Automata Theory and Formal Grammars: Lecture 6 Context Free Languages

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.1/40

Non-Regular Languages

Context Free Languages

Last Time

- Decision procedures for FAs
- Minimum-state DFAs

Today

- The Myhill-Nerode Theorem
- The Pumping Lemma
- Context-free grammars and languages
- Closure properties of CFLs
- Relating regular languages and CFLs

Portions © 2000 Rance Cleaveland © 2004 James Riely

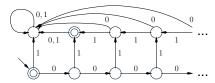
Automata Theory and Formal Grammars: Lecture 6 - p.2/40

Languages That Are Not Regular

So far we have only seen regular languages. Do nonregular ones exist?

Yes! Consider $L = \{ 0^n 1^n \mid n \ge 0 \}.$

■ What would a "FA" look like for this language?



■ What can you say about the strings 0^i and 0^j if $i \neq j$? If $i \neq j$ then $0^i \not \bowtie 0^j$!

In this case $\stackrel{\scriptscriptstyle L}{\bowtie}$ has an infinite number of equivalence classes!

The Myhill-Nerode Theorem

Theorem (Myhill-Nerode) Let $L \subseteq \Sigma^*$ be a language. Then L is regular if and only if $\stackrel{L}{\bowtie}$ has a finite number of equivalence classes.

So how do you prove that a language ${\cal L}$ is not regular using Myhill-Nerode?

- \blacksquare Must show that \bowtie^L has an infinite number of equivalence classes.
- Suffices to give an *infinite* set $S \subseteq \Sigma^*$ whose elements are *pairwise* distinguishable with respect to L: for every $x, y \in S$ with $x \neq y$, $x \not \bowtie y$.

Why does this condition suffice?

- If S is pairwise distinguishable, then every element of S must belong to a different equivalence class of $\stackrel{L}{\bowtie}$.
- Since S is infinite, there must be an infinite number of equivalence classes!

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.5

Another Example: Even-Length Palindromes

Recall If $x \in \Sigma^*$ then x^r is the "reverse" of x.

E.g. $abb^r = bba$.

A palindrome is a word that is the same backwards as well as forwards.

- $\blacksquare abba$
- **01110**
- RADAR

Any *even-length* palindrome can be written as $x \cdot x^r$ for some string x. $\boxed{\text{E.g.}} \quad abba = ab \cdot ba = ab \cdot (ab)^r$.

Even-length palindromes over $\{a,b\}$ form a nonregular language.

Example: Proving Nonregularity of $\{0^n1^n \mid n \geq 0\}$

Theorem

 $L = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof On the basis of the Myhill-Nerode Theorem, it suffices to give an infinite set $S \subseteq \{0,1\}^*$ that is pairwise distinguishable with respect to L. Consider

$$S = \{ 0^i \mid i \ge 1 \}.$$

Clearly S is infinite.

We now must show that S is pairwise distinguishable. So consider strings $x=0^i$ and $y=0^j$ where $i\neq j$; we must show that $x\not\stackrel{L}{\bowtie}y$, which requires that we find a z such that $xz\in L$ and $yz\not\in L$ (or vice versa). Consider $z=1^i$. Then $xz=0^i1^i\in L$, but $yz=0^j1^i\not\in L$. Thus $x\not\stackrel{L}{\bowtie}y$, and S is pairwise distinguishable.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.6/40

Proving Even-Length Palindromes To Be Nonregular

Theorem

Let $E = \{ x \cdot x^r \mid x \in \{a, b\}^* \}$. Then E is not regular.

Proof On the basis of the Myhill-Nerode Theorem it suffices to come up with an infinite set $S \subseteq \{a,b\}^*$ that is pairwise distinguishable with respect to E. Consider

$$S = \{ a^i b \mid i \ge 0 \}.$$

Clearly ${\cal S}$ is infinite.

To show pairwise distinguishability, consider $x=a^ib$ and $y=a^jb$ where $i\neq j$; we must show $x\not\bowtie^E y$, i.e. we must find a z with $xz\in L$ and $yz\not\in L$, or vice versa. Consider

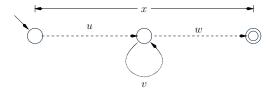
$$z = x^r = ba^i.$$

By definition $xz \in L$. However, $yz = a^jbba^i \notin L$ since $j \neq i$.

The Pumping Lemma: Another Way of Proving Nonregularity

By way of introduction, consider the following.

- If a language *L* is regular, there is a minimum-state DFA accepting *L*. Let *n* be the number of states in this DFA.
- What happens if $x \in L$ is at least n symbols long?



