

Minimal Deterministic Automata

Last Time:

- Regular Expressions and Regular Languages
- Properties of Regular Languages
- Relating NFAs and regular expressions: Kleene's Theorem

Today:

- Decision procedures for FAs
- Distinguishing Strings with respect to a Language
- Minimum-state DFAs for Regular Languages
- Minimizing DFAs using Partition Refinement

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.2/46

Decision Procedures for FAs

- A decision procedure is an algorithm for answering a yes/no question.
- A number of yes/no questions involving FAs have decision procedures.
 - Given FA M and $x \in \Sigma^*$, is $x \in \mathcal{L}(M)$?
 - Given FA M, is $\mathcal{L}(M) = \emptyset$?
 - Given FAs M_1 and M_2 , is $\mathcal{L}(M_1) \subseteq \mathcal{L}(M_2)$?

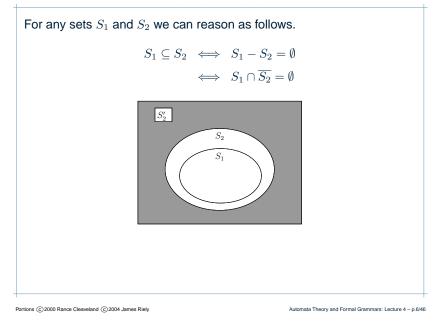
Answering the first is easy ... but what about the other two?

Deciding Whether $\mathcal{L}(M) = \emptyset$

 $\mathcal{L}(M) = \emptyset \iff \forall x \in \Sigma^* . \ x \notin \mathcal{L}(M)$ $\iff \forall x \in \Sigma^* . \ \delta^*(q_0, x) \notin A$

The latter property can be checked using reachability analysis: do all paths from the start state lead to nonaccepting states?

Deciding Whether $\mathcal{L}(M_1) \subseteq \mathcal{L}(M_2)$



Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.5/46

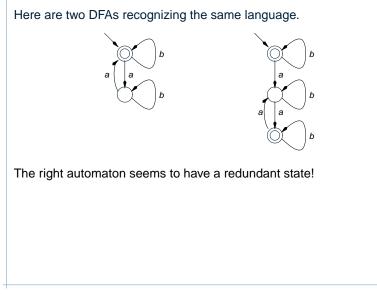
Deciding Whether $\mathcal{L}(M_1) \subseteq \mathcal{L}(M_2)$ (cont.)

So how can we decide whether or not $\mathcal{L}(M_1) \subseteq \mathcal{L}(M_2)$?

- Build a FA for $\mathcal{L}(M_1) \mathcal{L}(M_2)$.
 - Complement M_2 to get $\overline{M_2}$.
 - Apply the product construction to get $\Pi(M_1, \overline{M_2})$.
- Check whether or not $\mathcal{L}(\Pi(M_1, \overline{M_2})) = \emptyset$.

Minimizing Automata	

How Many States Do You Need in a DFA?



Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.9/46

Indistinguishability

Definition Let $L \subseteq \Sigma^*$ be a langauge. Then the *indistinguishability* relation for L, $\bowtie \subseteq \Sigma^* \times \Sigma^*$, is defined as follows.

 $x \stackrel{\scriptscriptstyle L}{\bowtie} y$ iff $\forall z \in \Sigma^* . xz \in L \iff yz \in L$

Intuitively, if $x \stackrel{L}{\bowtie} y$, then any common "extension" to x, y (the "z" in the definition) either makes both xz and yz, or neither, elements of L.

Notes

- $x \bowtie^{L} y$ means x, y are indistinguishable with respect to language *L*. (That is, *L* must be given in order for \bowtie^{L} to be well-defined.)
- \bowtie^{L} relates arbitrary strings, not just elements in *L*.
- If $x \in L$ and $x \bowtie^{L} y$ then $y \in L$ also (why?).
- Is it true that $x \in L$ and $y \in L$ imply that $x \bowtie^L y$?

Questions about States in DFAs

- How many states does an DFA need to accept a given language?
- Can a DFA be "minimized" (i.e. can "unnecessary" states be identified and removed)?

