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Automata Theory and Formal Grammars: Lecture 6

Context Free Languages
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Non-Regular Languages
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Languages That Are Not Regular

So far we have only seen regular languages. Do nonregular ones

exist?

Yes! Consider L = { 0n1n | n ≥ 0 }.

What would a “FA” look like for this language?

...0 0 0 0

...
1 1 1

1

0, 1

0 0 0
0, 1

1 1 1

What can you say about the strings 0i and 0j if i 6= j?

If i 6= j then 0i 6
L

⊲⊳ 0j !

In this case
L

⊲⊳ has an infinite number of equivalence classes!
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The Myhill-Nerode Theorem

Theorem (Myhill-Nerode) Let L ⊆ Σ∗ be a language. Then L is

regular if and only if
L

⊲⊳ has a finite number of equivalence classes.

So how do you prove that a language L is not regular using

Myhill-Nerode?

Must show that
L

⊲⊳ has an infinite number of equivalence classes.

Suffices to give an infinite set S ⊆ Σ∗ whose elements are pairwise

distinguishable with respect to L: for every x, y ∈ S with x 6= y,

x 6
L

⊲⊳ y.

Why does this condition suffice?

If S is pairwise distinguishable, then every element of S must

belong to a different equivalence class of
L

⊲⊳.

Since S is infinite, there must be an infinite number of equivalence

classes!
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Example: Proving Nonregularity of { 0n1n | n ≥ 0 }

Theorem L = { 0n1n | n ≥ 0 } is not regular.

Proof On the basis of the Myhill-Nerode Theorem, it suffices to give

an infinite set S ⊆ {0, 1}∗ that is pairwise distinguishable with respect

to L. Consider

S = { 0i | i ≥ 1 }.

Clearly S is infinite.

We now must show that S is pairwise distinguishable. So consider

strings x = 0i and y = 0j where i 6= j; we must show that x 6
L

⊲⊳ y, which

requires that we find a z such that xz ∈ L and yz 6∈ L (or vice versa).

Consider z = 1i. Then xz = 0i1i ∈ L, but yz = 0j1i 6∈ L. Thus x 6
L

⊲⊳ y,

and S is pairwise distinguishable.
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Another Example: Even-Length Palindromes

Recall If x ∈ Σ∗ then xr is the “reverse” of x.

E.g. abbr = bba.

A palindrome is a word that is the same backwards as well as forwards.

abba

01110

RADAR

Any even-length palindrome can be written as x · xr for some string x.

E.g. abba = ab · ba = ab · (ab)r.

Even-length palindromes over {a, b} form a nonregular language.
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Proving Even-Length Palindromes To Be Nonreg-
ular

Theorem Let E = {x · xr | x ∈ {a, b}∗ }. Then E is not regular.

Proof On the basis of the Myhill-Nerode Theorem it suffices to

come up with an infinite set S ⊆ {a, b}∗ that is pairwise distinguishable

with respect to E. Consider

S = { aib | i ≥ 0 }.

Clearly S is infinite.

To show pairwise distinguishability, consider x = aib and y = ajb where

i 6= j; we must show x 6
E

⊲⊳ y, i.e. we must find a z with xz ∈ L and

yz 6∈ L, or vice versa. Consider

z = xr = bai.

By definition xz ∈ L. However, yz = ajbbai 6∈ L since j 6= i.
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The Pumping Lemma: Another Way of Proving
Nonregularity

By way of introduction, consider the following.

If a language L is regular, there is a minimum-state DFA accepting

L. Let n be the number of states in this DFA.

What happens if x ∈ L is at least n symbols long?

x

u

v

w

Some state must be visited twice, i.e. “cycled through”!
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The Pumping Lemma (cont.)

x

u

v

w

Notes

v > 0 since the cycle has to contain something.

The first repeated state satisfies: |uv| ≤ n (why?).

uvmw ∈ L all m ≥ 0!
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Formalizing the Pumping Lemma

Lemma (Pumping Lemma) If L ⊆ Σ∗ is regular, then there exists

n > 0 such that for any x ∈ L, if |x| ≥ n then there exist u, v, w ∈ Σ∗

such that

x = uvw (1)

|uv| ≤ n (2)

|v| > 0 (3)

uvmw ∈ L for any m ≥ 0 (4)

This lemma can be used to prove nonregularity! Look at its logical

structure.

L is regular =⇒ ∃n > 0.