Some state must be visited twice, i.e. "cycled through"!

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.9/40

Formalizing the Pumping Lemma

Lemma (Pumping Lemma) If $L\subseteq \Sigma^*$ is regular, then there exists n>0 such that for any $x\in L$, if $|x|\geq n$ then there exist $u,v,w\in \Sigma^*$ such that

$$x = uvw (1)$$

$$|uv| \leq n$$
 (2)

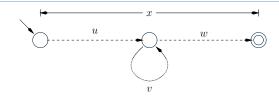
$$|v| > 0 ag{3}$$

$$uv^m w \in L \quad \text{for any } m \ge 0$$
 (4)

This lemma can be used to prove nonregularity! Look at its logical structure.

$$\begin{array}{c} L \text{ is regular } \Longrightarrow \exists \, n > 0. \\ \forall \, x \in L. |x| \geq n \implies \\ \exists \, u, v, w \in \Sigma^*. \, x = uvw \wedge |uv| \leq n \wedge |v| > 0 \, \wedge \\ \forall \, m \geq 0. uv^m w \in L \end{array}$$

The Pumping Lemma (cont.)



Notes

- $\blacksquare v > 0$ since the cycle has to contain something.
- The first repeated state satisfies: |uv| < n (why?).
- $uv^mw \in L \text{ all } m \geq 0!$

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.10/40

Using the Pumping Lemma to Prove Nonregularity

Recall form of Pumping Lemma:

$$L \text{ is regular } \Longrightarrow \exists n > 0.$$

$$\begin{split} \forall \, x \in L. |x| \geq n &\Longrightarrow \\ \exists \, u, v, w \in \Sigma^*. \, \, x = uvw \wedge |uv| \leq n \wedge |v| > 0 \, \wedge \\ \forall \, m > 0. uv^m w \in L \end{split}$$

What is contrapositive? $\neg(\exists n>0....)\implies L$ is not regular! If we drive the negation inside the antecedent we get:

$$\forall n > 0. \exists x \in L. |x| \ge n \land$$

$$\forall \, u,v,w \in \Sigma^*. (x = uvw \, \wedge \, |uv| \leq n \, \wedge \, |v| > 0) \implies \\ \exists \, m \geq 0. uv^m w \not\in L$$

So if we can prove this statement of a language L, then L is not regular!

Example: Proving $\{ww \mid w \in \{a,b\}^*\}$ Is Not Regular

Theorem

 $L = \{ ww \mid w \in \{a, b\}^* \}$ is not regular.

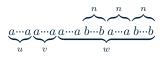
Proof On the basis of the Pumping Lemma it suffices to prove the following.

 $\forall n > 0. \exists x \in L. |x| \ge n \land$

$$\forall u, v, w \in \Sigma^*. (x = uvw \land |uv| \le n \land |v| > 0) \implies \exists m > 0. uv^m w \notin L$$

So fix n > 0 and consider $x = a^n b^n a^n b^n$. Clearly $x \in L$ and |x| > n.

Now fix $u, v, w \in \Sigma^*$ and assume that x = uvw, $|uv| \le n$, and |v| > 0. We have the following picture.



Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.13/40

Context-Free Grammars

Proof (cont.)

That is, $v = a^i$ some i > 0. Now let m = 2, and consider

$$uv^m w = uv^2 w = a^{n+i}b^n a^n b^n.$$

This word is not an element of L; consequently, L cannot be regular.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.14/40

Context-Free Grammars and Languages

Regular languages have a nice theory:

- Regular expressions give a "syntax" for defining them.
- FAs provide the computational means for processing them.

However, some "simple" languages are not regular, e.g.

$$L = \{\, 0^n 1^n \mid n \geq 0 \,\}.$$

- No FA exists for L.
- \blacksquare On the other hand, it's easy to give a recursive definition of L.
 - $\blacksquare \ \varepsilon \in L$
 - If $w \in L$ then $0w1 \in L$.

Observations

- Some "easy to process languages" like $L=\{\,0^n1^n\mid n\geq 0\,\}$ are nevertheless not recognizable using FAs alone.
- So there must be computing devices that are "better" than FAs when it comes to recognizing languages.
- There must also be "more general" classes of languages than regular languages that are still amenable to automatic analysis.

