Automata Theory and Formal Grammars：Lecture 7 Non－Context Free Languages

Non－Context Free Languages

Last Time

－Context－free grammars and languages
－Closure properties of CFLs
－Relating regular languages and CFLs
Today
－An introduction to Chomsky Normal Form
－Eliminating ε－productions from CFGs
－Eliminating unit productions from CFGs
－A Pumping Lemma for CFLs
－Non－closure Properties for CFLs

Simplifying CFGs：Chomsky Normal Form

A question we are ultimately interested in：what can and can＇t we do with CFGs？I．e．are there langauges that are not context－free？
－For regular languages，we showed how FAs can be simplified （minimized）．
－This served as basis for proofs of nonregularity．
We will follow a similar line of development for CFLs，but with a twist．
－We will show how CFGs can be＂simplified＂into Chomsky Normal Form．
－We will use this simplification scheme as a basis for establishing that languages are not CFLs（among other things）．

Defining Chomsky Normal Form

Definition A CFG $\langle V, \Sigma, S, P\rangle$ is in Chomsky Normal Form（CNF）if every production has one of two forms．

■ $A \longrightarrow B C$ for $B, C \in V$
－$A \longrightarrow a$ for $a \in \Sigma$

Examples

1．Is $S \longrightarrow \varepsilon \mid 0 S 1$ in CNF？
No；both productions violate the two allowed forms．
2．Is $S \longrightarrow S S|0| 1$ in CNF？
Yes．

What＇s the Big Deal about CNF？

In an arbitrary CFG it is hard to say whether applying a production leads to＂progress＂in generating a word．

Example Consider the following CFG G ：

$$
S \longrightarrow S S|0| 1 \mid \varepsilon
$$

and look at this derivation of 01 ．

$$
S \Rightarrow_{G} S S \Rightarrow_{G} S S S \Rightarrow_{G} S S S S \Rightarrow_{G} S S S \Rightarrow_{G} S S \Rightarrow_{G} 0 S \Rightarrow_{G} 01
$$

The＂intermediate strings＂can grow and shrink！

What＇s the Big Deal about CNF？（cont．）

Applying a production in a CNF grammar always results in＂one step of progress＂：either the number of nonterminals grows by one，or the number of terminals increases by 1.

Example Consider G^{\prime} given below．

$$
S \longrightarrow S S|0| 1
$$

The derivation for 01 is：

$$
S \Rightarrow_{G^{\prime}} S S \Rightarrow \Rightarrow_{G^{\prime}} 0 S \Rightarrow_{G^{\prime}} 01 .
$$

Converting CFGs into CNF

Can every CFG G be converted into a CNF CFG G^{\prime} so that $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)$ ？

No！If G^{\prime} is in CNF，then $\varepsilon \notin \mathcal{L}(G)$ ！
However，we can get a CNF G^{\prime} so that $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)-\{\varepsilon\}$ ．
1．Eliminate ε－productions（i．e．productions of form $A \longrightarrow \varepsilon$ ）．
2．Eliminate unit productions（i．e．productions of form $A \longrightarrow B$ ）．
3．Eliminate terminal＋productions（i．e．productions of form $A \longrightarrow a C$ or $A \longrightarrow a b a$ ）．

4．Eliminate nonbinary productions（i．e．productions of form $A \longrightarrow A B A)$ ．

Eliminating ε－Productions

CNF grammars contain no ε－productions，and yet arbitrary CFGs may． To convert a CFG to CNF，we therefore need a way of eliminating them．

Of course，CFGs without ε－productions cannot generate the word ε ．
Goal Given CFG G ，generate CFG G_{1} such that：
－G_{1} has no ε－productions；and
－ $\mathcal{L}\left(G_{1}\right)=\mathcal{L}(G)-\{\varepsilon\}$ ．

Eliminating ε－Productions：The Naive Approach

Can we just eliminate the ε－productions？
No！What would language of new grammar be if we eliminate the ε－production in the following？

$$
S \longrightarrow \varepsilon \mid 0 S 1
$$

Answer \emptyset ！
－The new grammar would be $S \longrightarrow 0 S 1$ ．
■ Every derivation looks like：$S \Rightarrow_{G} 0 S 1 \Rightarrow_{G} 00 S 11 \Rightarrow_{G} \cdots$ ．
－That is，can＇t get rid of S ！

