
Tutorial outline

1. Introduction

2. Scanning and tokenizing

3. Grammars and ambiguity

4. Recursive descent parsing

5. Error repair

6. Table-driven LL parsing

7. Bottom-up table-driven parsing

8. Symbol tables

9. Semantic analysis via attributes

10. Abstract syntax trees

11. Type checking

12. Runtime storage management

13. Code generation

14. Optimization

15. Conclusion

Copyright c 1994 Ron K. Cytron. All rights reserved – 1 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

What is a language translator?

You type: cc foo.c What happens?

ComputerInput Answer

Binder / Loader

Object

ANSI C Compiler

Source Program

Language: Vehicle (architecture) for transmitting information between components
of a system. For our purposes, a language is a formal interface. The goal of every
compiler is correct and efficient language translation.
Copyright c 1994 Ron K. Cytron. All rights reserved – 2 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

The process of language translation

1. A person has an idea of how to compute something:

1 if 0
1 otherwise

2. An algorithm captures the essence of the computation:

if 0 then 1 else 1

Typically, a pseudocode language is used, such as “pidgin ALGOL”.

3. The algorithm is expressed in some programming language:

int fact(int n) {
if (n <= 0) return(1);
else return(n*fact(n-1));

}

We would be done if we had a computer that “understood” the language directly.
So why don’t we build more C machines?

a) How does the machine know it’s
seen a C program and not a Shake-
speare sonnet?

b) How does the machine know what is
“meant” by the C program?

c) It’s hard to build such machines.
What happens when language ex-
tensions are introduced (C++)?

d) RISC philosophy says simple ma-
chines are better.

Copyright c 1994 Ron K. Cytron. All rights reserved – 3 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Finally

A compiler translates programs written in a source language into a target language.
For our purposes, the source language is typically a programming language—
convenient for humans to use and understand—while the target language is typically
the (relatively low-level) instruction set of a computer.

Source Program

main() {
int a;

a += 5.0;
}

Target Program (Assembly)
_main:

!#PROLOGUE# 0
sethi %hi(LF12),%g1
add %g1,%lo(LF12),%g1
save %sp,%g1,%sp
!#PROLOGUE# 1
sethi %hi(L2000000),%o0
ldd [%o0+%lo(L2000000)],%f0
ld [%fp+-0x4],%f2
fitod %f2,%f4
faddd %f4,%f0,%f6
fdtoi %f6,%f7
st %f7,[%fp+-0x4]

Running the Sun cc compiler on the above source program of 32 characters
produces the assembly program shown to the right. The bound binary executable
occupied in excess of 24 thousand bytes.

Copyright c 1994 Ron K. Cytron. All rights reserved – 4 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Structure of a compiler

Optimizer

Generation
Code

Semantics

Front
End

Middle
End

Back
End

Executable
Text

Parser

Scanner

Program Front End

Scanner: decomposes the input stream
into tokens. So the string “a += 5.0;”
becomes

a 5 0 ;

Parser: analyzes the tokens for correct-
ness and structure:

+ =

a 5.0

Semantic analysis: more analysis and
type checking:

5.0

+ =

a flt->int

Copyright c 1994 Ron K. Cytron. All rights reserved – 5 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Structure of a compiler

Middle End

5.0

+ =

a flt->int

Themiddle endmight eliminate thecon-
version, substituting the integer “5” for
the float “5.0”.

+ =

a 5

Code Generation

The code generator can significantly af-
fect performance. There aremanyways
to compute “a+=5”, some less efficient
than others:

while 5 do

od

While optimization can occur throughout the translation process, machine-
independent transformations are typically relegated to themiddle-end, while instruc-
tion selectionandothermachine-specific activities arepushed intocodegeneration.

Copyright c 1994 Ron K. Cytron. All rights reserved – 6 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Bootstrapping a compiler

Often, a compiler is written in it “itself”. That is, a compiler for PASCAL may be written
in PASCAL. How does this work?

Initial Compiler for on Machine

1. The compiler can be written in a
small subset of , even though
the compiler translates the full lan-
guage.

2. A throw-away version of the sub-
set language is implemented on .
Call this compiler .

3. The compiler can be compiled us-
ing the subset compiler, to generate
a full compiler .

4. The compiler can also compile
itself. The resulting object can be
compared with for verification.

Porting the Compiler

1. On machine , the code generator
for the full compiler is changed to
target machine .

2. Any program in can now be cross-
compiled from to .

3. The compiler can also be cross-
compiled to produce an instance of
that runs on machine .

If the run-time library is mostly written in
, or in an intermediate language of ,

then these can also be translated for
using the cross-compiler.

Copyright c 1994 Ron K. Cytron. All rights reserved – 7 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

What else does a compiler do?

if (p)
a = b + (c

else {d = f;
q = r;

Error detection. Strict language rules, consistently

enforced by a compiler, increase the likelihood that a

compiler-approved source program is bug-free.

Error diagnosis. Compilers can often assist the

program author in addressing errors.

Error repair. Some ambitious compilers go so far as to

insert or delete text to render the program executable.

for (i=1; i<=n; ++i)
{

a[i] = b[i] + c[i]
}

Program optimization. The target produced

by a compiler must be “observably equivalent” to the

source interpretation. An optimizing compiler attempts

to minimize the resource constraints (typically time and

space) required by the target program.

Program instrumentation. The target program

canbeaugmentedwith instructionsanddata to provide

information for run-time debugging and performance

analysis. Language features not checkable at compile-

time are often checked at run-time by code inserted by

the compiler.

Sophisticated error repair may include symbol insertion, deletion, and use of inden-
tation structure.

Program optimization can significantly decrease the time spent on array index
arithmetic. Since subscript ranges cannot in general be checked at compile-time,
run-time tests may be inserted by the compiler.