Context-free languages represent the next, broader class of languages we will study. They are defined using *context-free grammars*.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.17/40

Defining Context-Free Grammars

Definition A *context-free grammar* (CFG) is a quadruple $\langle V, \Sigma, S, P \rangle$, where:

- \blacksquare *V* is a finite set of *variables* (aka *nonterminals*).
- Σ is an alphabet, with $V \cap \Sigma = \emptyset$. Elements of Σ are sometimes called *terminals*.
- \blacksquare $S \in V$ is a distinguished *start symbol*.
- P is a finite set of *productions* of the form $A \longrightarrow \alpha$, where $A \in V$ and $\alpha \in (V \cup \Sigma)^*$.

Context-Free Grammars

... provide a notation for defining languages "recursively".

Example

A context-free grammar for $\{0^n1^n \mid n \geq 0\}$.

$$\begin{array}{ccc} S & \longrightarrow & \varepsilon \\ & | & 0S1 \end{array}$$

- \blacksquare *S* is a *nonterminal* (think "variable").
- The grammar has two productions saying how variable S may be rewritten.
- One generates words by applying productions beginning from the start symbol (always a nonterminal, here S):

$$S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 00\varepsilon 11 = 0011$$

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.18/40

Notational Conventions for CFGs

- $\blacksquare A \longrightarrow \alpha_1 \mid \cdot \mid \alpha_n$ is shorthand for n productions of form $A \longrightarrow \alpha_i$.
- Start symbol is first one written down.

E.g. In CFG

$$\begin{array}{ccc} S & \longrightarrow & \varepsilon \\ & \mid & 0S1 \end{array}$$

 $V=\{S\}, \, \Sigma=\{0,1\}, \, S \text{ is start symbol, and } P=\{S \longrightarrow \varepsilon, S \longrightarrow 0S1\}.$

Other CFG Examples

Palindromes over $\Sigma = \{a, b\}$

$$S \rightarrow \varepsilon \mid a \mid b$$
$$\mid aSa \mid bSb$$

Sample word: $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$

Nonpalindromes over $\Sigma = \{a, b\}$

$$S \rightarrow aSa \mid bSb \mid aAb \mid bAa$$
$$A \rightarrow \varepsilon \mid aA \mid bA$$

Sample word: $S \Rightarrow aSa \Rightarrow aaAba \Rightarrow aa\varepsilon ba = aaba$

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.21/40

Defining \Rightarrow_G

Example Let G be: $S \longrightarrow \varepsilon \mid 0S1$.

We want to define \Rightarrow_G so that $0S1 \Rightarrow_G 00S11$.

Definition Let $G = \langle V, \Sigma, S, P \rangle$ be a CFG, and let $\alpha, \beta \in (V \cup \Sigma)^*$.

Then $\alpha \Rightarrow_G \beta$ if there exist $\alpha_1, \alpha_2, \gamma \in (V \cup \Sigma)^*$ and $A \in V$ such that:

- $\blacksquare \alpha = \alpha_1 \cdot A \cdot \alpha_2$
- $\blacksquare \beta = \alpha_1 \cdot \gamma \cdot \alpha_2$
- $\blacksquare \ A \longrightarrow \gamma \text{ is a production in } P.$

$$\underbrace{\overbrace{BaC\cdots b}^{\alpha_1} \underbrace{A}_{\alpha} \underbrace{\overbrace{BAc\cdots B}^{\alpha_2}}_{\alpha}}_{a} \Rightarrow_G \underbrace{\underbrace{\overbrace{BaC\cdots b}^{\alpha_1} \underbrace{\gamma}}_{g} \underbrace{\overbrace{BAc\cdots B}^{\alpha_2}}_{g}}_{a}$$

Languages of CFGs

CFGs are be used to generate strings of terminals and nonterminals.

- Productions are used as "rewrite rules" to replace variables by strings.
- So what should the language of a CFG be? The sequences of terminals that can be generated from the start variable.

How do we make this precise?

- Given a grammar G we'll define a "rewrite relation" \Rightarrow_G : $\alpha \Rightarrow_G \beta$ should hold if α can be "rewritten" into β by applying one production.
- Then $w \in \Sigma^*$ is in the language of G if $S \Rightarrow_G \alpha \Rightarrow_G \cdots \Rightarrow_G w$.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.22/40

Generating Words in CFGs

 \Rightarrow_G defines the valid "one-step" derivations in a CFG. We can use this to define "multi-step" derivations via the relation \Rightarrow_G^* .

Example Let G be: $S \longrightarrow \varepsilon \mid 0S1$.

Then we want $S \Rightarrow_G^* 0011$ to hold.

Definition Let $G = \langle V, \Sigma, S, P \rangle$ be a CFG, and let $\alpha, \beta \in (V \cup \Sigma)^*$.