So How Can We Eliminate ε－Productions？

ε－productions add＂derivational capability＂in CFGs by allowing variables to be＂eliminated＂in a derivation step．

Example Consider the CFG G given as follows．

$$
S \longrightarrow \varepsilon \mid 0 S 1
$$

The derivation $S \Rightarrow_{G} 0 S 1 \Rightarrow_{G} 01$ uses the ε－production to get rid of S ．
If we want to eliminate ε－productions，we need to add new productions that preserve this derivational capability．

1．Precisely what＂derivational capability＂do ε－productions provide？
2．How can we recover this capability without ε－productions？

Nullability

Definition Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG．Then $A \in V$ is nullable if $A \Rightarrow_{G}^{*} \varepsilon$ ．

E．g．Consider the following CFG．
$S \longrightarrow A B C B C$
$A \longrightarrow C D$
$B \longrightarrow C b$
$C \longrightarrow a \mid \varepsilon$
$D \longrightarrow b \mid \varepsilon$
A is nullable since $A \Rightarrow_{G} C D \Rightarrow_{G} D \Rightarrow_{G} \varepsilon$ ．
Why are variables nullable？Because of ε－productions！So nullability is the＂derivational capability＂that ε－productions add to a CFG．

Generating a ε－Production－Free CFGs

Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG，and let $N \subseteq V$ be the set of nullable variables．

If we remove the ε－productions from G ，we remove the capability of nullifying variables（i．e．＂eliminating＂them）．

To restore this capability，we need to add productions in which nullable variables are explicitly removed．

Example Consider

$$
S \longrightarrow \varepsilon \mid 0 S 1
$$

S is nullable；to eliminate ε－production we should add production $S \longrightarrow 01$ ．The new grammar：

$$
S \longrightarrow 0 S 1 \mid 01
$$

Constructing ε－Free CFGs

Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG，and let $N \subseteq V$ be the set of nullable variables．Consider the following definition of $G_{1}=\left\langle V_{1}, \Sigma, S_{1}, P_{1}\right\rangle$ ．

$$
\begin{aligned}
V_{1} & =V \\
S_{1} & =S \\
P & =P-\{A \longrightarrow \varepsilon \mid A \longrightarrow \varepsilon \in P\} \\
& \cup\left\{A \longrightarrow \alpha_{0} \cdots \alpha_{n} \mid \alpha_{0} \cdots \alpha_{n} \neq \varepsilon \wedge \exists A_{1}, \ldots, A_{n} \in N .\right. \\
& \left.A \longrightarrow \alpha_{0} A_{1} \alpha_{1} \ldots \alpha_{n-1} A_{n} \alpha_{n} \in P\right\}
\end{aligned}
$$

P_{1} contains：
－the non－ε－productions in P ，together with
－productions obtained by selectively omitting occurrences of nullable variables．
－$A \longrightarrow \alpha_{0} A_{1} \alpha_{1} \ldots \alpha_{n-1} A_{n} \alpha_{n}$ is a production in G ．
－The A_{i} are nullable variables．
－The α_{i} is the＂stuff＂in－between the A_{i} ．
－$A \longrightarrow \alpha_{0} \cdots \alpha_{n}$ is a modified production with the A_{i}＇s omitted．
The idea is that in the original grammar，$A \Rightarrow_{G}^{*} \alpha_{0} \cdots \alpha_{n}$ by＂nullifying＂ the A_{i} ． $\ln G_{1}$ ，this capability is realized in a single production．

Calculating the Set of Nullable Variables

To generate G_{1} ，we need to calculate the set $N \subseteq V$ of nullable variables．We can do so by giving a recursive characterization of N ．

Define $N(G) \subseteq V$ as follows．
－If $A \longrightarrow \varepsilon$ then $A \in N(G)$ ．
－If $A \longrightarrow B_{1} \cdots B_{n}$ and $B_{1}, \ldots, B_{n} \in N(G)$ then $A \in N(G)$ ．
Lemma Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG，and let $A \in V$ ．Then $A \in N(G)$ if and only if A is nullable．

