Automata Theory and Forrmal Grammars: Lecture 6
Context Free Languages

Non-Regular Languages

Context Free Languages

Last Time

- Decision procedures for FAs

■ Minimum-state DFAs
Today
■ The Myhill-Nerode Theorem

- The Pumping Lemma
- Context-free grammars and languages
- Closure properties of CFLs
- Relating regular languages and CFLs

Portions ©2000 Rance Cleaveland ©2004 James Riely
Automata Theory and Formal Grammars: Lecture 6 - p.244

Languages That Are Not Regular

So far we have only seen regular languages. Do nonregular ones exist?

$$
\text { Yes! Consider } L=\left\{0^{n} 1^{n} \mid n \geq 0\right\} .
$$

■ What would a "FA" look like for this language?

\square What can you say about the strings 0^{i} and 0^{j} if $i \neq j$?
If $i \neq j$ then 0^{i} ゆ 0^{j} !
In this case $\stackrel{L}{\bowtie}$ has an infinite number of equivalence classes!

The Myhill－Nerode Theorem
Theorem（Myhill－Nerode）Let $L \subseteq \Sigma^{*}$ be a language．Then L is regular if and only if $\grave{\llcorner }$ has a finite number of equivalence classes．

So how do you prove that a language L is not regular using Myhill－Nerode？
－Must show that $\stackrel{L}{\bowtie}$ has an infinite number of equivalence classes．
■ Suffices to give an infinite set $S \subseteq \Sigma^{*}$ whose elements are pairwise distinguishable with respect to L ：for every $x, y \in S$ with $x \neq y$ ， $x \nsim y$ 。

Why does this condition suffice？
－If S is pairwise distinguishable，then every element of S must belong to a different equivalence class of \downarrow ．
－Since S is infinite，there must be an infinite number of equivalence classes！
Portions ©2000 Rance Cleaveland ©2004 James Riely

Another Example：Even－Length Palindromes

$$
\begin{aligned}
& \hline \text { Recall If } x \in \Sigma^{*} \text { then } x^{r} \text { is the "reverse" of } x . \\
& \hline \text { E.g. } a b b^{r}=b b a .
\end{aligned}
$$

A palindrome is a word that is the same backwards as well as forwards．
－abba
－ 01110
－RADAR
Any even－length palindrome can be written as $x \cdot x^{r}$ for some string x ． E．g．$a b b a=a b \cdot b a=a b \cdot(a b)^{r}$ ．
Even－length palindromes over $\{a, b\}$ form a nonregular language．

Example：Proving Nonregularity of $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

Theorem $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular．

Proof On the basis of the Myhill－Nerode Theorem，it suffices to give an infinite set $S \subseteq\{0,1\}^{*}$ that is pairwise distinguishable with respect to L ．Consider

$$
S=\left\{0^{i} \mid i \geq 1\right\} .
$$

Clearly S is infinite．
We now must show that S is pairwise distinguishable．So consider strings $x=0^{i}$ and $y=0^{j}$ where $i \neq j$ ；we must show that x 我 y ，which requires that we find a z such that $x z \in L$ and $y z \notin L$（or vice versa）． Consider $z=1^{i}$ ．Then $x z=0^{i} 1^{i} \in L$ ，but $y z=0^{j} 1^{i} \notin L$ ．Thus $x \not$ b $^{\text {b }} y$ ， and S is pairwise distinguishable．

Portions ©2000 Rance Cleaveland ©2004 James Riely

Proving Even－Length Palindromes To Be Nonreg－ ular

Theorem Let $E=\left\{x \cdot x^{r} \mid x \in\{a, b\}^{*}\right\}$ ．Then E is not regular．

Proof On the basis of the Myhill－Nerode Theorem it suffices to come up with an infinite set $S \subseteq\{a, b\}^{*}$ that is pairwise distinguishable with respect to E ．Consider

$$
S=\left\{a^{i} b \mid i \geq 0\right\}
$$

Clearly S is infinite．
To show pairwise distinguishability，consider $x=a^{i} b$ and $y=a^{j} b$ where $i \neq j$ ；we must show $x \underset{\text { E }}{\text { 布 }} y$ ，i．e．we must find $\mathrm{a} z$ with $x z \in L$ and $y z \notin L$ ，or vice versa．Consider

$$
z=x^{r}=b a^{i} .
$$

By definition $x z \in L$ ．However，$y z=a^{j} b b a^{i} \notin L$ since $j \neq i$ ．

The Pumping Lemma: Another Way of Proving Nonregularity

By way of introduction, consider the following.