∀x ∈ L.|x| ≥ n =⇒

∃u, v, w ∈ Σ∗. x = uvw ∧ |uv| ≤ n ∧ |v| > 0∧

∀m ≥ 0.uvmw ∈ L
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Using the Pumping Lemma to Prove Nonregularity

Recall form of Pumping Lemma:

L is regular =⇒ ∃n > 0.

∀x ∈ L.|x| ≥ n =⇒

∃u, v, w ∈ Σ∗. x = uvw ∧ |uv| ≤ n ∧ |v| > 0∧

∀m ≥ 0.uvmw ∈ L

What is contrapositive? ¬(∃n > 0....) =⇒ L is not regular!

If we drive the negation inside the antecedent we get:

∀n > 0.∃x ∈ L. |x| ≥ n ∧

∀u, v, w ∈ Σ∗.(x = uvw ∧ |uv| ≤ n ∧ |v| > 0) =⇒

∃m ≥ 0.uvmw 6∈ L

So if we can prove this statement of a language L, then L is not

regular!
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Example: Proving {ww | w ∈ {a, b}∗ } Is Not Regu-
lar

Theorem L = {ww | w ∈ {a, b}∗ } is not regular.

Proof On the basis of the Pumping Lemma it suffices to prove the

following.

∀n > 0.∃x ∈ L. |x| ≥ n ∧

∀u, v, w ∈ Σ∗.(x = uvw ∧ |uv| ≤ n ∧ |v| > 0) =⇒

∃m ≥ 0.uvmw 6∈ L

So fix n > 0 and consider x = anbnanbn . Clearly x ∈ L and |x| > n.

Now fix u, v, w ∈ Σ∗ and assume that x = uvw, |uv| ≤ n, and |v| > 0.

We have the following picture.

a···a
︸︷︷︸

u

a···a
︸︷︷︸

v

a···a

n
︷︸︸︷

b···b

n
︷︸︸︷

a···a

n
︷︸︸︷

b···b
︸ ︷︷ ︸

w

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 6 – p.13/40



< > - +

Proof (cont.)

That is, v = ai some i > 0. Now let m = 2, and consider

uvmw = uv2w = an+ibnanbn.

This word is not an element of L; consequently, L cannot be regular.
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Context-Free Grammars
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Context-Free Grammars and Languages

Regular languages have a nice theory:

Regular expressions give a “syntax” for defining them.

FAs provide the computational means for processing them.

However, some “simple” languages are not regular, e.g.

L = { 0n1n | n ≥ 0 }.

No FA exists for L.

On the other hand, it’s easy to give a recursive definition of L.

ε ∈ L

If w ∈ L then 0w1 ∈ L.
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Observations

Some “easy to process languages” like L = { 0n1n | n ≥ 0 } are

nevertheless not recognizable using FAs alone.

So there must be computing devices that are “better” than FAs

when it comes to recognizing languages.

There must also be “more general” classes of languages than

regular languages that are still amenable to automatic analysis.

Context-free languages represent the next, broader class of languages

we will study. They are defined using context-free grammars.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 6 – p.17/40



< > - +

Context-Free Grammars

... provide a notation for defining languages “recursively”.

Example A context-free grammar for { 0n1n | n ≥ 0 }.

S −→ ε

| 0S1

S is a nonterminal (think “variable”).

The grammar has two productions saying how variable S may be

rewritten.

One generates words by applying productions beginning from the

start symbol (always a nonterminal, here S):

S ⇒ 0S1 ⇒ 00S11 ⇒ 00ε11 = 0011
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Defining Context-Free Grammars

Definition A context-free grammar (CFG) is a quadruple

〈V,Σ, S, P 〉, where:

V is a finite set of variables (aka nonterminals).

Σ is an alphabet, with V ∩ Σ = ∅. Elements of Σ are sometimes

called terminals.

S ∈ V is a distinguished start symbol.

P is a finite set of productions of the form A −→ α, where A ∈ V

and α ∈ (V ∪ Σ)∗.
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Notational Conventions for CFGs

A −→ α1 | · | αn is shorthand for n productions of form A −→ αi.

Start symbol is first one written down.