Proof Use induction！

Example

Consider G given as follows．

$S \longrightarrow A B C B C$
$A \longrightarrow C D$
$B \longrightarrow C b$
$C \longrightarrow a \mid \varepsilon$
$D \longrightarrow b D \mid \varepsilon$

First，calculate $N(G)$ ．

$$
\begin{aligned}
& N(G)_{0}=\emptyset \\
& N(G)_{1}=\{C, D\} \\
& N(G)_{2}=\{A, C, D\} \\
& N(G)_{3}=N(G)_{2}
\end{aligned}
$$

Recall G ；remember that $N(G)=\{A, C, D\}$ ．

$$
\begin{aligned}
& S \longrightarrow A B C B C \quad C \longrightarrow a \mid \varepsilon \\
& A \longrightarrow C D \quad D \longrightarrow b D \mid \varepsilon \\
& B \longrightarrow C b
\end{aligned}
$$

G_{1} is boxed transitions are new ones）：

$$
\begin{aligned}
S & \longrightarrow A B C B C|\triangle A B C B| \triangle A B B C|\mid A B B \\
& \mid \\
A & \rightarrow C D|\boxed{B C B C}| \triangle B C B \mid \triangle D \\
B & \longrightarrow C b|\boxed{B B C}| \boxed{B B} \\
C & \longrightarrow a \\
D & \longrightarrow b D \mid \boxed{b}
\end{aligned}
$$

Where are we？

So Far

－Simplifying CFGs and Chomsky Normal Form（CNF）
－Eliminating ε－productions from CFGs．
To Do Eliminating：
－unit
－terminal＋
nonbinary productions
from CFGs．

Converting CFGs into Chomsky Normal Form

1．Eliminate ε－productions $(A \longrightarrow \varepsilon)$ ．
2．Eliminate unit productions $(A \longrightarrow B)$ ．
3．Eliminate terminal＋productions $(A \longrightarrow a C, A \longrightarrow a b a)$ ．
4．Eliminate nonbinary productions $(A \longrightarrow A B A)$ ．
Last time we proved the following．
Lemma Let G be a CFG．Then there is a CFG $G 1$ containing no ε－productions and such that $\mathcal{L}(G 1)=\mathcal{L}(G)-\{\varepsilon\}$ ．

I．e．we now know how to eliminate ε－productions！What about the others？

Eliminating Unit Productions

Definition A unit production has form $A \longrightarrow B$ where $B \in V$ ．
Like ε productions，they add＂derivational capability＂to grammars．
Consequently，if we eliminate them we need to＂add in＂productions that simulate derivations that involved them．

Example Consider G given by：
$S \longrightarrow A \mid C$
$A \longrightarrow a A \mid B$
$B \longrightarrow b B \mid b$
$C \longrightarrow c C \mid c$

In order to remove $S \longrightarrow A$ ，need to add e．g．$S \longrightarrow a A$ ！

But Which Productions Do We Need To Add？

Suppose G is a CFG．Then unit productions allow derivations like this．

$$
A \Rightarrow_{G} A_{1} \Rightarrow_{G} A_{2} \Rightarrow_{G} \cdots \Rightarrow_{G} A_{n} \Rightarrow_{G} \alpha
$$

where each $A_{i} \in V$ is a single variable．If α is not just a single variable， then we should add a production $A \longrightarrow \alpha$ ．How do we determine these α＇s？

Definition Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG，with $A \in V$ ．Then $U(G, A) \subseteq V$ is defined inductively as follows．
－$A \in U(G, A)$ ．
■ If $B \in U(G, A)$ and $B \longrightarrow C \in P$ then $C \in U(G, A)$ ．

$U(G, A)$ and New Productions

Intuitively，$B \in U(G, A)$ iff $A \Rightarrow{ }_{G}^{*} B$ using only unit productions！
Idea In new CFG，we will remove unit productions but add in productions of form $A \longrightarrow \alpha$ for every variable A ，where $B \longrightarrow \alpha$ in original CFG and $B \in U(G, A)$ ！

