
A Partition-Based Minimization Technique for Finite

Automata

Rance Cleaveland

Spring 2000

1. Preliminaries

We have seen that it is possible to define a minimum-state automaton for recognizing a given

regular language L. The construction of the automaton is somewhat abstract, relying as it does

on the indistinguishability relation
L

⊲⊳ for the language L. This handout shows how to construct

the minimum-state automaton for recognizing L, given some finite automaton that accepts L. The

book also presents such a procedure; the one described here proves to be more efficient, however.

The algorithm presented in this handout essentially works by determining which states in the

automaton can be “merged” into one state. In order to understand how it works, we first introduce

the following definitions.

Definition 1.1. Let M = 〈Q,Σ,δ,q0,A〉 be a finite automaton, and let q ∈ Q. Then Mq is defined

to be the finite automaton 〈Q,Σ,δ,q,A〉.

In other words, Mq is just M with the start state changed to q. We will sometimes refer to L(Mq)
as the language of q. We now define an equivalence relation on states in a finite automaton that

reflects a notion of language equivalence between states.

Definition 1.2. Let M = 〈Q,Σ,δ,q0,A〉 be a finite automaton, and let p,q ∈ Q. Then p
M
∼ q is

defined to hold if L(Mp) = L(Mq).

So p
M
∼ q is true if p and q have the same languages. Moreover, although it may not be immediately

apparent, there is a close connection between
M
∼ and

L(M)
⊲⊳ , the indistinguishability relation on the

language of M.

Lemma 1.3. Let M = 〈Q,Σ,δ,q0,A〉 be a finite automaton. Then for any x,y ∈ Σ∗, δ∗(q0,x)
M
∼

δ∗(q0,y) if and only if x
L(M)
⊲⊳ y.

Based on this lemma, it is possible to describe the minimum-state finite automaton recognizing

the language L(M) of a given finite automaton M in terms of
M
∼ rather than

L(M)
⊲⊳ . The importance

1



of this characterization stems from the fact that it is easier to imagine computing
M
∼, which is a

relation over a finite set (the states of M), than it is to imagine computing
L(M)
⊲⊳ , which is a relation

over an infinite set (Σ∗).

Theorem 1.4. Let M = 〈Q,Σ,δ,q0,A〉 be a finite automaton accepting language L. Then the

minimum-state finite automaton ML = 〈QL,Σ,δL,qL,AL〉 for L may be given as follows:

QL = { [q]M
∼
| q ∈ Q}

qL = [q0]M
∼

AL = { [q]M
∼
| q ∈ A}

δ([q]M
∼
,a) = [δ(q,a)]M

∼

Note that QL is is the set of equivalence classes of
M
∼.

On the basis of this theorem, if we can develop a mechanism for computing the equivalence

classes of
M
∼ then we effectively have a method for building minimum-state finite automata.

2. Computing
M
∼

We now turn to the task of developing an algorithm for computing the equivalence classes of
M
∼. The procedure we give is partition-based, meaning that it operates on equivalence classes of

states. In a nutshell, it works by first taking equivalence classes that are too large (that is, that

include states that are not necessarily language equivalent) and then splitting them into smaller and

smaller classes until we reach the equivalence classes of
M
∼.

Given this somewhat vague overview, the first question that one might ask is, “Where do we

begin?” In other words, what are the largest equivalence classes that we can reasonably begin

working on? Of course, the largest possible equivalence class would include every state; but one

can also observe the following.

Lemma 2.5. Let M = 〈Q,Σ,δ,q0,A〉 be a finite automaton. If q1 ∈ A and q2 ∈ Q−A then q1 6
M
∼ q2.

Therefore, we can in fact begin with two equivalence classes: A, and Q−A.

The second question that one might ask is the following. Suppose we have a collection P

(for “partition”) of equivalence classes, and suppose we know that if two states, q1 and q2, are in

different equivalence classes in P then q1 6
M
∼ q2. Note that this is certainly true of the initial partition

(A and Q−A) given above. Now, it may be the case that some of the equivalence classes of P are

still too large (that is, include states that aren’t equivalent to each other) and therefore may need to

be split. How do we determine if this is the case, and if it is, how do we split equivalence classes?

