Automata Theory and Formal Grammars: Lecture 6

Context Free Languages

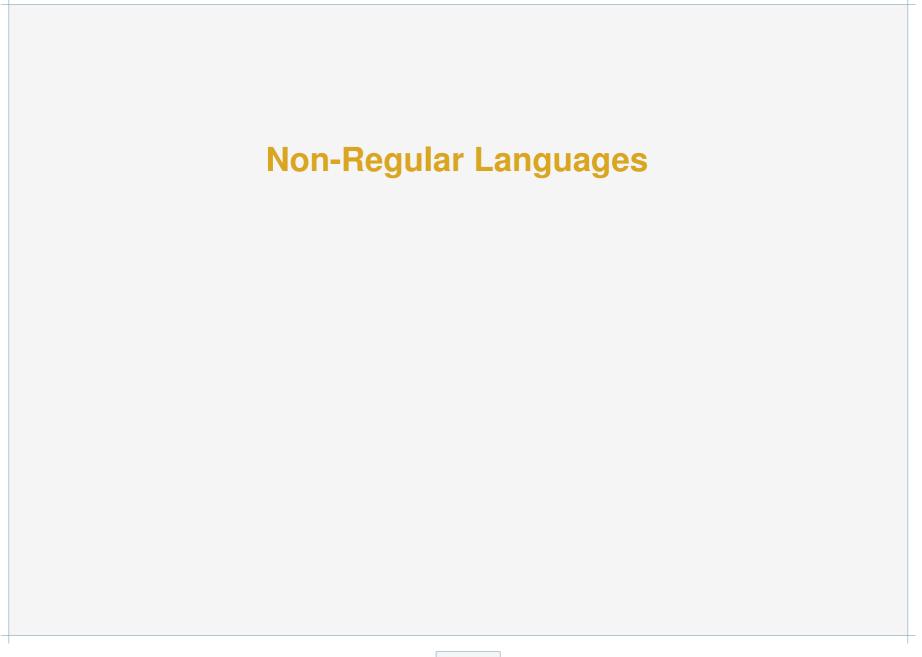
Context Free Languages

Last Time

- Decision procedures for FAs
- Minimum-state DFAs

Today

- The Myhill-Nerode Theorem
- The Pumping Lemma
- Context-free grammars and languages
- Closure properties of CFLs
- Relating regular languages and CFLs

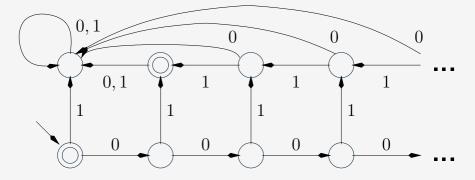


Languages That Are Not Regular

So far we have only seen regular languages. Do nonregular ones exist?

Yes! Consider $L = \{ 0^n 1^n \mid n \ge 0 \}.$

What would a "FA" look like for this language?



• What can you say about the strings 0^i and 0^j if $i \neq j$? If $i \neq j$ then $0^i \not > 0^j$!

In this case \bowtie^{L} has an infinite number of equivalence classes!

The Myhill-Nerode Theorem

Theorem (Myhill-Nerode)Let $L \subseteq \Sigma^*$ be a language. Then L isregular if and only if $\stackrel{L}{\bowtie}$ has a finite number of equivalence classes.

So how do you prove that a language *L* is not regular using Myhill-Nerode?

- Must show that $\stackrel{L}{\bowtie}$ has an infinite number of equivalence classes.
- Suffices to give an *infinite* set $S \subseteq \Sigma^*$ whose elements are *pairwise distinguishable* with respect to *L*: for every $x, y \in S$ with $x \neq y$, $x \not\bowtie^L y$.

Why does this condition suffice?

- If S is pairwise distinguishable, then every element of S must belong to a different equivalence class of \bowtie^{L} .
- Since S is infinite, there must be an infinite number of equivalence classes!

Example: Proving Nonregularity of $\{0^n 1^n \mid n \ge 0\}$

Theorem $L = \{ 0^n 1^n \mid n \ge 0 \}$ is not regular.

Proof On the basis of the Myhill-Nerode Theorem, it suffices to give an infinite set $S \subseteq \{0, 1\}^*$ that is pairwise distinguishable with respect to *L*. Consider

$$S = \{ 0^i \mid i \ge 1 \}.$$

Clearly S is infinite.