Example

Let G be given as follows．

$$
\begin{array}{lll}
S & \longrightarrow & A \mid C \\
A & \longrightarrow & a A \mid B \\
B & \longrightarrow & b B \mid b \\
C & \longrightarrow & c C \mid c
\end{array}
$$

Then $U(G, S)$ can be computed as follows．

$$
\begin{aligned}
U(G, S)_{0} & =\emptyset \\
U(G, S)_{1} & =\{S\} \\
U(G, S)_{2} & =\{S, A, C\} \\
U(G, S)_{3} & =\{S, A, B, C\}=U(G, S)_{4}
\end{aligned}
$$

Example（cont．）

$$
\begin{array}{lll}
S & \longrightarrow & A \mid C \\
A & \longrightarrow & a A \mid B \\
B & \longrightarrow & b B \mid b \\
C & \longrightarrow & c C \mid c
\end{array}
$$

We can similarly show that $U(G, A)=\{A, B\}, U(G, B)=\{B\}$ ，and $U(G, C)=\{C\}$ ．Then the new grammar should be：

$$
\begin{aligned}
& S \rightarrow \boxed{a A}|\boxed{b B}| \boxed{b}|\boxed{c C}| \boxed{c} \\
& A \longrightarrow a A|\boxed{b B}| \boxed{b} \\
& B \rightarrow b B \mid b \\
& C \rightarrow c C \mid c
\end{aligned}
$$

Formal Construction

Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG．Then we define $G_{2}=\left\langle V, \Sigma, S, P_{2}\right\rangle$ as follows．

$$
P_{2}=\{A \longrightarrow \alpha \mid \exists B \in U(G, A), \alpha . B \longrightarrow \alpha \in P \wedge \alpha \notin V\}
$$

Fact Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG without ε productions，and let G_{2} be defined as above．Then the following hold．

1．G_{2} contains no ε productions．
2．G_{2} contains no unit productions．
3． $\mathcal{L}\left(G_{2}\right)=\mathcal{L}(G)-\{\varepsilon\}$ ．

Eliminating Terminal＋Productions

Definition A production $A \longrightarrow \alpha$ is terminal＋if $|\alpha| \geq 2$ and α contains at least one terminal．

Examples
－$A \longrightarrow C a$
－$A \longrightarrow a b a$
Eliminating these is fairly simple：
－Introduce a new variable X_{a} for each terminal $a \in \Sigma$ ．
－Add productions $X_{a} \longrightarrow a$ ．
－In each terminal＋production，replace terminals a by variables X_{a} ．

Example

Let G be given by：

$$
S \longrightarrow a S b|a S| S b|a| b
$$

Then G_{3} is：

$$
\begin{aligned}
S & \longrightarrow X_{a} S X_{b}\left|X_{a} S\right| S X_{b}|a| b \\
X_{a} & \longrightarrow a \\
X_{b} & \longrightarrow b
\end{aligned}
$$

Formal Construction

Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG．Then we define $G_{3}=\left\langle V_{3}, \Sigma, S, P_{3}\right\rangle$ as follows．

$$
\begin{aligned}
V_{3}= & V \cup\left\{X_{a} \mid a \in \Sigma\right\}, \text { where } X_{a} \notin V \cup \Sigma \\
P_{3}= & \left\{A \longrightarrow \alpha^{\prime} \mid A \longrightarrow \alpha \in P\right. \\
& \left.\wedge \alpha^{\prime} \text { is } \alpha \text { with } a \text { replaced by } X_{a} \text { if } A \longrightarrow \alpha \text { is terminal }\right\} \\
\cup & \left\{X_{a} \longrightarrow a \mid a \in \Sigma\right\}
\end{aligned}
$$

Lemma Let G be a CFG without ε－or unit－productions，and let G_{3} be constructed as above．Then the following are true．

1．G_{3} contains no ε or unit productions．
2．G_{3} contains no terminal＋productions．
3． $\mathcal{L}\left(G_{3}\right)=\mathcal{L}(G)-\{\varepsilon\}$ ．