We now devote ourselves to answering these questions. All involve a study of the notion of *indistinguishability* of strings.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.10/46

Examples of Indistinguishability

• Let $L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 00 \}$. Is:	
• $\varepsilon \bowtie 1$?	Yes
• 1 \bowtie^{L} 011?	Yes
• $0 \stackrel{\scriptscriptstyle L}{\bowtie} 10$?	Yes
• 1 $\bowtie^{L} 0$?	No; consider $z = 0$
• Let $L = \{ 0^n 1^n \mid n \ge 0 \}$. Is:	
• $\varepsilon \bowtie 1$?	No; consider $z = 01$
• $0 \bowtie^L 00$?	No; consider $z = 1$
• $01 \stackrel{\scriptscriptstyle L}{\bowtie} 0011$?	Yes

Relating $\stackrel{\scriptscriptstyle L}{\bowtie}$ and DFAs for L

Let $M = \langle Q, \Sigma, q_0, \delta, A \rangle$ be a DFA accepting L, and suppose $x, y \in \Sigma^*$ are such that $\delta^*(q_0, x) = \delta^*(q_0, y)$. g_0 x $\delta^*(q_0, x) = \delta^*(q_0, y)$ $\delta^*(q_0, xz) = \delta^*(q_0, yz)$ Then $x \stackrel{L}{\bowtie} y!$

Portions © 2000 Rance Cleaveland © 2004 James Riely

$\stackrel{\scriptscriptstyle L}{\bowtie}$ and Minimum-state Automata

The previous lemma says that if $x \not\bowtie^{L} y$ then any DFA accepting *L* must have different states for *x* and *y*.

Question Suppose $x \stackrel{L}{\bowtie} y$. Could an DFA for *L* equate the states to which x, y lead to from the start state?

The answer turns out to be "yes". To establish this, we will show how to construct an automaton M_L for L with the property that if $x \stackrel{L}{\bowtie} y$ then $\delta^*(q_0, x) = \delta^*(q_0, y)$.

Formally...

 $\label{eq:Lemma} \fbox{Lemma} \ \fbox{Let} \ M = \langle Q, \Sigma, q_0, \delta, A \rangle \ \texttt{be a DFA, and let} \ x, y \in \Sigma^* \ \texttt{be such} \\ \texttt{that} \ \delta^*(q_0, x) = \delta^*(q_0, y). \ \fbox{Then} \ x \overset{\mathcal{L}(M)}{\bowtie} y.$

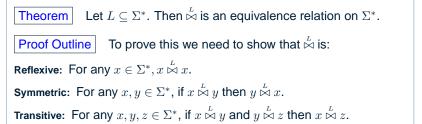
 $\begin{array}{|l|} \hline \mathbf{Proof} & \mbox{Fix} \ x,y\in\Sigma^*, \mbox{ and suppose that } \delta^*(q_0,x)=\delta^*(q_0,y). \\ \mbox{We must prove that } x \stackrel{\mathcal{L}(M)}{\bowtie} y, \mbox{ i.e.} \\ \mbox{for any } z\in\Sigma^*, \ xz\in\mathcal{L}(M) \ \mbox{iff} \ yz\in\mathcal{L}(M). \ \mbox{So fix} \ z. \\ \mbox{By induction on } z, \mbox{ one may establish that } \delta^*(q_0,xz)=\delta^*(q_0,yz). \\ \mbox{Hence } \delta^*(q_0,xz)\in A \ \mbox{iff} \ \delta^*(q_0,yz)\in A. \\ \mbox{This implies that } xz\in\mathcal{L}(M) \ \mbox{iff} \ yz\in\mathcal{L}(M). \end{array}$

Note The contrapositive of the lemma says that if $x \not\bowtie^{\mathcal{L}(M)} y$ then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$; in other words, if $x \not\bowtie^{\mathcal{L}(M)} y$ then x and y must lead to *different* states in any DFA accepting $\mathcal{L}(M)$.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.14/46

A Fact About \bowtie^{L}



Automata Theory and Formal Grammars: Lecture 4 - p.13/4

$\stackrel{\scriptscriptstyle L}{\bowtie}$ and Equivalence Classes

Since $\stackrel{L}{\bowtie}$ is an equivalence relation over Σ^* , every $x \in \Sigma^*$ belongs to a unique *equivalence class*.