We now must show that *S* is pairwise distinguishable. So consider strings $x = 0^i$ and $y = 0^j$ where $i \neq j$; we must show that $x \not\bowtie^L y$, which requires that we find a *z* such that $xz \in L$ and $yz \notin L$ (or vice versa). Consider $z = 1^i$. Then $xz = 0^i 1^i \in L$, but $yz = 0^j 1^i \notin L$. Thus $x \not\bowtie^L y$, and *S* is pairwise distinguishable.

Another Example: Even-Length Palindromes

Recall If $x \in \Sigma^*$ then x^r is the "reverse" of x.

E.g. $abb^r = bba.$

A *palindrome* is a word that is the same backwards as well as forwards.

abba

- **01110**
- RADAR

Any *even-length* palindrome can be written as $x \cdot x^r$ for some string x. **E.g.** $abba = ab \cdot ba = ab \cdot (ab)^r$.

Even-length palindromes over $\{a, b\}$ form a nonregular language.

Proving Even-Length Palindromes To Be Nonregular

Theorem Let $E = \{x \cdot x^r \mid x \in \{a, b\}^*\}$. Then *E* is not regular.

Proof On the basis of the Myhill-Nerode Theorem it suffices to come up with an infinite set $S \subseteq \{a, b\}^*$ that is pairwise distinguishable with respect to *E*. Consider

$$S = \{ a^i b \mid i \ge 0 \}.$$

Clearly *S* is infinite.

To show pairwise distinguishability, consider $x = a^i b$ and $y = a^j b$ where $i \neq j$; we must show $x \not\bowtie^E y$, i.e. we must find a z with $xz \in L$ and $yz \notin L$, or vice versa. Consider

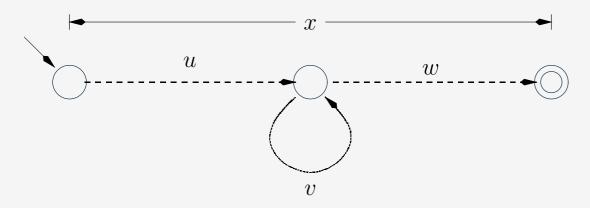
$$z = x^r = ba^i.$$

By definition $xz \in L$. However, $yz = a^j bba^i \notin L$ since $j \neq i$.

The Pumping Lemma: Another Way of Proving Nonregularity

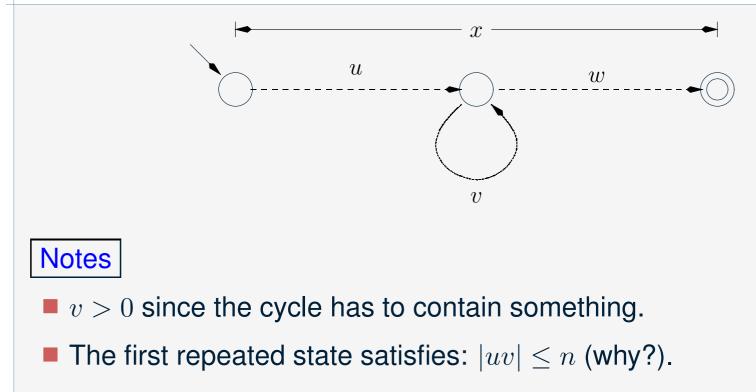
By way of introduction, consider the following.

- If a language L is regular, there is a minimum-state DFA accepting L. Let n be the number of states in this DFA.
- What happens if $x \in L$ is at least n symbols long?



Some state must be visited twice, i.e. "cycled through"!

The Pumping Lemma (cont.)



