
Automata Theory and Formal Grammars: Lecture 8

Pushdown Automata

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.1/47

Pushdown Automata

Last Time

Chomsky Normal Form

A Pumping Lemma for CFLs

Today

Decision procedures for CFLS

Pushdown Automata

A Kleene Theorem for CFLs

Determinism

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.2/47

Decision Procedures for CFGs

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.3/47

Decision Procedures for CFGs

Recall what a decision procedure is: an algorithm for answering a

yes/no question.

A several yes/no questions involving CFGs have decision procedures.

1. Given CFG G, is ε ∈ L(G)?

2. Given CFG M and x ∈ Σ∗, is x ∈ L(M)?

3. Given FA G, is L(M) = ∅?

Answering these questions is harder in the case of CFGs than FAs, but

all are decidable.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.4/47

Deciding Whether ε ∈ L(G)

... use “nullability algorithm”!

Let G = 〈V,Σ, S, P 〉.

Compute N(G) ⊆ V , the set of nullable variables (i.e. A ∈ N(G) if

and only if A ⇒∗

G ε).

Then ε ∈ L(G) if and only if S ∈ N(G)! (Why?)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.5/47

Deciding Whether x ∈ L(G)

What we want is an algorithm that, given a CFG G and word x,

determines whether or not x can be generated from G.

Our approach will rely on Chomsky Normal Form!

We’ll generate a CNF grammar G4 from G.

We’ll then use the special properties of CNF grammars to answer

the question.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.6/47

How Does CNF Help?

Consider CFG G given by: S −→ ε | 0S1. Our CNF equivalent G4 is:

S −→ X0X1 | X0Y

Y −→ SX1

X0 −→ 0

Y1 −→ 1

To determine if S ⇒G4
001, do we need to consider derivations

beginning

S ⇒G4
X0Y ⇒G4

X0SX1 ⇒G4
X0X0Y X1 ⇒G4

···?

No! |X0X0Y X1| = 4 > 3 = |001|, and in a CNF grammar only words

of length ≥ 4 can be generated from X0X0Y X1.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.7/47

A Decision Procedure for x ∈ L(G)

1. If x = ε, apply previous decision procedure.

2. Otherwise, do following.

(a) Convert G into CNF, yielding G4

(b) Generate all possible derivation sequences whose final

configuration has length |x|.

(c) If one derivation sequence leads to x, return “true”, else return

“false”.

Why does this work? Because for CNF grammars, only finitely many

appropriate derivation sequences are possible!

Note There are much better algorithms....

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.8/47

Pushdown Automata

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.9/47

Machines for CFLs

Recall our study of regular languages.

They were defined in terms of regular expressions (syntax).

We then showed that FAs provide the computational power

needed to process them.

We would like to mimic this line of development for CFLs.

We have a “syntactic” definition of CFLs in terms of CFGs.

What kind of computing power is needed to “process” (i.e.

recognize) CFLs?

Do FAs suffice?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.10/47

Machines for CFLs

The problem with FAs is that a given FA only has a finite amount of

memory.

States allow you to “store” information about the input seen so far.

Finite states = finite memory!

However, some CFLs require an unbounded amount of “memory”!

E.g. L = { 0n1n | n ≥ 0 }. To determine if a word is in L, you need to

be able to “count” arbitrarily high in order to keep track of the number

of initial 0’s. This implies a need for an unbounded number of bits of

memory. (Why?)

Consequently, we need to have some form of “unbounded memory” in

the machines for CFLs.

It turns out that an unbounded stack, or pushdown, will do!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.11/47

Pushdown Automata (PDAs)

... are (N)FAs with an auxiliary stack.

Z

A

B

A a b a a b b . . .

Input stream

Finite-state ”control”
Stack

State transitions can read inputs and top stack symbol.

When a transition “fires”, new symbols can be pushed onto stack.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.12/47

Example: A PDA for { 0n1n | n ≥ 0 }

0, 0/00

1, 0/ε

1, 0/ε

ε, Z0/Z0

0, Z0/0Z0

A

B C D

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.13/47

Formalizing PDAs

What does a PDA specification need to contain?

The things we found in FAs: states, input alphabet, start state,

transitions, accepting states ...

... plus the stack alphabet and initial stack symbol.