Example Let $L = \{ w \in \{0, 1\}^* \mid w \text{ ends in } 00 \}.$

 $\bullet [\varepsilon]_{\underline{L}} = \{ y \in \{0,1\}^* \mid y \text{ does not end in } 0 \}$

• What are the other equivalence classes of \bowtie^{L} ?

 $\begin{array}{ll} \left[0\right]_{\stackrel{L}{\bowtie}} &=& \left\{ \, y \in \{0,1\}^* \mid y \text{ ends in exactly one } 0 \, \right\} \\ \left[00\right]_{\stackrel{L}{\bowtie}} &=& \left\{ \, y \in \{0,1\}^* \mid y \text{ ends in at least two } 0s \, \right\} \end{array}$

Note that every string in $\{0,1\}^*$ falls into one of these three equivalence classes!

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.17/46

Formalizing the Construction of M_L

Theorem Let $L \subseteq \Sigma^*$, and consider the automaton $M_L = \langle Q_L, \Sigma, q_L, \delta_L, A_L \rangle$ given as follows.

$$Q_{L} = \{ [w]_{\bowtie}^{L} \mid w \in \Sigma^{*} \}$$
$$q_{L} = [\varepsilon]_{\bowtie}^{L}$$
$$\delta_{L}([w]_{\bowtie}^{L}, a) = [wa]_{\bowtie}^{L}$$
$$A_{L} = \{ [w]_{\bowtie}^{L} \mid w \in L \}$$

Then $\mathcal{L}(M_L) = L$, and no automaton recognizing L can have fewer states.

Building M_L

In M_{L} strings indistinguishable with respect to L should lead to the same state.

Idea (for M_L)

- Introduce a state for each equivalence class of $\stackrel{L}{\bowtie}$.
- Define the transitions so that $\delta^*(q_0, x)$ is $[x]_{\underline{k}}$.

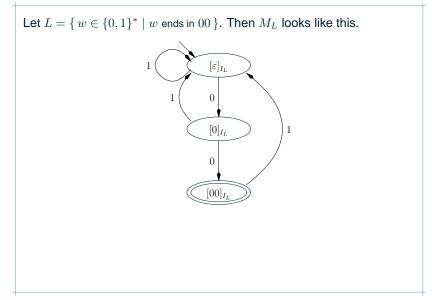
Questions

- What should the start state be? The state corresponding to [ɛ],
- What should the accepting states be? The states corresponding to $[x]_{\stackrel{L}{\sim}}$ for each $x \in L$.
- What should the *a*-transition of the state for $[x]_{\bowtie}$ be? The state corresponding to $[xa]_{\bowtie}$.

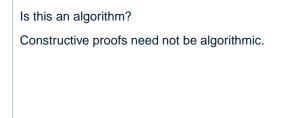
Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.18/46

Example of M_L



Hmmm...



Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.21/46

• What does " $x \bowtie^{L} y$ " mean?

That x and y are indistinguishable with respect to language L; that is, for any $z \in \Sigma^*, xz \in L \iff yz \in L$.

Suppose $x \stackrel{L}{\bowtie} y$ and $y \stackrel{L}{\bowtie} z$. What can we say about x and z, and why?

 $x \stackrel{\scriptscriptstyle L}{\bowtie} z$ because $\stackrel{\scriptscriptstyle L}{\bowtie}$ is an equivalence relation on $\Sigma^* \times \Sigma^*$.

Suppose machine M and strings $x, y \in \Sigma^*$ are such that:

Why is $x \stackrel{\mathcal{L}(M)}{\bowtie} y$?

Because xz and yz will lead to the same state too, for any $z \in \Sigma^*$!

Why is the Theorem True?