The answer to this question can be found in the next lemma.

Lemma 2.6. Let M = 〈Q,Σ,δ,q0,A〉, and suppose q′1 6
M
∼ q′2. Also suppose that δ(q1,a) = q′1 and

δ(q2,a) = q′2. Then q1 6
M
∼ q2.

2



algorithm equiv

Input: Finite automaton M = 〈Q,Σ,δ,q0,A〉.

Output: Equivalence classes of
M
∼ (in variable P).

Method:

P := {A,Q−A};

check := true;

while check do begin

check := false;

foreach B ∈ P do

if ∃a ∈ Σ,q1,q2 ∈ B,B′ ∈ P. δ(q1,a) ∈ B′∧δ(q2,a) 6∈ B′

then begin

B1 := {q ∈ B | δ(q,a) ∈ B′};

B2 := B−B1;

P := (P−{B})∪{B1,B2}
check := true;

end

end

Figure 1: The algorithm for computing equivalence classes of
M
∼.

Now, suppose we have two equivalence classes B,B′ ∈ P and a symbol a ∈ Σ with the following

property: there exist q1,q2 ∈ B with δ(q1,a) ∈ B′ and δ(q2,a) 6∈ B′. From the property we are

assuming of P, this means that δ(q1,a) 6
M
∼ δ(q2,a). But from the lemma, this means that q1 6

M
∼ q2!

Therefore, we can split B into two new equivalence classes: one containing the states (like q1)

containing an a-transition into B′, and one containing those that do not. (Note that B and B′ do not

have to be different; they can be the same equivalence class.) Conversely, if no such B, B′ and a

exist, then no more partitions need splitting, and the equivalence classes of P are the equivalence

classes of
M
∼.

With these observations in hand, we can now give a formal “pseudo-code” account of the

algorithm for computing the equivalence classes of
M
∼. The code appears in Figure 1.

3. Examples

We close the handout with a couple of examples illustrating how the algorithm works. When

executing equiv by hand, it helps to maintain a couple of data structures:

1. a table recording, for each state, what equivalence class it is presently in; and

2. a “tree” that records how equivalence classes are split.

Intuitively, the leaves in the tree represent the current equivalence classes in P. When an equiv-

alence class B is split, we will make the two new equivalence classes children of it in this tree;

3



0

1

0

1

0

1

1

0

1

1

0

1

2

3

4

5

6

7

0

1

0

Figure 2: Problem 1.

moreover, we will label the left branch with the symbol a and the equivalence class B′ that caused

the split, and we will put the set {q ∈ B1 | δ(q,a) ∈ B′} as the left child of B, with the other set

being the right child.

4



8

0

1

0 1
1

1 0

0

1

0,1

0,1
0,1

0 0,11 642

7

53

9

Figure 3: Problem 2.

5



Equivalence classes: A, C, D

Minimized automaton:

0

1

0

1

0

1

1

0

1

1

0

1

2

3

4

5

6

7

0

1

DC

A

1

0 010

1

state equivalence class

1

2

3

4

5

6

7

A:{6}

D:{3,5,7}

0,B

C:{1,2,4}

B:{1,2,3,4,5,7}
B C

B C

B D

B C

B D

A

B D

0

Figure 4: Problem 1 solution.

6



8

state equivalence class

1

2

3

4

5

6

7

8

9

A: {1,9} B: {2,3,4,5,6,7,8}

D: {9}C: {1} E: {2,3,4,5,6,8} F: {7}

0,B

G: {2,3,6,8} H: {4,5}

1,E

I: {6} J: {2,3,8}

0,G

K: {2,3} L: {8}

1,H

Equivalence classes: C, D, F, H, I, K, L

Minimized automaton:

0

1

0 1
1

0

0

1

0,1

0,1
0,1

C H I

F D

L

A C

B E G J K

B E G J K

B E H

B E H

B E G I

B F

B E G J L

A D

1 0

0

1

0,1

0,1
0,1

0 0,1

0,1 0,1

1

0,B

1 642

7

53

9

K

Figure 5: Problem 2 solution.

7