Also, transitions need to be able manipulate the stack.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.14/47

Defining PDAs

Definition A pushdown automaton (PDA) is a septuple

〈Q,Σ,Γ, q0, Z0, δ, A〉 where:

Q is a finite set of states;

Σ and Γ are the input and stack alphabets, respectively;

q0 ∈ Q is the start state;

Z0 ∈ Γ is the initial stack symbol ;

δ : Q× (Σ ∪ {ε})× Γ −→ 2Q×(Γ∗) is the transition function; and

A ⊆ Q is the set of accepting states.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.15/47

The Transition Function PDA M =
〈Q,Σ,Γ, q0, Z0, δ, A〉

δ has type Q× (Σ ∪ {ε})× Γ −→ 2Q×(Γ∗).

Inputs triples 〈q, a,X〉.

q is the source state of the transition.

a can either be an input symbol (element of Σ) or ε, in which case

the transition consumes no input when it fires.

X is the symbol currently on top of the stack.

Outputs sets of pairs 〈q′, γ〉. (Why sets? PDAs can be

nondeterministic!).

q′ is the target state of the transition.

γ ∈ Γ∗ is a sequence of symbols pushed onto the stack in place of

X .

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.16/47

PDA Transitions (cont.)

So

if 〈q′, γ〉 ∈ δ(q, a,X)

and the current state is q

and a ∈ Σ and the current input symbol is a

and the current top symbol on the stack is X

then the input symbol is consumed

and the state changes to q′

and X is popped from the stack, with γ then pushed.

(Case for a = ε is the same, except that input stream is not disturbed.)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.17/47

Example: PDA for { 0m1n | m ≤ n ≤ 2m }

0, 0/00

1, 0/ε

1, 0/ε

ε, Z0/Z0

0, Z0/0Z0

A

B C D

0, Z0/00Z0

0, 0/000

What is δ(A, 0, Z0)?

What is δ(B, 0, Z0)?

What is δ(C, 1, 0)?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.18/47

The Language of a PDA

A PDA M should accept a word w if, starting with the initial stack, M

“processes” w and winds up in an accepting state.

What do we need to keep track of to determine if this holds?

PDA’s current state

Current stack contents

Remaining input

If we have this information, then we can determine which transitions

can “fire” and what the new stack contents and input stream are when

a transition takes place!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.19/47

Formalizing Acceptance in a PDA

We need to define the notions of:

Configuration of a PDA (i.e. a “snapshot” of an executing PDA)

A one-step configuration transition relation, ⊢M

We’ll then use these to define the language accepted by a PDA.

In what follows fix PDA M = 〈Q,Σ,Γ, q0, Z0, δ, A〉.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.20/47

Formalizing the Language of a PDA

Definition A configuration of M is a triple 〈q, x, α〉 ∈ Q× (Σ∗)× (Γ∗).

(q is current state, x is remaining input, α is stack, with top element

first.)

Definition The configuration transition relation, ⊢M , is defined by:

〈q, x, α〉 ⊢M 〈q′, x′, α′〉 if there exist a ∈ Σ ∪ {ε}, X ∈ Γ, and β, γ ∈ Γ∗

such that:

〈q′, γ〉 ∈ δ(q, a,X).

x = a · x′

α = X · β

α′ = γ · β

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.21/47

Example

0, 0/00

1, 0/ε

1, 0/ε

ε, Z0/Z0

0, Z0/0Z0

A

B C D

Configuration: 〈B, 01, 0Z0〉

Sequence of configuration transitions:

〈A, 001, Z0〉 ⊢M 〈B, 01, 0Z0〉 ⊢M 〈B, 1, 00Z0〉 ⊢M 〈C, ε, 0Z0〉

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.22/47

Formalizing the Language of a PDA (cont.)

Definition

M accepts x ∈ Σ∗ if there are configurations c0, c1, ...cn for some n ≥ 0

such that:

c0 = 〈q0, x, Z0〉;

cn = 〈q, ε, α〉 for some q ∈ A,α ∈ Γ∗; and

ci ⊢M ci+1 all i such that 0 ≤ i < n.

The language M is L(M) = {x ∈ Σ∗ | M accepts x }.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.23/47

Example

0, 0/00

1, 0/ε

1, 0/ε

ε, Z0/Z0

0, Z0/0Z0

A

B C D

M accepts 0011, since

〈A, 0011, Z0〉 ⊢M 〈B, 011, 0Z0〉 ⊢M 〈B, 11, 00Z0〉

⊢M 〈C, 1, 0Z0〉 ⊢M 〈C, ε, Z0〉 ⊢M 〈D, ε, Z0〉

M does not accept 010, since only possible configuration sequence is:

follows.