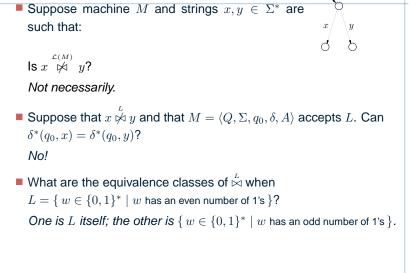
What is δ^{*}_L(q_L, x)? One can show by induction that it is [x]_M.
When does M_L accept x? When [x]_M ⊆ L.
Suppose δ^{*}_L(q_L, x) = δ^{*}_L(q_L, y). What is the relationship between x, y? x ⋈ y
Suppose δ^{*}_L(q_L, x) ≠ δ^{*}_L(q_L, y). What is the relationship between x, y? x ⋈ y
Suppose δ^{*}_L(q_L, x) ≠ δ^{*}_L(q_L, y). What is the relationship between x, y? x ⋈ y
The first two points guarantee that L(M_L) = L; the last two ensure that

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.22/46

Reviewing $\stackrel{\scriptscriptstyle L}{\bowtie}$ (cont.)

no DFA for L can have fewer states (why?)!



A Minimum-State DFA for L

If L is regular, what are the states of the minimum-state DFA M_L for L?

The equivalence classes of \bowtie^{L} .

- Let *L* be regular, let $M_L = \langle Q_L, \Sigma, q_L, \delta_L, A_L \rangle$ be the minimum-state DFA for *L*, and let $x \in \Sigma^*$. What is $\delta_L^*(q_L, x)$?
- $[x]_{\mathbb{A}}$, i.e. the equivalence class of L!
- Let *L* be regular, and let M_L be the minimum-state DFA M_L for *L*. What are the accepting states of M_L ?

The equivalence classes of elements of L.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 – p.25/46

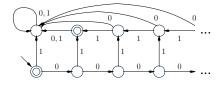
Minimizing DFAs

Languages That Are Not Regular

Do nonregular languages exist?

Yes! Consider $L = \{ 0^n 1^n \mid n \ge 0 \}.$

What would a "FA" look like for this language?



• What can you say about the strings 0^i and 0^j if $i \neq j$? If $i \neq j$ then $0^i \not \sim 0^j$!

In this case $\stackrel{\scriptscriptstyle L}{\bowtie}$ has an infinite number of equivalence classes! We will revisit this issue next lecture.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.26/46

Minimizing DFAs

What we know:

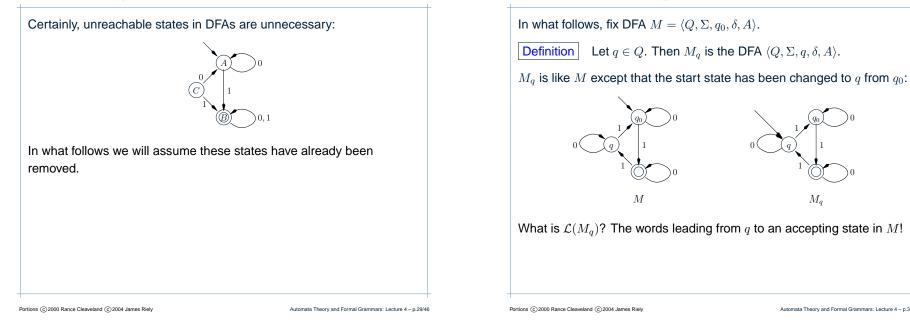
For any regular language L there is a minimum-state DFA M_L with $\mathcal{L}(M_L) = L.$

So any DFA for L must have at least as many states as M_L .

Question Suppose we have a DFA M for L. Is there a way to minimize M, i.e. generate the minimum-state DFA M_L by eliminating "unnecessary" states from M?