 $\blacksquare uv^m w \in L \text{ all } m \ge 0!$

Formalizing the Pumping Lemma

Lemma (Pumping Lemma) If $L \subseteq \Sigma^*$ is regular, then there exists n > 0 such that for any $x \in L$, if $|x| \ge n$ then there exist $u, v, w \in \Sigma^*$ such that

$$x = uvw \tag{1}$$

$$|uv| \leq n$$
 (2)

$$|v| > 0 \tag{3}$$

$$uv^m w \in L$$
 for any $m \ge 0$ (4)

This lemma can be used to prove nonregularity! Look at its logical structure.

$$\begin{array}{l} L \text{ is regular } \Longrightarrow \ \exists \, n > 0. \\ \forall \, x \in L. |x| \geq n \implies \\ \exists \, u, v, w \in \Sigma^*. \ x = uvw \wedge |uv| \leq n \wedge |v| > 0 \wedge \\ \forall \, m \geq 0. uv^m w \in L \end{array}$$

Using the Pumping Lemma to Prove Nonregularity

Recall form of Pumping Lemma:

 $\begin{array}{l} L \text{ is regular } \Longrightarrow \ \exists \, n > 0. \\ \forall \, x \in L. |x| \geq n \implies \\ \exists \, u, v, w \in \Sigma^*. \ x = uvw \wedge |uv| \leq n \wedge |v| > 0 \wedge \\ \forall \, m \geq 0. uv^m w \in L \end{array}$

What is contrapositive? $\neg(\exists n > 0...) \implies L$ is not regular! If we drive the negation inside the antecedent we get:

$$\begin{aligned} \forall n > 0. \exists x \in L. \ |x| \geq n \land \\ \forall u, v, w \in \Sigma^*. (x = uvw \land |uv| \leq n \land |v| > 0) \implies \\ \exists m \geq 0. uv^m w \notin L \end{aligned}$$

So if we can prove this statement of a language L, then L is not regular!

Example: Proving $\{ww \mid w \in \{a, b\}^*\}$ **Is Not Regular**

Theorem
$$L = \{ww \mid w \in \{a, b\}^*\}$$
 is not regular.

Proof On the basis of the Pumping Lemma it suffices to prove the following.

$$\begin{split} \forall n > 0. \exists \, x \in L. \; |x| \geq n \; \wedge \\ \forall \, u, v, w \in \Sigma^*. (x = uvw \; \wedge \; |uv| \leq n \; \wedge \; |v| > 0) \implies \\ \exists \, m \geq 0. uv^m w \not\in L \end{split}$$

So fix n > 0 and consider $x = a^n b^n a^n b^n$. Clearly $x \in L$ and |x| > n. Now fix $u, v, w \in \Sigma^*$ and assume that x = uvw, $|uv| \le n$, and |v| > 0. We have the following picture.

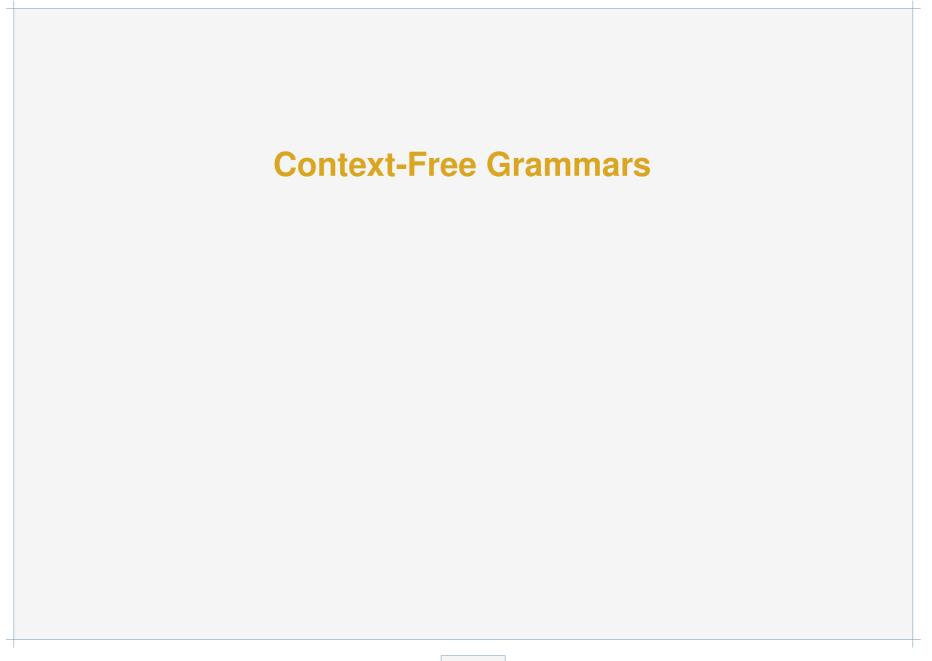
$$\underbrace{a \cdots a}_{u} \underbrace{a \cdots a}_{v} \underbrace{a \cdots a}_{w} \underbrace{b \cdots b}_{w} \underbrace{a \cdots a}_{w} \underbrace{b \cdots b}_{w} \underbrace{a \cdots a}_{w} \underbrace{b \cdots b}_{w}$$

Proof (cont.)