Eliminating Nonbinary Productions

Definition A production $A \longrightarrow \alpha$ is nonbinary if $|\alpha| \geq 3$ ．
Example $A \longrightarrow B A B$
How do we eliminate these？
－For each such production $p=A \longrightarrow A_{1} A_{2} \cdots A_{n}$ and $n \geq 3$ ，we will introduce new variables $X_{p, 2}, \ldots X_{p, n-1}$ ．
－Replace $A \longrightarrow A_{1} A_{2} \cdots A_{n}$ by a collection of productions：

$$
\begin{array}{rll}
A & \longrightarrow & A_{1} X_{p, 2} \\
X_{p, 2} & \longrightarrow & A_{2} X_{p, 3} \\
& \vdots & \\
X_{p, n-1} & \longrightarrow A_{n-1} A_{n}
\end{array}
$$

Explaining the Idea

Suppose we have a production $A \longrightarrow B C C D$ ．The construction would replace it with the following．

$$
\begin{aligned}
A & \longrightarrow B X_{p, 2} \\
X_{p, 2} & \longrightarrow C X_{p, 3} \\
X_{p, 3} & \longrightarrow C D
\end{aligned}
$$

In the original CFG，$A \Rightarrow{ }_{G}^{*} B C C D$ in one step．
In the new CFG it takes three steps：
$A \Rightarrow_{G_{4}} B X_{p, 2} \Rightarrow_{G_{4}} B C X_{p, 3} \Rightarrow_{G_{4}} B C C D$ ．

Example

Let G be：

$$
\begin{aligned}
S & \longrightarrow X_{a} S X_{b}\left|X_{a} S\right| S X_{b}|a| b \\
X_{a} & \longrightarrow a \\
X_{b} & \longrightarrow b
\end{aligned}
$$

Then G_{4} is：

$$
\begin{aligned}
S & \longrightarrow X_{a} X_{1,2}\left|X_{a} S\right| S X_{b}|a| b \\
X_{1,2} & \longrightarrow S X_{b} \\
X_{a} & \longrightarrow a \\
X_{b} & \longrightarrow b
\end{aligned}
$$

Formal Construction

Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG containing no terminal＋productions．
Then we define $G_{4}=\left\langle V_{4}, \Sigma, S, P_{4}\right\rangle$ as follows．

$$
\begin{aligned}
V_{4} & =V \cup\left\{X_{p, i}|p=A \longrightarrow \alpha \in P \wedge 2 \leq i<|\alpha|\}, \text { where } X_{p, i} \notin V \cup \Sigma\right. \\
P_{4} & =\{A \longrightarrow \alpha \in P| | \alpha \mid \leq 2\} \\
& \cup\left\{A \longrightarrow A_{1} X_{p, 2} \mid p=A \longrightarrow A_{1} \ldots A_{n} \in P \wedge n>2\right\} \\
& \cup\left\{X_{p, i} \longrightarrow A_{i} X_{p, i+1} \mid p=A \longrightarrow A_{1} \ldots A_{n} \in P \wedge n>2 \wedge 2 \leq i<n-1\right\} \\
& \cup\left\{X_{p, n-1} \longrightarrow A_{n-1} A_{n} \mid p=A \longrightarrow A_{1} \ldots A_{n} \in P \wedge n>2\right\}
\end{aligned}
$$

Correctness of Nonbinary Production Elimination

Lemma Let G be a CFG without ε－，unit－or terminal＋productions， and let G_{4} be constructed as above．Then the following hold．

1．G_{4} has no ε－，unit－or terminal＋productions．
2．G_{4} has no nonbinary productions．
3． $\mathcal{L}\left(G_{4}\right)=\mathcal{L}(G)-\{\varepsilon\}$ ．
Note Since G_{4} contains no ε－，unit－，terminal + ，or nonbinary productions，it has to be in Chomsky Normal Form！

A Pumping Lemma for CFLs

Proving Languages Non－Regular

Recall how we proved languages to be nonregular．
Myhill－Nerode：A language L is regular iff its indistinguishability relation I_{L} has finitely many equivalence classes．

Pumping Lemma：If L is regular，and $x \in L$ is＂long enough＂，then x can be split into u, v, w so that $u v^{i} w \in L$ all i ．