E.g. In CFG

S −→ ε

| 0S1

V = {S}, Σ = {0, 1}, S is start symbol, and P = {S −→ ε, S −→ 0S1}.
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Other CFG Examples

Palindromes over Σ = {a, b}

S → ε | a | b

| aSa | bSb

Sample word: S ⇒ aSa ⇒ abSba ⇒ ababa

Nonpalindromes over Σ = {a, b}

S → aSa | bSb | aAb | bAa

A → ε | aA | bA

Sample word: S ⇒ aSa ⇒ aaAba ⇒ aaεba = aaba
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Languages of CFGs

CFGs are be used to generate strings of terminals and nonterminals.

Productions are used as “rewrite rules” to replace variables by

strings.

So what should the language of a CFG be?

The sequences of terminals that can be generated from the start

variable.

How do we make this precise?

Given a grammar G we’ll define a “rewrite relation” ⇒G: α ⇒G β

should hold if α can be “rewritten” into β by applying one

production.

Then w ∈ Σ∗ is in the language of G if S ⇒G α ⇒G ··· ⇒G w.
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Defining ⇒G

Example Let G be: S −→ ε | 0S1.

We want to define ⇒G so that 0S1 ⇒G 00S11.

Definition Let G = 〈V,Σ, S, P 〉 be a CFG, and let α, β ∈ (V ∪ Σ)∗.

Then α ⇒G β if there exist α1, α2, γ ∈ (V ∪ Σ)∗ and A ∈ V such that:

α = α1 ·A · α2

β = α1 · γ · α2

A −→ γ is a production in P .

α1

︷ ︸︸ ︷

BaC···b A

α2

︷ ︸︸ ︷

BAc···B
︸ ︷︷ ︸

α

⇒G

α1

︷ ︸︸ ︷

BaC···b γ

α2

︷ ︸︸ ︷

BAc···B
︸ ︷︷ ︸

β
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Generating Words in CFGs

⇒G defines the valid “one-step” derivations in a CFG. We can use this

to define “multi-step” derivations via the relation ⇒∗

G.

Example Let G be: S −→ ε | 0S1.

Then we want S ⇒∗

G 0011 to hold.

Definition Let G = 〈V,Σ, S, P 〉 be a CFG, and let α, β ∈ (V ∪ Σ)∗.

Then α ⇒∗

G β if there exists n ≥ 0 and α0, ...αn ∈ (V ∪ Σ)∗ such that:

α = α0

β = αn

For all i < n αi ⇒G αi+1.

In other words, α = α0 ⇒G α1 ⇒G · ⇒G αn = β.
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Examples

Let G be the nonpalindrome CFG:

S → aSa | bSb | aAb | bAa

A → ε | aA | bA

1. Does S ⇒G abaa?

2. Does aSAa ⇒∗

G aabAa?

3. Does S ⇒∗

G S?

4. Does S ⇒∗

G A?
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The Language of a CFG

The language of a CFG G can now be defined using ⇒∗

G.

Definition Let G = 〈V,Σ, S, P 〉 be a CFG. Then the language of G,

L(G) ⊆ Σ∗, is defined as follows.

L(G) = {w ∈ Σ∗ | S ⇒∗

G w }

Context-free languages (CFLs) are those for which one can give CFGs.

Definition A language L ⊆ Σ∗ is context-free if there is a CFG G

with L = L(G).
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Another CFG/CFL Example

A CFG for the valid arithmetic expressions over the natural numbers.

S −→ N

| SOS

| (S)

N −→ D | PR

D −→ 0 | P

P −→ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

R −→ D | DR

O −→ + | − | ∗ | /
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Regular Languages and CFLs
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Regular Languages and CFLs

Theorem Every regular language is context-free.

How can we prove this? By giving any one of several different

translations:

1. Regular expressions ⇒ CFGs

2. FAs ⇒ CFGs

3. NFAs ⇒ CFGs

We will pursue (2).
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Translating FAs into CFGs

How do we do this? By turning:

states into variables;

transitions into productions; and

acceptance into ε-productions.

b

ab

a
a

b

a, b1

2 3

00A B

C D

A −→ aC | bB

B −→ aB | bB

C −→ aD | bA | ε

D −→ aD | bB | ε

Note δ∗(A, aab) = B, and A ⇒∗

G aabB.
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Formalizing the Translation

Given a FA M = 〈Q,Σ, q0, δ, A〉, we want to define CFG

GM = 〈V,Σ, S, P 〉 so that L(M) = L(GM ). Assume without loss of

generality that Q ∩ Σ = ∅.