〈A, 010, Z0〉 ⊢M 〈B, 10, 0Z0〉 ⊢M 〈C, 0, Z0〉 ⊢M 〈D, 0, Z0〉

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.24/47

A Kleene Theorem for CFLs

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.25/47

A Kleene Theorem for CFLs

Recall the statement of the Kleene Theorem for regular languages.

A language is regular iff it is accepted by some finite

automaton.

This result says that FAs provide the requisite computing power for

“processing” regular languages.

We proved one direction by showing how to convert any regular

expression into a language-equivalent NFA.

We want to prove a similar connection between CFLs and PDAs:

A language is context-free if and only if it is recognized by some PDA.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.26/47

How Do We Prove This?

It suffices to prove two things.

1. For every CFG G there is a PDA M with L(G) = L(M).

2. For every PDA M there is a CFG G with L(M) = L(G).

Why does this suffice?

We will only prove the first direction.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.27/47

Building PDAs from CFGs

Theorem For any CFG G = 〈V,Σ, S, P 〉 there is a PDA M with

L(G) = L(M).

How do we build M? CFGs and PDAs seem very different (one

generates words, the other accepts them). But ...

CFGs generate words using derivation sequences (⇒G).

Any variable can be “expanded” at any time: e.g. in AaB either A

or B can have a production applied. But expanding one variable

does not affect the potential expansions for the others.

Once a terminal appears, it remains.

Idea Build a PDA that simulates “appropriate” derivations in G.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.28/47

Leftmost Derivations

In a “leftmost” derivation, the leftmost variable in a sequence of

terminals and nonterminals is always worked on “first”.

Example Consider G given by:

S −→ AC

A −→ aAb | ε

C −→ cC | ε

Here is a leftmost derivation of abc:

S ⇒G AC ⇒G aAbC ⇒G abC ⇒G abcC ⇒G abc

Here is a derivation that is not leftmost:

S ⇒G AC ⇒G AcC ⇒G aAbcC ⇒G abcC ⇒G abc

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.29/47

Formalizing Leftmost Derivations

Definition Let G = 〈V,Σ, S, P 〉 be a CFG, with α, β ∈ (V ∪Σ)∗. Then

α
ℓ
⇒G β if there exist x ∈ Σ∗, α′, γ ∈ (V ∪ Σ)∗, and A ∈ V such that:

α = xAα′;

β = xγα′; and

A −→ γ is a production in P .

We write α
ℓ
⇒

∗

G β if α can be rewritten to β via a sequence of
ℓ
⇒G

steps .

Lemma For any CFG G = 〈V,Σ, S, P 〉 w ∈ L(G) iff S
ℓ
⇒

∗

G w.

In other words: even though
ℓ
⇒G is more restricted than ⇒G, you can

still generate the same words!

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.30/47

We Can Build a PDA for Leftmost Derivations!

Stack contains (part of) current sequence of terminals and

nonterminals in derivation, with topmost variable in stack being

leftmost variable.

Variables at top of stack are popped and replaced by right-hand

sides of productions.

Terminals at top of stack are matched against input and popped.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.31/47

Example

S −→ ε

| 0S1

ε, Z0/SZ0

ε, S/Λ
ε, S/0S1

ε, Z0/Z0

0, 0/ε
1, 1/ε

q0 q1 q2

Note correspondence:

S
ℓ
⇒G 0S1 〈q0, 01, Z0〉 ⊢M 〈q1, 01, SZ0〉 ⊢M 〈q1, 01, 0S1Z0〉

⊢M 〈q1, 1, S1Z0〉
ℓ
⇒G 01 ⊢M 〈q1, 1, 1Z0〉 ⊢M 〈q1, ε, Z0〉

⊢M 〈q2, ε, Z0〉

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.32/47

Formalizing the Construction

Let G = 〈V,Σ, S, P 〉 be a CFG. We can construct PDA

MG = 〈QG,Σ,Γ, q0, Z0, δG, AG〉 as follows.

QG = {q0, q1, q2}

Γ = V ∪ Σ ∪ {Z0} where Z0 6∈ V ∪ Σ is a new symbol.

δG is defined as follows.