Proving Languages Non－Context－Free

There＇s no Myhill－Nerode theorem for CFLs，but there is a Pumping Lemma：if L is a CFL and a word is＂long enough＂then parts of the word can be replicated．

Questions
－What is＂long enough＂？
－Which parts can be＂replicated＂？
To answer these questions we＇ll：
－introduce the notion of＂derivation tree＂for CFGs；
－show that CFGs in Chomsky normal form have derivation trees of a specific form．

Derivation Trees

＂Derivation sequences＂show how CFGs generate words．
Example Let G be $S \longrightarrow \varepsilon \mid 0 S 1$ ．Then to show that G generates
0011：

$$
S \Rightarrow_{G} 0 S 1 \Rightarrow_{G} 00 S 11 \Rightarrow_{G} 00 \cdot \varepsilon \cdot 11=0011
$$

A derivation tree is a tree－ like representation of a derivation sequence．

Formally Defining Derivation Trees

Definition Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG，and let $w \in \Sigma^{*}$ ．Then a derivation tree for w in G is a labeled ordered tree satisfying the following．
－The root is labeled by S ．
－Internal nodes are labeled by elements of V ．singset
－Leaves are labeld by elements of $\Sigma \cup\{\varepsilon\}$ ．
－If A is label of an internal node and X_{1}, \ldots, X_{n} are labels of its children from left to right then $A \longrightarrow X_{1} \cdots X_{n}$ is a production in P ．
－Concatenating the leaves from left to right forms w ．
One can show that $w \in \mathcal{L}(G)$ if and only if there is a derivation tree for w in G ．

Another Example Derivation Tree

Let G be：

$$
\begin{aligned}
& S \longrightarrow A C \\
& A \longrightarrow a A b \mid \varepsilon \\
& C \longrightarrow c C \mid \varepsilon
\end{aligned}
$$

Then a derivation tree for $a a b b c$ is：

Derivation Trees and Chomsky Normal Form

Suppose G is in CNF；what property do the derivation trees for words have？
－No leaves are labeled by ε ．
－Every internal node has either one child，which must be a leaf，or two children，which must both be internal．

When Are Words＂Long Enough＂？

If derivation tree for u is．．．
．．．then the following derivation tree also exis

If the CFG is in CNF，one can characterize when words are＂long enough＂to have such trees！

CFGs，CNF and＂Long Enough＂Words

Suppose $G=\langle V, \Sigma, S, P\rangle$ is a CFG in CNF．We want to know how long a word $w \in \mathcal{L}(G)$ has to be in order to ensure the existence of a derivation like the following．

$$
S \Rightarrow{ }_{G}^{*} v A z \Rightarrow{ }_{G}^{*} v w A y x \Rightarrow_{G}^{*} v w x y z
$$

Note This holds when derivation tree contains a path of length
$|V|+1$ ！
－Such a path contains $|V|+2$ nodes．
－All nodes except last one are labeled by variables．
■ So some variable appears twice！
Since derivation trees in G must be binary（ G is in CNF），the longest a word $w \in \mathcal{L}(G)$ can be and have a derivation tree of height $|V|$ is $2^{|V|-1}$ ．

So if $|w| \geq 2^{|V|-1}+1$ ，then the＂right kind＂of derivation must exist！

The Pumping Lemma for CFLs

Theorem

If $L \subseteq \Sigma^{*}$ is a CFL
then there exists $N>0$ such that for all $u \in L$ ，

$$
\text { if }|u| \geq N
$$

then there exist $v, w, x, y, z \in \Sigma^{*}$ such that：

$$
\begin{aligned}
& u=v w x y z \text { and } \\
& |w y|>0 \text { and } \\
& |w x y| \leq N \text { and } \\
& \text { for all } m \geq 0, v w^{m} x y^{m} z \in L .
\end{aligned}
$$

What is N ？If n_{L} is the smallest number of variables needed to give a CFG G in CNF with $\mathcal{L}(G)=L-\{\varepsilon\}$ ，then $N=2^{n_{L}-1}+1$ ．