V = Q

S = q0

P = { q −→ a · δ(q, a) | q ∈ Q } ∪ { q −→ ε | q ∈ A }

To prove that L(M) = L(GM ) we can first argue that:

For every x ∈ Σ∗, q, q′ ∈ Q,

δ∗(q, x) = q′ iff q ⇒∗

GM
x · q′.

Then x ∈ L(M) iff x ∈ L(GM ) ! (Why?)
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Closure Properties of CFLs
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Closure Properties of CFLs

What we know:

Every regular langauge is a CFL.

Regular languages are closed with respect to: ·,∗ ,∪,∩, etc.

Are CFLs automatically closed with respect to these operations also?

No! Regular languages constitute a proper subset of CFLs, and the

closure properties do not immediately “transfer.”

Nevertheless, we do have the following.

Theorem The set of context-free languages is closed with respect to

∪, · and ∗.

Proofs rely on grammar constructions.
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Proving CFLs Closed with Respect to ∪

We need to show how to combine two CFGs G1 and G2:

S1 −→ · · · S2 −→ · · ·
...

...

G1 G2

into a single CFG GU such that L(GU ) = L(G1) ∪ L(G2). I.e. if SU is

start symbol of GU then SU ⇒∗

GU
x iff S1 ⇒∗

G1
x or S2 ⇒∗

G2
x.
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Idea

Why not introduce a new variable SU as follows?

SU −→ S1 | S2

S1 −→ · · ·
...

S2 −→ · · ·
...

If S1 ⇒∗

G1
w then S ⇒GU

S1 ⇒∗

GU
x.

If S ⇒∗

GU
x then S ⇒GU

Si ⇒
∗

Gi
x for i = 1 or i = 2.

For the latter to hold we need to ensure that G1, G2 don’t interfere with

one another (i.e. share variables).
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Formal Construction of GU

Let G1 = 〈V1,Σ, S1, P1〉 and G2 = 〈V2,Σ, S2, P2〉; without loss of

generality, assume that V1 ∩ V2 = ∅. We build GU = 〈VU ,Σ, SU , PU 〉 as

follows.

1. Choose a new variable SU 6∈ V1 ∪ V2 ∪ Σ to be the start symbol of

GU .

2. Take VU = V1 ∪ V2 ∪ {SU}

3. Set PU = P1 ∪ P2 ∪ {SU −→ S1, SU −→ S2}

We can then argue that L(GU ) = L(G1) ∪ L(G2) by first establishing:

Fact S1 ⇒GU
α iff S1 ⇒G1

α for any α ∈ (VU ∪ Σ)∗.

Then SU ⇒∗

GU
x iff S1 ⇒∗

G1
x or S2 ⇒∗

G2
x, for any x ∈ Σ∗!
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Proving CFLs Closed with Respect to ·

We need to show how to combine two CFGs G1 and G2:

S1 −→ · · · S2 −→ · · ·
...

...

G1 G2

into a single CFG GC such that L(GC) = L(G1) · L(G2). I.e. if SC is

start symbol of GC then SC ⇒∗

GC
x iff S1 ⇒∗

G1
x1, S2 ⇒∗

G2
x2, and

x = x1 · x2, for some x1, x2.
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Idea

We can do something similar to what we did for ∪!

SC −→ S1 · S2

S1 −→ · · ·
...

S2 −→ · · ·
...

If S1 ⇒∗

G1
x and S2 ⇒∗

G2
y then S ⇒GC

S1 · S2 ⇒∗

GC
xy.

If S ⇒∗

GC
x then S ⇒GC

S1 · S2 ⇒∗

GC
x, meaning S1 ⇒G1

x1 and

S2 ⇒G2
x2 for some x1, x2 with x1 · x2 = x.

For the latter to hold we need to ensure that G1, G2 don’t share

variables....
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Formal Construction of GC

Approach is similar to that for GU : pick a new start symbol

SC 6∈ V1 ∪ V2 ∪ Σ, and construct GC = 〈V,Σ, SC , PC〉 where:

VC = V1 ∪ V2 ∪ {SC}.

PC = P1 ∪ P2 ∪ {SC −→ S1 · S2}

Proof of correctness follows similar lines to GU case.
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Proving CFLs Closed with Respect to ∗

To build GK from G so that L(GK) = (L(G))∗ we follow the same line

of attack as for ∪, ·!

S −→ · · · SK −→ ε | S · SK

... S −→ · · ·
...

G GK
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