δG(q0, ε, Z0) = {〈q1, SZ0〉}

δG(q1, a, a) = {〈q1, ε〉} if a ∈ Σ

δG(q1, ε, A) = { 〈q1, α〉 | A −→ α ∈ P } if A ∈ V

δG(q1, ε, Z0) = {〈q2, Z0〉}

AG = {q2}

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.33/47

Why Does MG Accept the Language of G?

Recall w ∈ L(MG) iff 〈q0, w, Z0〉 ⊢
∗

MG
〈q2, ε, α〉 some α.

Claims

1. For any q′ ∈ QG, w, w
′ ∈ Σ∗, α ∈ Γ∗

G,

if 〈q0, w, Z0〉 ⊢
∗

MG
〈q′, w′, α〉 then α = β · Z0 for some β ∈ (V ∪ Σ)∗.

2. For any w,w′ ∈ Σ∗, α ∈ Γ∗,

if 〈q0, w, Z0〉 ⊢
∗

MG
〈q2, w

′, α〉 then α = Z0.

3. For any w,w′ ∈ Σ∗, α ∈ (V ∪ Σ)∗,

〈q0, w, Z0〉 ⊢
∗

MG
〈q1, w

′, α · Z0〉 iff S
ℓ
⇒

∗

G x · α, where x ∈ Σ∗ is such

that w = x · w′.

On the basis of these claims, we can prove that L(G) = L(MG).

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.34/47

Determinism

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.35/47

Recall the definition of a PDA

Definition A pushdown automaton (PDA) is a septuple

〈Q,Σ,Γ, q0, Z0, δ, A〉 where:

Q is a finite set of states;

Σ and Γ are the input and stack alphabets, respectively;

q0 ∈ Q is the start state;

Z0 ∈ Γ is the initial stack symbol ;

δ : Q× (Σ ∪ {ε})× Γ −→ 2Q×(Γ∗) is the transition function; and

A ⊆ Q is the set of accepting states.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.36/47

A PDA for L = {wcwR | w ∈ {a, b}∗ }

It will have two states that correspond to “have not seen the c” and

“have seen the c”. The former will be the starting state, and the

latter will be the final state.

When in state “have not seen the c”, it will push the symbols that it

reads onto the stack.

When it encounters the c it switches states without changing the

stack.

In the state “have seen the c”, it compares the current input symbol

to the symbol on the top of the stack and advances past both if

they match.

Only valid strings, that is, ones that have matching a’s and b’s and

contain a c in the middle will cause acceptance. Any other string

will reach a situation where there is no transition to take.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.37/47

Definition

Let M = 〈{s, f}, {a, b, c}, {a, b, Z0}, s, Z0, δ, {f}〉, where

1. δ(s, a, γ) = (s, aγ)

2. δ(s, b, γ) = (s, bγ)

3. δ(s, c, γ) = (f, γ)

4. δ(f, a, a) = (f, ε)

5. δ(f, b, b) = (f, ε)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.38/47

Sample accepting computation: w = abacaba

State Unread input Stack Transition

s abacaba ε —

s bacaba a 1

s acaba ba 2

s caba aba 1

f aba aba 3

f ba ba 4

f a a 5

f ε ε 4

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.39/47

Sample rejecting computation: w = aaaa

State Unread input Stack Transition

s aaaa ε —

s aaa a 1

s aa aa 1

s a aaa 1

s ε aaaa 1

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.40/47

Now consider the language L = {wwR | w ∈ {a, b}∗ }.

There is no center marker c to tell us when to switch from the state that

pushes input onto the stack into the state that reads input while

popping characters off the stack.

We will have to use nondeterminism to “guess” when to make the

switch.

1. δ(s, a, γ) = (s, aγ)

2. δ(s, b, γ) = (s, bγ)

3. δ(s, ε, γ) = (f, γ)

4. δ(f, a, a) = (f, ε)

5. δ(f, b, b) = (f, ε)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.41/47

Sample accepting computation: w = abba

State Unread input Stack Transition

s abba ε —

s bba a 1

s ba ba 2

f ba ba 3

f a a 5

f ε ε 4

If there is no way to “guess” correctly, then the string will not be

accepted, for example with w = babaa

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.42/47

Recall the configuration transition relation

Definition A configuration of M is a triple 〈q, x, α〉 ∈ Q× (Σ∗)× (Γ∗).

(q is current state, x is remaining input, α is stack, with top element

first.)