Then $\alpha \Rightarrow_G^* \beta$ if there exists $n \geq 0$ and $\alpha_0, ... \alpha_n \in (V \cup \Sigma)^*$ such that:

- $\alpha = \alpha_0$
- $\blacksquare \beta = \alpha_n$
- For all $i < n \ \alpha_i \Rightarrow_G \alpha_{i+1}$.

In other words, $\alpha = \alpha_0 \Rightarrow_G \alpha_1 \Rightarrow_G \cdot \Rightarrow_G \alpha_n = \beta$.

Examples

Let G be the nonpalindrome CFG:

$$S \rightarrow aSa \mid bSb \mid aAb \mid bAa$$
$$A \rightarrow \varepsilon \mid aA \mid bA$$

- 1. Does $S \Rightarrow_G abaa$?
- 2. Does $aSAa \Rightarrow_G^* aabAa$?
- 3. Does $S \Rightarrow_G^* S$?
- 4. Does $S \Rightarrow_G^* A$?

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6-p.25/40

The Language of a CFG

The language of a CFG G can now be defined using \Rightarrow_G^* .

Definition Let $G = \langle V, \Sigma, S, P \rangle$ be a CFG. Then the *language* of G, $\mathcal{L}(G) \subseteq \Sigma^*$, is defined as follows.

$$\mathcal{L}(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$$

Context-free languages (CFLs) are those for which one can give CFGs.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.26/40

Another CFG/CFL Example

A CFG for the valid arithmetic expressions over the natural numbers.

Regular Languages and CFLs

Regular Languages and CFLs

Theorem

Every regular language is context-free.

How can we prove this? By giving any one of several different translations:

- 1. Regular expressions ⇒ CFGs
- 2. $FAs \Rightarrow CFGs$
- 3. NFAs \Rightarrow CFGs

We will pursue (2).

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.29/40

Formalizing the Translation

Given a FA $M = \langle Q, \Sigma, q_0, \delta, A \rangle$, we want to define CFG $G_M = \langle V, \Sigma, S, P \rangle$ so that $\mathcal{L}(M) = \mathcal{L}(G_M)$. Assume without loss of generality that $Q \cap \Sigma = \emptyset$.

- $\blacksquare V = Q$
- $\blacksquare S = q_0$
- $\blacksquare P = \{ q \longrightarrow a \cdot \delta(q, a) \mid q \in Q \} \cup \{ q \longrightarrow \varepsilon \mid q \in A \}$

To prove that $\mathcal{L}(M) = \mathcal{L}(G_M)$ we can first argue that:

For every $x \in \Sigma^*, q, q' \in Q$,

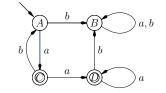
$$\delta^*(q,x) = q' \text{ iff } q \Rightarrow_{G_M}^* x \cdot q'.$$

Then $x \in \mathcal{L}(M)$ iff $x \in \mathcal{L}(G_M)$! (Why?)

Translating FAs into CFGs

How do we do this? By turning:

- states into variables;
- transitions into productions; and
- **acceptance** into ε -productions.



$$A \longrightarrow aC \mid bB$$

$$B \longrightarrow aB \mid bB$$

$$C \ \longrightarrow \ aD \ | \ bA \ | \ \varepsilon$$

$$D \longrightarrow aD \mid bB \mid \varepsilon$$

Note
$$\delta^*(A, aab) = B$$
, and $A \Rightarrow_G^* aabB$.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.30/40

Closure Properties of CFLs

Closure Properties of CFLs

What we know:

- Every regular langauge is a CFL.
- Regular languages are closed with respect to: $\cdot,^*$, \cup , \cap , etc.

Are CFLs automatically closed with respect to these operations also?

No! Regular languages constitute a *proper subset* of CFLs, and the closure properties do not immediately "transfer."

Nevertheless, we do have the following.

Theorem The set of context-free languages is closed with respect to \cup , \cdot and * .

Proofs rely on grammar constructions.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.33/40

Idea

Why not introduce a new variable $S_{\it U}$ as follows?

$$S_{U} \longrightarrow S_{1} \mid S_{2}$$

$$S_{1} \longrightarrow \cdots$$

$$\vdots$$

$$S_{2} \longrightarrow \cdots$$

- If $S_1 \Rightarrow_{G_1}^* w$ then $S \Rightarrow_{G_U} S_1 \Rightarrow_{G_U}^* x$.
- If $S \Rightarrow_{G_U}^* x$ then $S \Rightarrow_{G_U} S_i \Rightarrow_{G_i}^* x$ for i = 1 or i = 2.