That is, $v = a^i$ some i > 0. Now let m = 2, and consider

$$uv^m w = uv^2 w = a^{n+i}b^n a^n b^n.$$

This word is not an element of *L*; consequently, *L* cannot be regular.



Context-Free Grammars and Languages

Regular languages have a nice theory:

- Regular expressions give a "syntax" for defining them.
- FAs provide the computational means for processing them.

However, some "simple" languages are not regular, e.g. $L = \{ 0^n 1^n \mid n \ge 0 \}.$

■ No FA exists for *L*.

On the other hand, it's easy to give a recursive definition of *L*.

 $\blacksquare \ \varepsilon \in L$

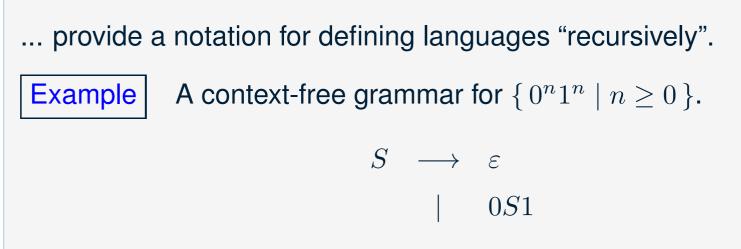
If $w \in L$ then $0w1 \in L$.

Observations

- Some "easy to process languages" like $L = \{ 0^n 1^n \mid n \ge 0 \}$ are nevertheless not recognizable using FAs alone.
- So there must be computing devices that are "better" than FAs when it comes to recognizing languages.
- There must also be "more general" classes of languages than regular languages that are still amenable to automatic analysis.

Context-free languages represent the next, broader class of languages we will study. They are defined using *context-free grammars*.

Context-Free Grammars



- S is a nonterminal (think "variable").
- The grammar has two productions saying how variable S may be rewritten.
- One generates words by applying productions beginning from the start symbol (always a nonterminal, here S):

 $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 00\varepsilon 11 = 0011$

Defining Context-Free Grammars

Definition A *context-free grammar* (CFG) is a quadruple $\langle V, \Sigma, S, P \rangle$, where:

- *V* is a finite set of *variables* (aka *nonterminals*).
- Σ is an alphabet, with $V \cap \Sigma = \emptyset$. Elements of Σ are sometimes called *terminals*.
- $S \in V$ is a distinguished *start symbol*.
- P is a finite set of *productions* of the form $A \longrightarrow \alpha$, where $A \in V$ and $\alpha \in (V \cup \Sigma)^*$.

Notational Conventions for CFGs

• $A \longrightarrow \alpha_1 | \cdot | \alpha_n$ is shorthand for *n* productions of form $A \longrightarrow \alpha_i$. • Start symbol is first one written down. E.g. In CFG $S \longrightarrow \varepsilon$ | 0S1 $V = \{S\}, \Sigma = \{0, 1\}, S$ is start symbol, and $P = \{S \longrightarrow \varepsilon, S \longrightarrow 0S1\}$.

Other CFG Examples

Palindromes over $\Sigma = \{a, b\}$

Sample word: $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$

Nonpalindromes over $\Sigma = \{a, b\}$

Sample word: $S \Rightarrow aSa \Rightarrow aaAba \Rightarrow aa\varepsilon ba = aaba$