Definition The configuration transition relation, ⊢M , is defined by:

〈q, x, α〉 ⊢M 〈q′, x′, α′〉 if there exist a ∈ Σ ∪ {ε}, X ∈ Γ, and β, γ ∈ Γ∗

such that:

〈q′, γ〉 ∈ δ(q, a,X).

x = a · x′

α = X · β

α′ = γ · β

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.43/47

Determinism

A pushdown automaton is deterministic if for each configuration there

is at most one configuration that can succeed it in a computation by M .

Question Can we always find an equivalent deterministic pushdown

automaton for a given context-free language?

Answer : Unfortunately not.

There are some context-free languages that cannot be accepted by

deterministic pushdown automata.

This is a dire result, especially if we actually want to produce a parser

for the context-free language.

Some good news: For most programming languages one can

construct deterministic pushdown automata that accept all syntactically

correct programs.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.44/47

Determinism and complementation

Theorem The class of deterministic context-free languages is

closed under complementation.

This is trickier than it was for DFAs, because of the stack.

Sticking point : a PDA may reject because it never finished reading the

input.

This can happen in the following two circumstances:

M reaches a configuration that has no following configuration;

M enters a configuration from which it can apply an infinite

sequence of configurations that do not consume any input.

Proof idea: add in explicit transitions for these cases, then negate the

accepting states.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.45/47

Consider the language

L = { anbmcp | m,n, p ≥ 0, and m 6= n or m 6= p }.

Suppose that L is deterministic. Then L is deterministic context-free,

and thus, context-free.

So L ∩ a∗b∗c∗ would be context-free since intersection of CFL and RL

is a CFL.

But L ∩ a∗b∗c∗ = { anbncn | n ≥ 0 }, a language that is not context-free.

Thus, L cannot be deterministic.

Corollary The class of deterministic context-free languages is

properly contained in the class of context-free languages.

End result : For pushdown automata, non-determinism is more

powerful than determinism.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.46/47

Ambiguity and Determinism

An ambiguous CFG is one which has more than one derivation for the

same string. Note that ambiguity is a property of a grammar, not a

language.

An inherently ambiguous CFL is a CFL that is not expressible using an

unambiguous CFG. For example { anbmcp | m = n or m = p } is an

inherently ambiguous CFL.

Every deterministic PDA language is expressible in an unambiguous

CFG. The converse is not true. For example, S −→ 0S0 | 1S1 | ε is

unambiguous but is accepted by no deterministic PDA.

Proving that a language is inherently ambiguous is tricky. See Herman

A. Maurer, “A Direct Proof of the Inherent Ambiguity of a Simple

Context-Free Language”, Journal of the ACM 16(2), 1969.

http://doi.acm.org/10.1145/321510.321517

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 8 – p.47/47

http://doi.acm.org/10.1145/321510.321517

	Pushdown Automata
	Decision Procedures for CFGs
	Decision Procedures for CFGs
	Deciding Whether $emptystring in lang (G)$
	Deciding Whether $x in lang (G)$
	How Does CNF Help?
	A Decision Procedure for $x in lang (G)$
	Pushdown Automata
	Machines for CFLs
	Machines for CFLs
	Pushdown Automata (PDAs)
	Example: A PDA for $setof {0^n1^n}{n geq 0}$
	Formalizing PDAs
	Defining PDAs
	The Transition Function PDA $M = 	uple {Q, Sigma , Gamma , q_0, Z_0, delta , A}$
	PDA Transitions (cont.)
	Example: PDA for $setof {0^m1^n}{m leq n leq 2m}$
	The Language of a PDA
	Formalizing Acceptance in a PDA
	Formalizing the Language of a PDA
	Example
	Formalizing the Language of a PDA (cont.)
	Example
	A Kleene Theorem for CFLs
	A Kleene Theorem for CFLs
	How Do We Prove This?
	Building PDAs from CFGs
	Leftmost Derivations
	Formalizing Leftmost Derivations
	We Can Build a PDA for Leftmost Derivations!
	Example
	Formalizing the Construction
	Why Does M_G Accept the Language of G?
	Determinism
	Recall the definition of a PDA
	A PDA for $L = setof {wcw^{R}}{w in singset {a, b}^*}$
	Definition
	Recall the configuration transition relation
	Determinism
	Determinism and complementation
	Ambiguity and Determinism