- If a language L is regular, there is a minimum-state DFA accepting L. Let n be the number of states in this DFA.
- What happens if $x \in L$ is at least n symbols long?

Some state must be visited twice, i.e. "cycled through"!

Portions ©2000 Rance Cleaveland ©2004 James Riely

Formalizing the Pumping Lemma

Lemma (Pumping Lemma) If $L \subseteq \Sigma^{*}$ is regular, then there exists $n>0$ such that for any $x \in L$, if $|x| \geq n$ then there exist $u, v, w \in \Sigma^{*}$ such that

$$
\begin{align*}
x & =u v w \tag{1}\\
|u v| & \leq n \tag{2}\\
|v| & >0 \tag{3}\\
u v^{m} w & \in L \quad \text { for any } m \geq 0
\end{align*}
$$

This lemma can be used to prove nonregularity! Look at its logical structure.

$$
\begin{aligned}
& L \text { is regular } \Longrightarrow \exists n>0 \\
& \\
& \qquad \begin{array}{l}
\exists x \in L .|x| \geq n \Longrightarrow \\
\\
\forall u, v, w \in \Sigma^{*} . \\
\\
\\
\\
\\
\forall m=u v w \wedge|u v| \leq n \wedge|v|>0 \wedge
\end{array} \\
& \forall m v^{m} w \in L
\end{aligned}
$$

The Pumping Lemma (cont.)

Notes

$\square v>0$ since the cycle has to contain something.
■ The first repeated state satisfies: $|u v| \leq n$ (why?).
■ $u v^{m} w \in L$ all $m \geq 0$!

Portions ©2000 Rance Cleaveland ©2004 James Riely

Using the Pumping Lemma to Prove Nonregularity

Recall form of Pumping Lemma:

L is regular $\Longrightarrow \exists n>0$.

$$
\begin{aligned}
& \forall x \in L .|x| \geq n \Longrightarrow \\
& \qquad u, v, w \in \Sigma^{*} . x=u v w \wedge|u v| \leq n \wedge|v|>0 \wedge \\
& \\
& \forall m \geq 0 . u v^{m} w \in L
\end{aligned}
$$

What is contrapositive? $\neg(\exists n>0 \ldots.) \Longrightarrow L$ is not regular! If we drive the negation inside the antecedent we get:

$$
\begin{aligned}
\forall n>0 . \exists x \in L . & |x| \geq n \wedge \\
\forall u, v, w \in \Sigma^{*} & .(x=u v w \wedge|u v| \leq n \wedge|v|>0) \Longrightarrow \\
& \exists m \geq 0 . u v^{m} w \notin L
\end{aligned}
$$

So if we can prove this statement of a language L, then L is not regular!

Example: Proving $\left\{w w \mid w \in\{a, b\}^{*}\right\}$ Is Not Regu-

 lar$$
\text { Theorem } L=\left\{w w \mid w \in\{a, b\}^{*}\right\} \text { is not regular. }
$$

Proof On the basis of the Pumping Lemma it suffices to prove the following.

```
\(\forall n>0 . \exists x \in L .|x| \geq n \wedge\)
    \(\forall u, v, w \in \Sigma^{*} .(x=u v w \wedge|u v| \leq n \wedge|v|>0) \Longrightarrow\)
        \(\exists m \geq 0 . u v^{m} w \notin L\)
```

So fix $n>0$ and consider $x=a^{n} b^{n} a^{n} b^{n}$. Clearly $x \in L$ and $|x|>n$.
Now fix $u, v, w \in \Sigma^{*}$ and assume that $x=u v w,|u v| \leq n$, and $|v|>0$.
We have the following picture.