Languages of CFGs

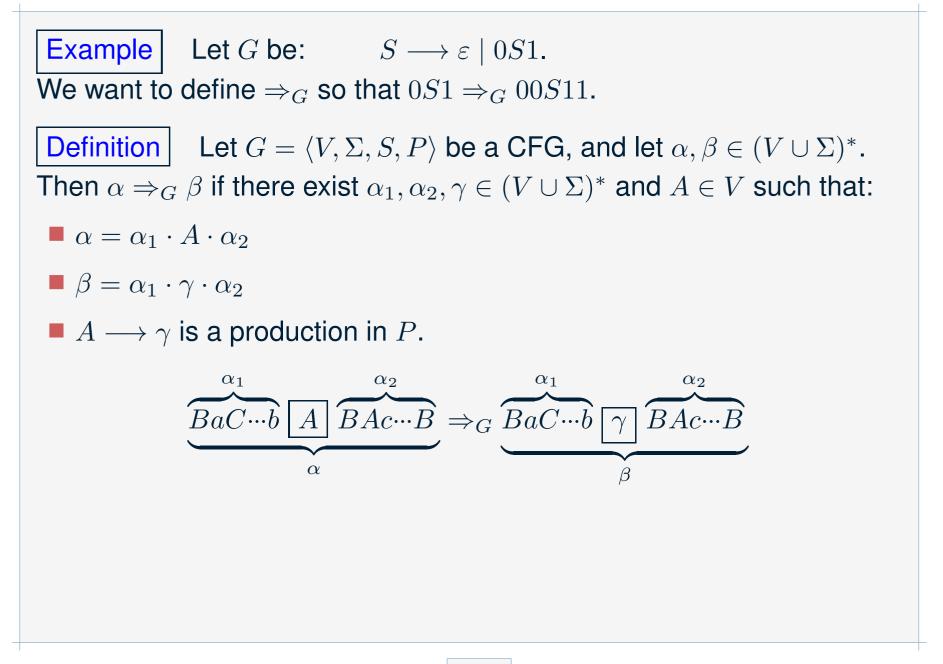
CFGs are be used to generate strings of terminals and nonterminals.

- Productions are used as "rewrite rules" to replace variables by strings.
- So what should the language of a CFG be? The sequences of terminals that can be generated from the start variable.

How do we make this precise?

- Given a grammar *G* we'll define a "rewrite relation" \Rightarrow_G : $\alpha \Rightarrow_G \beta$ should hold if α can be "rewritten" into β by applying one production.
- Then $w \in \Sigma^*$ is in the language of G if $S \Rightarrow_G \alpha \Rightarrow_G \cdots \Rightarrow_G w$.

Defining \Rightarrow_G



Generating Words in CFGs

 \Rightarrow_G defines the valid "one-step" derivations in a CFG. We can use this to define "multi-step" derivations via the relation \Rightarrow_G^* .

Example Let G be: $S \longrightarrow \varepsilon \mid 0S1$. Then we want $S \Rightarrow^*_G 0011$ to hold.

Definition Let $G = \langle V, \Sigma, S, P \rangle$ be a CFG, and let $\alpha, \beta \in (V \cup \Sigma)^*$. Then $\alpha \Rightarrow_G^* \beta$ if there exists $n \ge 0$ and $\alpha_0, ... \alpha_n \in (V \cup \Sigma)^*$ such that: • $\alpha = \alpha_0$ • $\beta = \alpha_n$ • For all $i < n \alpha_i \Rightarrow_G \alpha_{i+1}$. In other words, $\alpha = \alpha_0 \Rightarrow_G \alpha_1 \Rightarrow_G \cdot \Rightarrow_G \alpha_n = \beta$.

Examples

Let *G* be the nonpalindrome CFG:

- 1. Does $S \Rightarrow_G abaa$?
- 2. Does $aSAa \Rightarrow^*_G aabAa$?
- 3. Does $S \Rightarrow^*_G S$?
- 4. Does $S \Rightarrow_G^* A$?

The Language of a CFG

The language of a CFG G can now be defined using \Rightarrow_G^* .

Definition Let $G = \langle V, \Sigma, S, P \rangle$ be a CFG. Then the *language* of G, $\mathcal{L}(G) \subseteq \Sigma^*$, is defined as follows.

$$\mathcal{L}(G) = \{ w \in \Sigma^* \mid S \Rightarrow^*_G w \}$$

Context-free languages (CFLs) are those for which one can give CFGs.

Definition A language $L \subseteq \Sigma^*$ is *context-free* if there is a CFG G with $L = \mathcal{L}(G)$.

