cytron. All rights reserved – 25 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Nonregular languages

To grow beyond regular languages, we now allow a rule’s right-hand side to contain
any string of terminals or nonterminals.

A (A)
x

describes the language .

x

A

A

A

A

((()))

Suppose that some finite-state machine
of states can recognize .

(((...(x)...)))

k states

Consider the input string . After
processing the ‘(’, some state must
have been visited twice. By repeating
the portion of causing this loop, we
obtain a string

0 0

which is not in the language, but is ac-
cepted by .

Since the proof did not depend on any particular , we have shown that no finite-
state machine can accept exactly this language.
Copyright c 1994 Ron K. Cytron. All rights reserved – 26 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