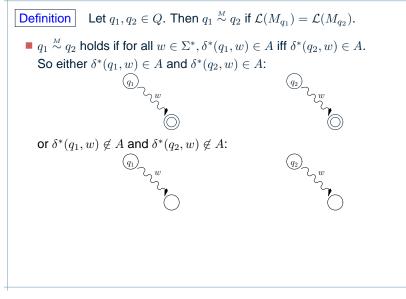
We'll see

Unnecessary States in DFAs

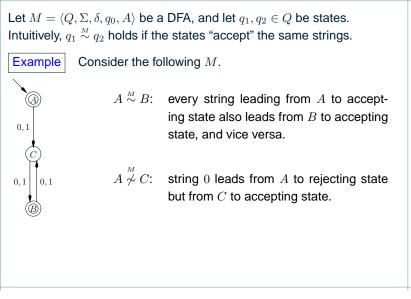


Automata Theory and Formal Grammars: Lecture 4 - p.30/46

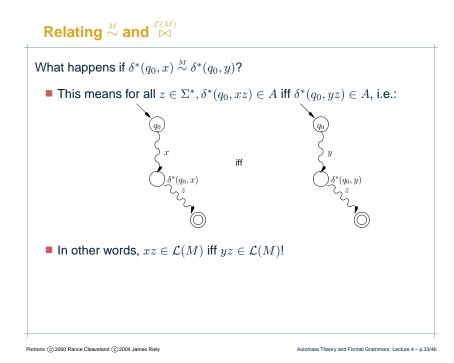
Language Equivalence and States



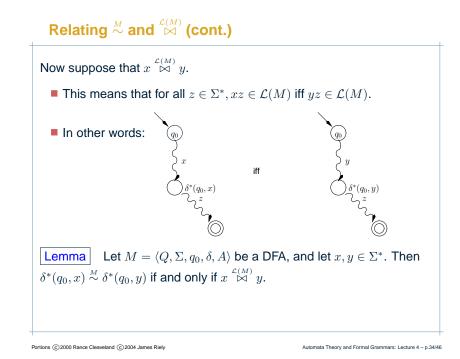
Example for $\stackrel{\scriptscriptstyle M}{\sim}$



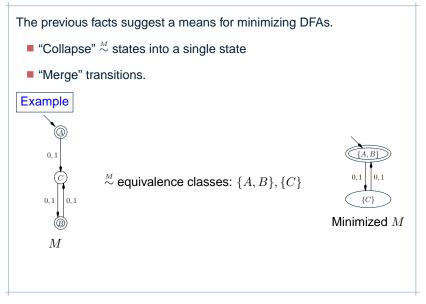
Other Unneccessary States: Preliminaries



Facts about $\stackrel{\scriptscriptstyle M}{\sim}$



Constructing Minimum-State DFAs



Portions © 2000 Rance Cleaveland © 2004 James Riely

Merging Language-Equivalent States

We just established this:

Lemma Let $M = \langle Q, \Sigma, q_0, \delta, A \rangle$ be a DFA, and suppose that $q_1 \stackrel{M}{\sim} q_2$. Then for any $a \in \Sigma$, $\delta(q_1, a) \stackrel{M}{\sim} \delta(q_2, a)$.

We can now "merge" redundant states as follows!

Theorem Let $M = \langle Q, \Sigma, q_0, \delta, A \rangle$ be a DFA. Then the automaton $M_L = \langle Q_L, \Sigma, q_L, \delta_L, A_L \rangle$ given below is a mimimum-state DFA accepting $\mathcal{L}(M)$.

$$\begin{aligned} Q_L &= \{ \left[q \right]_{\mathcal{M}} \mid q \in Q \} \\ q_L &= \left[q_0 \right]_{\mathcal{M}} \\ \delta(\left[q \right]_{\mathcal{M}}, a) &= \left[\delta(q, a) \right]_{\mathcal{M}} \\ A_L &= \{ \left[q \right]_{\mathcal{M}} \mid q \in A \} \end{aligned}$$

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 – p.37/4

The Initial Partition

Where do we start our partition-refinement algorithm? In other words, which states are guaranteed not to be $\stackrel{M}{\sim}$ related?

 $\fbox{lim} \quad \text{If } q_1 \in A \text{ and } q_2 \notin A \text{ then } q_1 \not\stackrel{\scriptscriptstyle{M}}{\not\sim} q_2.$

Why? Because $\varepsilon \in \mathcal{L}(M_{q_1})$ and $\varepsilon \notin \mathcal{L}(M_{q_2})!$

So the partition refinement algorithm starts off with an initial partition containing two equivalence classes: A and Q - A.

Computing Equivalence Classes of $\stackrel{\scriptscriptstyle M}{\sim}$

In order to minimize DFAs mechanically, we need to be able to compute the equivalence classes of $\stackrel{M}{\sim}$ for a given DFA M.