Proof (cont.)

That is, $v=a^{i}$ some $i>0$. Now let $m=2$, and consider

$$
u v^{m} w=u v^{2} w=a^{n+i} b^{n} a^{n} b^{n} .
$$

This word is not an element of L; consequently, L cannot be regular.

Context-Free Grammars and Languages

Regular languages have a nice theory:

■ Regular expressions give a "syntax" for defining them.

- FAs provide the computational means for processing them.

However, some "simple" languages are not regular, e.g.
$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- No FA exists for L.

■ On the other hand, it's easy to give a recursive definition of L.
■ $\varepsilon \in L$
■ If $w \in L$ then $0 w 1 \in L$.

Observations

- Some "easy to process languages" like $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ are nevertheless not recognizable using FAs alone.
- So there must be computing devices that are "better" than FAs when it comes to recognizing languages.
- There must also be "more general" classes of languages than regular languages that are still amenable to automatic analysis.
Context-free languages represent the next, broader class of languages we will study. They are defined using context-free grammars.

Portions ©2000 Rance Cleaveland ©2004 James Riely

Defining Context-Free Grammars

Definition A context-free grammar (CFG) is a quadruple

$\langle V, \Sigma, S, P\rangle$, where:

- V is a finite set of variables (aka nonterminals).

■ Σ is an alphabet, with $V \cap \Sigma=\emptyset$. Elements of Σ are sometimes called terminals.

- $S \in V$ is a distinguished start symbol.

■ P is a finite set of productions of the form $A \longrightarrow \alpha$, where $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$.

Context-Free Grammars
... provide a notation for defining languages "recursively".
Example A context-free grammar for $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

$$
S \longrightarrow \varepsilon
$$

| $0 S 1$

- S is a nonterminal (think "variable").
- The grammar has two productions saying how variable S may be rewritten.

■ One generates words by applying productions beginning from the start symbol (always a nonterminal, here S):

$$
S \Rightarrow 0 S 1 \Rightarrow 00 S 11 \Rightarrow 00 \varepsilon 11=0011
$$

Portions ©2000 Rance Cleaveland ©2004 James Riely

Notational Conventions for CFGs

■ $A \longrightarrow \alpha_{1}|\cdot| \alpha_{n}$ is shorthand for n productions of form $A \longrightarrow \alpha_{i}$.

- Start symbol is first one written down.
E.g. In CFG

$$
\begin{array}{ccc}
S & \longrightarrow & \varepsilon \\
& \mid & 0 S 1
\end{array}
$$

$V=\{S\}, \Sigma=\{0,1\}, S$ is start symbol, and $P=\{S \longrightarrow \varepsilon, S \longrightarrow 0 S 1\}$.

Other CFG Examples

Palindromes over $\Sigma=\{a, b\}$

$$
\begin{aligned}
S & \rightarrow \varepsilon|a| b \\
& |a S a| b S b
\end{aligned}
$$

Sample word: $S \Rightarrow a S a \Rightarrow a b S b a \Rightarrow a b a b a$
Nonpalindromes over $\Sigma=\{a, b\}$

$$
\begin{aligned}
& S \rightarrow a S a|b S b| a A b \mid b A a \\
& A \rightarrow \varepsilon|a A| b A
\end{aligned}
$$

Sample word: $S \Rightarrow a S a \Rightarrow a a A b a \Rightarrow a a \varepsilon b a=a a b a$

Portions ©2000 Rance Cleaveland ©2004 James Riely

Defining \Rightarrow_{G}

Example Let G be: $\quad S \longrightarrow \varepsilon \mid 0 S 1$.