For the latter to hold we need to ensure that G_1 , G_2 don't interfere with one another (i.e. share variables).

Proving CFLs Closed with Respect to ∪

We need to show how to combine two CFGs G_1 and G_2 :

$$S_1 \longrightarrow \cdots \qquad S_2 \longrightarrow \cdots$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\boxed{G_1} \qquad \boxed{G_2}$$

into a single CFG G_U such that $\mathcal{L}(G_U) = \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$. I.e. if S_U is start symbol of G_U then $S_U \Rightarrow_{G_U}^* x$ iff $S_1 \Rightarrow_{G_1}^* x$ or $S_2 \Rightarrow_{G_2}^* x$.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.34/40

Formal Construction of G_{II}

Let $G_1=\langle V_1,\Sigma,S_1,P_1\rangle$ and $G_2=\langle V_2,\Sigma,S_2,P_2\rangle$; without loss of generality, assume that $V_1\cap V_2=\emptyset$. We build $G_U=\langle V_U,\Sigma,S_U,P_U\rangle$ as follows.

- 1. Choose a new variable $S_U \notin V_1 \cup V_2 \cup \Sigma$ to be the start symbol of G_U .
- 2. Take $V_U = V_1 \cup V_2 \cup \{S_U\}$
- 3. Set $P_U = P_1 \cup P_2 \cup \{S_U \longrightarrow S_1, S_U \longrightarrow S_2\}$

We can then argue that $\mathcal{L}(G_U) = \mathcal{L}(G_1) \cup \mathcal{L}(G_2)$ by first establishing:

Fact $S_1 \Rightarrow_{G_U} \alpha \text{ iff } S_1 \Rightarrow_{G_1} \alpha \text{ for any } \alpha \in (V_U \cup \Sigma)^*.$

Then $S_U \Rightarrow_{G_U}^* x$ iff $S_1 \Rightarrow_{G_1}^* x$ or $S_2 \Rightarrow_{G_2}^* x$, for any $x \in \Sigma^*$!

Proving CFLs Closed with Respect to .

We need to show how to combine two CFGs G_1 and G_2 :

$$S_1 \longrightarrow \cdots \qquad S_2 \longrightarrow \cdots$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\boxed{G_1} \qquad \boxed{G_2}$$

into a single CFG G_C such that $\mathcal{L}(G_C)=\mathcal{L}(G_1)\cdot\mathcal{L}(G_2)$. I.e. if S_C is start symbol of G_C then $S_C\Rightarrow_{G_C}^*x$ iff $S_1\Rightarrow_{G_1}^*x_1,\,S_2\Rightarrow_{G_2}^*x_2$, and $x=x_1\cdot x_2$, for some x_1,x_2 .

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6-p.37/40

Formal Construction of G_C

Approach is similar to that for G_U : pick a new start symbol $S_C \notin V_1 \cup V_2 \cup \Sigma$, and construct $G_C = \langle V, \Sigma, S_C, P_C \rangle$ where:

- $\blacksquare V_C = V_1 \cup V_2 \cup \{S_C\}.$
- $P_C = P_1 \cup P_2 \cup \{S_C \longrightarrow S_1 \cdot S_2\}$

Proof of correctness follows similar lines to \mathcal{G}_U case.

Idea

We can do something similar to what we did for \cup !

$$\begin{array}{cccc} S_C & \longrightarrow & S_1 \cdot S_2 \\ S_1 & \longrightarrow & \cdots \\ & \vdots & & \\ S_2 & \longrightarrow & \cdots \\ & \vdots & & \\ \end{array}$$

- If $S_1 \Rightarrow_{G_1}^* x$ and $S_2 \Rightarrow_{G_2}^* y$ then $S \Rightarrow_{G_C} S_1 \cdot S_2 \Rightarrow_{G_C}^* xy$.
- If $S \Rightarrow_{G_C}^* x$ then $S \Rightarrow_{G_C} S_1 \cdot S_2 \Rightarrow_{G_C}^* x$, meaning $S_1 \Rightarrow_{G_1} x_1$ and $S_2 \Rightarrow_{G_2} x_2$ for some x_1, x_2 with $x_1 \cdot x_2 = x$.

For the latter to hold we need to ensure that G_1 , G_2 don't share variables...

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 6 - p.38/40

Proving CFLs Closed with Respect to *

To build G_K from G so that $\mathcal{L}(G_K)=(\mathcal{L}(G))^*$ we follow the same line of attack as for $\cup,\cdot!$