Proving Languages Non－Context－Free Using the Pumping Lemma

As was the case with regular languages，we can use the contrapositive of the Pumping Lemma to prove languages to be non－CFLs

Lemma（Pumping Lemma for CFLs）L is a CFL $\Longrightarrow P(L)$ ，where $P(L)$ is：

$$
\begin{aligned}
& \exists N>0 . \forall u \in L .|u| \geq N \Longrightarrow \exists v, w, x, y, z \in \Sigma^{*} . \\
& \left(u=v w x y z \wedge|w y|>0 \wedge|w x y| \leq N \wedge \forall m \geq 0 . v w^{m} x y^{m} z \in \boxed{L}\right)
\end{aligned}
$$

Contrapositive $(\neg P(L)) \Longrightarrow L$ is not a CFL．
So to prove L is not a CFL，it suffices to prove $\neg P(L)$ ，which can be simplified to：

$$
\begin{aligned}
& \forall N>0 . \exists u \in L .|u| \geq N \wedge \forall v, w, x, y, z \in \Sigma^{*} . \\
& \left.(u=v w x y z \wedge|w y|>0 \wedge|w x y| \leq N) \Longrightarrow \exists m \geq 0 . v w^{m} x y^{m} z \notin L\right)
\end{aligned}
$$

Example：Proof that $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ Is Not a CFL

On the basis of the Pumping Lemma it suffices to prove the following．

$$
\begin{aligned}
& \forall N>0 . \exists u \in L .|u| \geq N \wedge \forall v, w, x, y, z \in \Sigma^{*} . \\
& \left.(u=v w x y z \wedge|w y|>0 \wedge|w x y| \leq N) \Longrightarrow \exists m \geq 0 . v w^{m} x y^{m} z \notin L\right)
\end{aligned}
$$

So fix $N>0$ and consider $u=a^{N} b^{N} c^{N}$ ；clearly $u \in L$ and $|u| \geq N$ ． Now fix $v, w, x, y, z \in \Sigma^{*}$ so that the following hold．
$\square u=v w x y z$
－$|w y|>0$
－$|w x y| \leq N$

Proof（cont．）

We wish to show that there is an m such that $v w^{m} x y^{m} z \notin L$ ．There are two cases to consider．

1．$w x y \in\{a, b\}^{*}$（i．e．contains no c＇s）．
2．$w x y=w^{\prime} c^{i}$ some $i>0, w^{\prime} \in\{a, b\}^{*}$（i．e．does contain c^{\prime} s）．
For both cases，consider $m=0$ ．In case $1, v w^{0} x y^{0} z \notin L$ ，since $v w^{0} x y^{0} z$ contains n c＇s but $<n$ of either a^{\prime}＇s or b＇s．In case $2, w^{\prime} \in\{b\}^{*}$ since $|w x y| \leq N$ ．Consequently，$v w^{0} x y^{0} z$ contains $n a$＇s but $<n b$＇s or c＇s．So we have demonstrated the existence of m with $v w^{m} x y^{m} z \notin L$ ， and L is not context－free．

Ramifications

－Non－context－free languages exist！Other examples：
－$\left\{w w \mid w \in\{a, b\}^{*}\right\}$
■ $\left\{a^{m} b^{n} c^{m} d^{n} \mid m, n \geq 0\right\}$
However，$\left\{a^{m} b^{n} c^{n} d^{m} \mid m, n \geq 0\right\}$ is a CFL．
Moral In CFLs can count pairwise and＂outside in＂．
－CFLs are not closed with respect to \cap ！Let $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ ． Then $L=L_{1} \cap L_{2}$ where：

$$
\begin{aligned}
& L_{1}=\left\{a^{n} b^{n} c^{m} \mid m, n \geq 0\right\} \\
& L_{2}=\left\{a^{m} b^{n} c^{n} \mid m, n \geq 0\right\}
\end{aligned}
$$

Both L_{1} and L_{2} are CFLs．

Ramifications（cont．）

－CFLs are not closed with respect to complementation！
－CFLs are closed with respect to \cup ．
－$L_{1} \cap L_{2}=\left(L_{1}^{\prime} \cup L_{2}^{\prime}\right)^{\prime}$