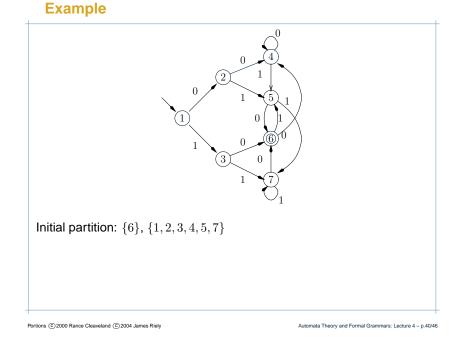
This can be done using a *partition refinement* algorithm.

- We initially make crude assumptions about which states are related by ^M_∼. (I.e. we assume a small number of large equivalence classes.)
- Based on an analysis of outgoing transitions, we may split some equivalence classes when they are found to contain states not related by ^M/_~.
- When we can't split any more, we're done.

List of equivalence classes: *partition*. Splitting equivalence classes: *refinement*.

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.38/46



Portions © 2000 Rance Cleaveland © 2004 James Riely

Refining Partitions

Suppose q_1, q_2 are such that $\delta(q_1, a) \stackrel{_M}{\not\sim} \delta(q_2, a)$ for some $a \in \Sigma$.

Then $q_1 \not\sim^{\scriptscriptstyle L} q_2!$ (Why?)

This means that if we have an equivalence class (or *block*) B such that

 \blacksquare q_1, q_2 are in B, but

• there is an a such that $\delta(q_1, a)$ and $\delta(q_2, a)$ are in different blocks,

then B should be split into two new classes: one containing $q_1,$ and one containing $q_2!$

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.41/46

Example

Initial partition: {6}, {1, 2, 3, 4, 5, 7} In $B = \{1, 2, 3, 4, 5, 7\}$:

3, 5, 7 have 0 transitions to $B' = \{6\}.$

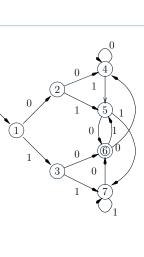
■ 1, 2, 4 do not.

So *B* should be split into:

 \blacksquare $B_1 = \{3, 5, 7\}$, and

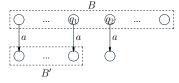
 $\blacksquare B_2 = \{1, 2, 4\}.$

New partition: $\{6\}, \{3, 5, 7\}, \{1, 2, 4\}.$



Splitting Blocks

More precisely, suppose we have:



That is, $q_1, q_2 \in B$ and het $\delta(q_1, a) \in B'$ but $\delta(q_2, a) \notin B'$. Then B should be split into:

$$B_1 = \{ q \in B \mid \delta(q, a) \in B' \}$$

$$B_2 = \{ q \in B \mid \delta(q, a) \notin B' \}$$

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.42/46

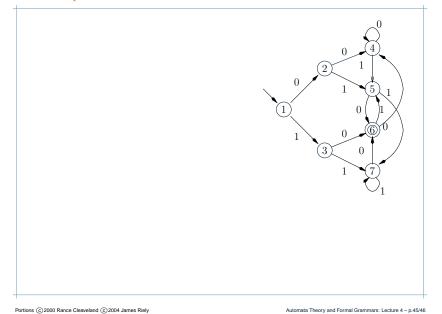
The Algorithm for Computing Equivalence Classes of $\stackrel{\scriptscriptstyle M}{\sim}$

- Start with partition $\{A, Q A\}$.
- While there is a block B that should be split, generate a new partition by replacing B with B_1 and B_2 .
- Halt when no more splitting is possible.

It turns out that when the algorithm terminates, the blocks are exactly the equivalence classes of $\stackrel{\scriptscriptstyle M}{\sim}!$

These can then be used to generated the minimized version M_L of M.

Example



Summary: Regular Languages...

- are defined using regular expressions
- are processed mechanically via DFAs/NFAs
- are closed with respect to ∘, *, ∪, complement, ∩, ...
- have a characterization in terms of equivalence classes of "indistinguishability"
- have minimum-state DFA acceptors

Portions © 2000 Rance Cleaveland © 2004 James Riely

Automata Theory and Formal Grammars: Lecture 4 - p.46/46