We want to define \Rightarrow_{G} so that $0 S 1 \Rightarrow_{G} 00 S 11$.
Definition Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG, and let $\alpha, \beta \in(V \cup \Sigma)^{*}$.
Then $\alpha \Rightarrow_{G} \beta$ if there exist $\alpha_{1}, \alpha_{2}, \gamma \in(V \cup \Sigma)^{*}$ and $A \in V$ such that:
■ $\alpha=\alpha_{1} \cdot A \cdot \alpha_{2}$
■ $\beta=\alpha_{1} \cdot \gamma \cdot \alpha_{2}$

- $A \longrightarrow \gamma$ is a production in P.

Languages of CFGs

CFGs are be used to generate strings of terminals and nonterminals.
■ Productions are used as "rewrite rules" to replace variables by strings.

- So what should the language of a CFG be?

The sequences of terminals that can be generated from the start variable.

How do we make this precise?

- Given a grammar G we'll define a "rewrite relation" $\Rightarrow_{G}: \alpha \Rightarrow_{G} \beta$ should hold if α can be "rewritten" into β by applying one production.

■ Then $w \in \Sigma^{*}$ is in the language of G if $S \Rightarrow_{G} \alpha \Rightarrow_{G} \cdots \Rightarrow_{G} w$.

Portions ©2000 Rance Cleaveland ©2004 James Riely

Generating Words in CFGs

\Rightarrow_{G} defines the valid "one-step" derivations in a CFG. We can use this to define "multi-step" derivations via the relation $\Rightarrow{ }_{G}^{*}$.

Example Let G be: $\quad S \longrightarrow \varepsilon \mid 0 S 1$.
Then we want $S \Rightarrow_{G}^{*} 0011$ to hold.
Definition Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG, and let $\alpha, \beta \in(V \cup \Sigma)^{*}$.
Then $\alpha \Rightarrow{ }_{G}^{*} \beta$ if there exists $n \geq 0$ and $\alpha_{0}, \ldots \alpha_{n} \in(V \cup \Sigma)^{*}$ such that:

- $\alpha=\alpha_{0}$
- $\beta=\alpha_{n}$
- For all $i<n \alpha_{i} \Rightarrow_{G} \alpha_{i+1}$.

In other words, $\alpha=\alpha_{0} \Rightarrow_{G} \alpha_{1} \Rightarrow_{G} \cdot \Rightarrow_{G} \alpha_{n}=\beta$.

Examples

Let G be the nonpalindrome CFG:

$$
\begin{aligned}
& S \rightarrow a S a|b S b| a A b \mid b A a \\
& A \rightarrow \varepsilon|a A| b A
\end{aligned}
$$

1. Does $S \Rightarrow_{G}$ abaa?
2. Does $a S A a \Rightarrow_{G}^{*} a a b A a$?
3. Does $S \Rightarrow{ }_{G}^{*} S$?
4. Does $S \Rightarrow_{G}^{*} A$?

Portions ©2000 Rance Cleaveland ©2004 James Riely

Another CFG/CFL Example

A CFG for the valid arithmetic expressions over the natural numbers.

The Language of a CFG

The language of a CFG G can now be defined using $\Rightarrow{ }_{G}^{*}$.
Definition Let $G=\langle V, \Sigma, S, P\rangle$ be a CFG. Then the language of G, $\mathcal{L}(G) \subseteq \Sigma^{*}$, is defined as follows.

$$
\mathcal{L}(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow_{G}^{*} w\right\}
$$

Context-free languages (CFLs) are those for which one can give CFGs.
Definition A language $L \subseteq \Sigma^{*}$ is context-free if there is a CFG G with $L=\mathcal{L}(G)$.

Regular Languages and CFLs

Regular Languages and CFLs

Theorem Every regular language is context-free.
How can we prove this? By giving any one of several different
translations:

1. Regular expressions \Rightarrow CFGs
2. FAs \Rightarrow CFGs
3. NFAs \Rightarrow CFGs
We will pursue (2).

Formalizing the Translation

Given a FA $M=\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$, we want to define CFG

$G_{M}=\langle V, \Sigma, S, P\rangle$ so that $\mathcal{L}(M)=\mathcal{L}\left(G_{M}\right)$. Assume without loss of generality that $Q \cap \Sigma=\emptyset$.

- $V=Q$
- $S=q_{0}$
- $P=\{q \longrightarrow a \cdot \delta(q, a) \mid q \in Q\} \cup\{q \longrightarrow \varepsilon \mid q \in A\}$

To prove that $\mathcal{L}(M)=\mathcal{L}\left(G_{M}\right)$ we can first argue that:
For every $x \in \Sigma^{*}, q, q^{\prime} \in Q$,

$$
\delta^{*}(q, x)=q^{\prime} \text { iff } q{\Rightarrow \vec{G}_{M}^{*}}_{*} \cdot q^{\prime} .
$$

Then $x \in \mathcal{L}(M)$ iff $x \in \mathcal{L}\left(G_{M}\right)$! (Why?)

Translating FAs into CFGs

How do we do this? By turning:

```
- states into variables;
- transitions into productions; and
■ acceptance into \(\varepsilon\)-productions.
```



```
\[
\begin{aligned}
& A \longrightarrow a C \mid b B \\
& B \longrightarrow a B \mid b B \\
& C \longrightarrow a D|b A| \varepsilon \\
& D \longrightarrow a D|b B| \varepsilon
\end{aligned}
\]
```

Note $\delta^{*}(A, a a b)=B$, and $A \Rightarrow{ }_{G}^{*} a a b B$.

Portions ©2000 Rance Cleaveland © 2004 James Riely

Closure Properties of CFLs

Closure Properties of CFLs

What we know:

- Every regular langauge is a CFL.

■ Regular languages are closed with respect to: $\cdot,{ }^{*}, \cup, \cap$, etc.
Are CFLs automatically closed with respect to these operations also?
No! Regular languages constitute a proper subset of CFLs, and the closure properties do not immediately "transfer."

Nevertheless, we do have the following.
Theorem The set of context-free languages is closed with respect to \cup, and *.

Proofs rely on grammar constructions.

Portions ©2000 Rance Cleaveland ©2004 James Riely

Idea

Why not introduce a new variable S_{U} as follows?

$$
\begin{array}{rll|}
S_{U} & \longrightarrow & S_{1} \mid S_{2} \\
S_{1} & \longrightarrow & \cdots \\
& \vdots & \\
S_{2} & \longrightarrow & \cdots
\end{array}
$$

- If $S_{1} \Rightarrow_{G_{1}}^{*} w$ then $S \Rightarrow_{G_{U}} S_{1} \Rightarrow_{G_{U}}^{*} x$.

■ If $S \Rightarrow_{G_{U}}^{*} x$ then $S \Rightarrow_{G_{U}} S_{i} \Rightarrow_{G_{i}}^{*} x$ for $i=1$ or $i=2$.
For the latter to hold we need to ensure that G_{1}, G_{2} don't interfere with one another (i.e. share variables).

Proving CFLs Closed with Respect to \cup

We need to show how to combine two CFGs G_{1} and G_{2} :

into a single CFG G_{U} such that $\mathcal{L}\left(G_{U}\right)=\mathcal{L}\left(G_{1}\right) \cup \mathcal{L}\left(G_{2}\right)$. I.e. if S_{U} is start symbol of G_{U} then $S_{U} \Rightarrow_{G_{U}}^{*} x$ iff $S_{1} \Rightarrow{ }_{G_{1}}^{*} x$ or $S_{2} \Rightarrow_{G_{2}}^{*} x$.

Formal Construction of G_{U}

Let $G_{1}=\left\langle V_{1}, \Sigma, S_{1}, P_{1}\right\rangle$ and $G_{2}=\left\langle V_{2}, \Sigma, S_{2}, P_{2}\right\rangle$; without loss of generality, assume that $V_{1} \cap V_{2}=\emptyset$. We build $G_{U}=\left\langle V_{U}, \Sigma, S_{U}, P_{U}\right\rangle$ as follows.

1. Choose a new variable $S_{U} \notin V_{1} \cup V_{2} \cup \Sigma$ to be the start symbol of G_{U}.
2. Take $V_{U}=V_{1} \cup V_{2} \cup\left\{S_{U}\right\}$
3. Set $P_{U}=P_{1} \cup P_{2} \cup\left\{S_{U} \longrightarrow S_{1}, S_{U} \longrightarrow S_{2}\right\}$

We can then argue that $\mathcal{L}\left(G_{U}\right)=\mathcal{L}\left(G_{1}\right) \cup \mathcal{L}\left(G_{2}\right)$ by first establishing:
Fact $S_{1} \Rightarrow_{G_{U}} \alpha$ iff $S_{1} \Rightarrow_{G_{1}} \alpha$ for any $\alpha \in\left(V_{U} \cup \Sigma\right)^{*}$.
Then $S_{U} \Rightarrow_{G_{U}}^{*} x$ iff $S_{1} \Rightarrow_{G_{1}}^{*} x$ or $S_{2} \Rightarrow_{G_{2}}^{*} x$, for any $x \in \Sigma^{*}$!

Proving CFLs Closed with Respect to

We need to show how to combine two CFGs G_{1} and G_{2} :

$S_{1} \longrightarrow \cdots$

\vdots
G_{1}

$S_{2} \longrightarrow \cdots$
G_{2}
into a single CFG G_{C} such that $\mathcal{L}\left(G_{C}\right)=\mathcal{L}\left(G_{1}\right) \cdot \mathcal{L}\left(G_{2}\right)$. I.e. if S_{C} is start symbol of G_{C} then $S_{C} \Rightarrow{ }_{G_{C}}^{*} x$ iff $S_{1} \Rightarrow{ }_{G_{1}}^{*} x_{1}, S_{2} \Rightarrow{ }_{G_{2}}^{*} x_{2}$, and $x=x_{1} \cdot x_{2}$, for some x_{1}, x_{2}.

Formal Construction of G_{C}

Approach is similar to that for G_{U} : pick a new start symbol
$S_{C} \notin V_{1} \cup V_{2} \cup \Sigma$, and construct $G_{C}=\left\langle V, \Sigma, S_{C}, P_{C}\right\rangle$ where:

- $V_{C}=V_{1} \cup V_{2} \cup\left\{S_{C}\right\}$
- $P_{C}=P_{1} \cup P_{2} \cup\left\{S_{C} \longrightarrow S_{1} \cdot S_{2}\right\}$

Proof of correctness follows similar lines to G_{U} case.

Idea
We can do something similar to what we did for \cup !

$$
\begin{array}{rll}
S_{C} & \longrightarrow & S_{1} \cdot S_{2} \\
S_{1} & \longrightarrow & \cdots \\
& \vdots & \\
S_{2} & \longrightarrow & \cdots
\end{array}
$$

■ If $S_{1} \Rightarrow{ }_{G_{1}}^{*} x$ and $S_{2} \Rightarrow_{G_{2}}^{*} y$ then $S \Rightarrow{ }_{G_{C}} S_{1} \cdot S_{2} \Rightarrow_{G_{C}}^{*} x y$.
■ If $S \Rightarrow_{G_{C}}^{*} x$ then $S \Rightarrow_{G_{C}} S_{1} \cdot S_{2} \Rightarrow_{G_{C}}^{*} x$, meaning $S_{1} \Rightarrow_{G_{1}} x_{1}$ and $S_{2} \Rightarrow_{G_{2}} x_{2}$ for some x_{1}, x_{2} with $x_{1} \cdot x_{2}=x$.

For the latter to hold we need to ensure that G_{1}, G_{2} don't share variables....

Portions ©2000 Rance Cleaveland ©2004 James Riely
Automata Theory and Formal Grammars: Lecture 6 - -.3840

Proving CFLs Closed with Respect to *

To build G_{K} from G so that $\mathcal{L}\left(G_{K}\right)=(\mathcal{L}(G))^{*}$ we follow the same line of attack as for $\cup, \cdot!$