Another CFG/CFL Example

A CFG for the valid arithmetic expressions over the natural numbers.

$$S \longrightarrow N$$

$$\mid SOS$$

$$\mid (S)$$

$$N \longrightarrow D \mid PR$$

$$D \longrightarrow 0 \mid P$$

$$P \longrightarrow 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

$$R \longrightarrow D \mid DR$$

$$O \longrightarrow + \mid - \mid * \mid /$$

Regular Languages and CFLs

Theorem Every regular language is context-free.

How can we prove this? By giving any one of several different translations:

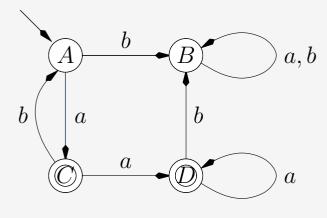
- 1. Regular expressions \Rightarrow CFGs
- 2. FAs \Rightarrow CFGs
- 3. NFAs \Rightarrow CFGs

We will pursue (2).

Translating FAs into CFGs

How do we do this? By turning:

- states into variables;
- transitions into productions; and
- **acceptance into** ε **-productions.**



Note
$$\delta^*(A, aab) = B$$
, and $A \Rightarrow^*_G aabB$.

Formalizing the Translation

Given a FA $M = \langle Q, \Sigma, q_0, \delta, A \rangle$, we want to define CFG $G_M = \langle V, \Sigma, S, P \rangle$ so that $\mathcal{L}(M) = \mathcal{L}(G_M)$. Assume without loss of generality that $Q \cap \Sigma = \emptyset$.

$$\blacksquare V = Q$$

$$\blacksquare S = q_0$$

$$\blacksquare P = \{ q \longrightarrow a \cdot \delta(q, a) \mid q \in Q \} \cup \{ q \longrightarrow \varepsilon \mid q \in A \}$$

To prove that $\mathcal{L}(M) = \mathcal{L}(G_M)$ we can first argue that:

For every $x \in \Sigma^*, q, q' \in Q$, $\delta^*(q, x) = q' \text{ iff } q \Rightarrow^*_{G_M} x \cdot q'.$ Then $x \in \mathcal{L}(M)$ iff $x \in \mathcal{L}(G_M)$! (Why?)

Closure Properties of CFLs

What we know:

- Every regular langauge is a CFL.
- Regular languages are closed with respect to: $\cdot, *, \cup, \cap$, etc.

Are CFLs automatically closed with respect to these operations also?

No! Regular languages constitute a *proper subset* of CFLs, and the closure properties do not immediately "transfer."

Nevertheless, we do have the following.

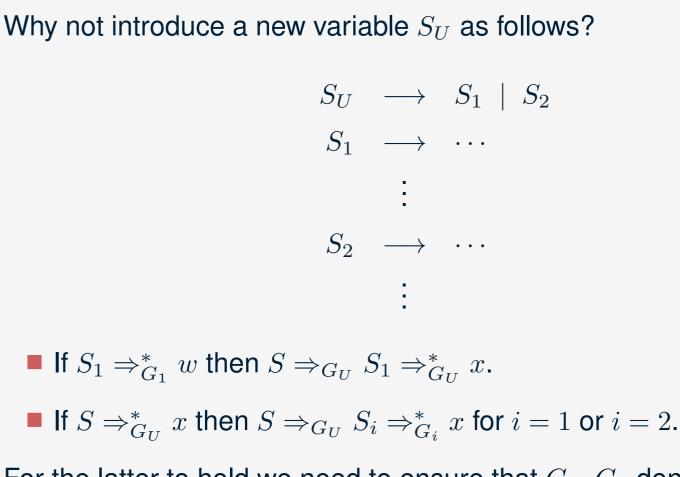
Theorem The set of context-free languages is closed with respect to \cup , \cdot and *.

Proofs rely on grammar constructions.

Proving CFLs Closed with Respect to \cup

into a single CFG G_U such that $\mathcal{L}(G_U) = \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$. I.e. if S_U is start symbol of G_U then $S_U \Rightarrow^*_{G_U} x$ iff $S_1 \Rightarrow^*_{G_1} x$ or $S_2 \Rightarrow^*_{G_2} x$.

Idea



For the latter to hold we need to ensure that G_1 , G_2 don't interfere with one another (i.e. share variables).