Copyright c 1994 Ron K. Cytron. All rights reserved – 8 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Compiler design points – aquatic analogies

Powerboat Turbo–?. These compilers are fast, load-

and-go. They perform little optimization, but typically

offer good diagnostics and a good programming envi-

ronment (sporting a good debugger). These compilers

are well-suited for small development tasks, including

small student projects.

Sailboat BCPL, Postscript. These compilers can do neat

tricks but they require skill in their use. The compilers

themselves are often small and simple, and therefore

easily ported. They can assist in bootstrapping larger

systems.

Tugboat C++ preprocessor, RATFOR. These compilers

are actually front-ends for other (typically larger) back-

ends. The early implementations of C++ were via a

preprocessor.

Barge Industrial-strength. These compilers are developed

and maintained with a company’s reputation on the

line. Commercial systems use these compilers because

of their integrity and the commitment of their sponsoring

companies to address problems. Increasingly these

kinds of compilers are built by specialty houses such as

Rational, KAI, etc.

Ferry Gnu compilers. These compilers are available via

a General Public License from the Free Software Foun-

dation. They are high-quality systems and can be built

upon without restriction.

Another important design issue is the extent to which a compiler can respond
incrementally to changes.

Copyright c 1994 Ron K. Cytron. All rights reserved – 9 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Compilers are taking over the world!

While compilers most prevalently participate in the translation of pro-
gramming languages, some form of compiler technology appears in
many systems:

Text processing Consider the “ -roff” text processing pipe:

PIC TBL EQN TROFF

or the LATEX pipe:
LATEX E

each of which may produce

DVI POSTSCRIPT

Silicon compilers Such systems accept circuit specifications and com-
pile these into VLSI layouts. The compilers can enforce the appro-
priate “rules” for valid circuit design, and circuit libraries can be
referenced like modules in software library.

Copyright c 1994 Ron K. Cytron. All rights reserved – 10 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Compiler design vs. programming language design

Programming languages So compilers
have offer

Non-locals Displays, static links
Recursion Dynamic links

Dynamic Storage Garbage collection
Call-by-name Thunks

Modular structure Interprocedural analysis
Dynamic typing Static type analysis

It’s expensive for So some languages
a compiler to offer avoid that feature

Non-locals C
Call-by-name C, PASCAL

Recursion FORTRAN 66
Garbage collection C

In general, simple languages such as C, PASCAL, and SCHEME have been more
successful than complicated languages like PL/1 and ADA.

Copyright c 1994 Ron K. Cytron. All rights reserved – 11 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Language design for humans

Procedure

declare
integer
integer
integer

? & : &

end

Syntactic simplicity. Syntactic signposts are

kept to a minimum, except where aesthetics dictate

otherwise: parentheses in C, semicolons in PASCAL.

Resemblance to mathematics. Infix nota-

tion, function names.

Flexible internal structures. Nobodywould use

a language in which one had to predeclare how many

variables their program needed.

Freedom from specifying side-effects.
What happens when is dereferenced?

Programming language design is often a compromise between ease of use for
humans, efficiency of translation, and efficiency of target code execution.

Copyright c 1994 Ron K. Cytron. All rights reserved – 12 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Language design for machines

(SymbolTable
(NumSymbols 5)
(Symbol

(SymbolName x)
(SymbolID 1)

)
(Symbol

(SymbolName y)
(SymbolID 2)

)
...

)
(AliasRelations

(NumAliasRelations 1)
(AliasRelation

(AliasID 1)
(MayAliases 2 a b)

)
)

(NodeSemantics
(NodeID 2)
(Def
(DefID 2)
(SymbID ?)
(AliasWith 1)
(DefValue
(+
(Use
(UseID 1)
(SymbID x)

)
(Use
(UseID 2)
(SymbID y)

)
)

)
)

)

We can require much more of our intermediate languages, in terms of details and
syntactic form.

Copyright c 1994 Ron K. Cytron. All rights reserved – 13 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Compilers and target instruction sets

How should we translate

In the course of its code generation, a
simple compiler may use only 20% of
a machine’s potential instructions, be-
cause anomalies in an instruction set
are difficult to “fit” into a code gener-
ator.

Consider two instructions

ADDREG 1 2 1 1 2

ADDMEM 1 1 1

Each instruction is destructive in its first
argument, so and would have to be
refetched if needed.

LOAD 1 Y
ADDMEM 1 Z
STORE 1 X

A simplermodel would be to do all arith-
metic in registers, assuming a nonde-
structive instruction set, with a reserved
register for results (say, 0):

LOAD 1 Y
LOAD 2 Z
LOADREG 0 1
ADDREG 0 2
STORE 0 X

This code preserves the value of and
in their respective registers.

A popular approach is to generate code assuming the nondestructive paradigm,
and then use an instruction selector to optimize the code, perhaps using destructive
operations.

Copyright c 1994 Ron K. Cytron. All rights reserved – 14 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

Current wisdom on compilers and architecture

Architects should design “orthogonal” RISC instruction sets, and let the optimizer
make the best possible use of these instructions. Consider the program

for 1 to 10 do

where is declared as a 10-element array (1 10).

The VAX has an instruction essentially of
the form

with semantics

if () then

return 4

else

return ()

fi

Internally, this instruction requires two
tests, one multiplication, and one addi-
tion.

However, notice that the loop does not
violate the arraybounds of . Moreover,
in moving from to 1 , the new
address can be calculated by adding 4
to the old address.

While the useof an instructionmay
seem attractive, better performance
can be obtained by providing smaller,
faster instructions to a compiler capable
of optimizing their use.

Copyright c 1994 Ron K. Cytron. All rights reserved – 15 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL

