Automata Theory and Formal Grammars：Lecture 4 Minimal Deterministic Automata

Minimal Deterministic Automata

Last Time：

－Regular Expressions and Regular Languages
－Properties of Regular Languages
－Relating NFAs and regular expressions：Kleene＇s Theorem
Today：
－Decision procedures for FAs
－Distinguishing Strings with respect to a Language
－Minimum－state DFAs for Regular Languages
－Minimizing DFAs using Partition Refinement

Decision Procedures for FAs

Decision Procedures for FAs

A decision procedure is an algorithm for answering a yes／no question．
A number of yes／no questions involving FAs have decision procedures．
－Given FA M and $x \in \Sigma^{*}$ ，is $x \in \mathcal{L}(M)$ ？
－Given FA M ，is $\mathcal{L}(M)=\emptyset$ ？
－Given FAs M_{1} and M_{2} ，is $\mathcal{L}\left(M_{1}\right) \subseteq \mathcal{L}\left(M_{2}\right)$ ？
Answering the first is easy ．．．but what about the other two？

Deciding Whether $\mathcal{L}(M)=\emptyset$

$$
\begin{aligned}
\mathcal{L}(M)=\emptyset & \Longleftrightarrow \forall x \in \Sigma^{*} . x \notin \mathcal{L}(M) \\
& \Longleftrightarrow \forall x \in \Sigma^{*} . \delta^{*}\left(q_{0}, x\right) \notin A
\end{aligned}
$$

The latter property can be checked using reachability analysis：do all paths from the start state lead to nonaccepting states？

Deciding Whether $\mathcal{L}\left(M_{1}\right) \subseteq \mathcal{L}\left(M_{2}\right)$

For any sets S_{1} and S_{2} we can reason as follows．

$$
\begin{aligned}
S_{1} \subseteq S_{2} & \Longleftrightarrow S_{1}-S_{2}=\emptyset \\
& \Longleftrightarrow S_{1} \cap \overline{S_{2}}=\emptyset
\end{aligned}
$$

Deciding Whether $\mathcal{L}\left(M_{1}\right) \subseteq \mathcal{L}\left(M_{2}\right)$（cont．）

So how can we decide whether or not $\mathcal{L}\left(M_{1}\right) \subseteq \mathcal{L}\left(M_{2}\right)$ ？
－Build a FA for $\mathcal{L}\left(M_{1}\right)-\mathcal{L}\left(M_{2}\right)$ ．
■ Complement M_{2} to get $\overline{M_{2}}$ ．
－Apply the product construction to get $\Pi\left(M_{1}, \overline{M_{2}}\right)$ ．
\square Check whether or not $\mathcal{L}\left(\Pi\left(M_{1}, \overline{M_{2}}\right)\right)=\emptyset$ ．

Minimizing Automata

How Many States Do You Need in a DFA？

Here are two DFAs recognizing the same language．

The right automaton seems to have a redundant state！

Questions about States in DFAs

－How many states does an DFA need to accept a given language？
－Can a DFA be＂minimized＂（i．e．can＂unnecessary＂states be identified and removed）？

We now devote ourselves to answering these questions．All involve a study of the notion of indistinguishability of strings．

Indistinguishability

Definition Let $L \subseteq \Sigma^{*}$ be a langauge．Then the indistinguishability relation for $L, \stackrel{L}{\bowtie} \subseteq \Sigma^{*} \times \Sigma^{*}$ ，is defined as follows．

$$
x \stackrel{L}{\bowtie} y \text { iff } \forall z \in \Sigma^{*} . x z \in L \Longleftrightarrow y z \in L
$$

Intuitively，if $x \stackrel{L}{\bowtie} y$ ，then any common＂extension＂to x, y（the＂z＂in the definition）either makes both $x z$ and $y z$ ，or neither，elements of L ．

Notes

$\square x \bowtie y$ means x, y are indistinguishable with respect to language L ． （That is，L must be given in order for \bowtie to be well－defined．）
$■ \stackrel{L}{\bowtie}$ relates arbitrary strings，not just elements in L ．
－If $x \in L$ and $x \bowtie y$ then $y \in L$ also（why？）．
－Is it true that $x \in L$ and $y \in L$ imply that $x \bowtie y$ ？