Formal Construction of G_U

Let $G_1 = \langle V_1, \Sigma, S_1, P_1 \rangle$ and $G_2 = \langle V_2, \Sigma, S_2, P_2 \rangle$; without loss of generality, assume that $V_1 \cap V_2 = \emptyset$. We build $G_U = \langle V_U, \Sigma, S_U, P_U \rangle$ as follows.

- 1. Choose a new variable $S_U \notin V_1 \cup V_2 \cup \Sigma$ to be the start symbol of G_U .
- 2. Take $V_U = V_1 \cup V_2 \cup \{S_U\}$
- 3. Set $P_U = P_1 \cup P_2 \cup \{S_U \longrightarrow S_1, S_U \longrightarrow S_2\}$

We can then argue that $\mathcal{L}(G_U) = \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$ by first establishing:

Fact
$$S_1 \Rightarrow_{G_U} \alpha \text{ iff } S_1 \Rightarrow_{G_1} \alpha \text{ for any } \alpha \in (V_U \cup \Sigma)^*.$$

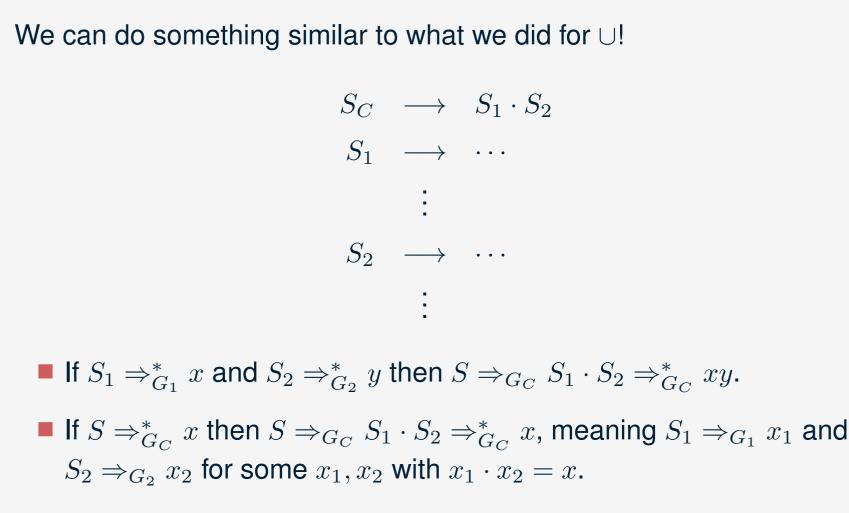
Then
$$S_U \Rightarrow^*_{G_U} x$$
 iff $S_1 \Rightarrow^*_{G_1} x$ or $S_2 \Rightarrow^*_{G_2} x$, for any $x \in \Sigma^*$!

Proving CFLs Closed with Respect to -

We need to show how to combine two CFGs G_1 and G_2 : $S_1 \longrightarrow \cdots \qquad S_2 \longrightarrow \cdots$ $\vdots \qquad \vdots \qquad & \vdots \qquad &$

into a single CFG G_C such that $\mathcal{L}(G_C) = \mathcal{L}(G_1) \cdot \mathcal{L}(G_2)$. I.e. if S_C is start symbol of G_C then $S_C \Rightarrow^*_{G_C} x$ iff $S_1 \Rightarrow^*_{G_1} x_1, S_2 \Rightarrow^*_{G_2} x_2$, and $x = x_1 \cdot x_2$, for some x_1, x_2 .

Idea



For the latter to hold we need to ensure that G_1 , G_2 don't share variables....

Formal Construction of G_C

Approach is similar to that for G_U : pick a new start symbol $S_C \notin V_1 \cup V_2 \cup \Sigma$, and construct $G_C = \langle V, \Sigma, S_C, P_C \rangle$ where:

 $\bullet V_C = V_1 \cup V_2 \cup \{S_C\}.$

 $\square P_C = P_1 \cup P_2 \cup \{S_C \longrightarrow S_1 \cdot S_2\}$

Proof of correctness follows similar lines to G_U case.

Proving CFLs Closed with Respect to *

To build G_K from G so that $\mathcal{L}(G_K) = (\mathcal{L}(G))^*$ we follow the same line of attack as for \cup, \cdot !

