
< > - +

Automata Theory and Formal Grammars: Lecture 3

Regular Expressions and Languages

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.1/45

< > - +

Regular Expressions and Languages

Last Time

Deterministic Finite Automata (DFAs) and their Languages

Closure Properties of DFA Languages (the product construction)

Nondeterministic Finite Automata (NFAs) and their Languages

Relating DFAs and NFAs (the subset construction)

Today

Regular Expressions and Regular Languages

Properties of Regular Languages

Relating NFAs and regular expressions: Kleene’s Theorem

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.2/45

< > - +

NFAs: Finishing Up

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.3/45

< > - +

NFAε

Sipser uses a more general definition than I gave last week:

Definition A nondeterministic finite automaton with empty

transitions (NFAε) is a quintuple 〈Q,Σ, q0, δ, A〉 where:

Q is a finite set of states;

Σ is the input alpabet;

q0 ∈ Q is the start state;

A ⊆ Q is the set of accepting states; and

δ : Q× Σ∪{ε} → 2Q is the transition function.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.4/45

< > - +

Relating NFA and NFAε

Theorem The set of NFA languages is identical to the set of NFAε

languages.

Proof?

One direction is trivial: An NFA (without empty transitions) is an NFAε

where for all q:

δ(q, ε) = ∅

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.5/45

< > - +

The Subset Construction for NFAε

Let N = 〈Q,Σ, q0, δ, A〉 be a NFAε.

We want to construct a DFA D(N) accepting the same language.

States in D(N) will be sets of states from N .

Let P range over states of D(N).

P ∈ 2Q, that is, P ⊆ Q.

D(N) = 〈2Q , Σ , δ(q0, ε) , δDN , ADN 〉

where

δDN(P, a) =
⋃

q∈P

δ∗(q, a)

ADN = {P | P ∈ 2Q and P ∩A 6= ∅ }

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.6/45

< > - +

Example

Consider the NFA M given by K = {q0, q1, q2}, Σ = {0, 1, 2}, s = q0,

F = {q2} with transition relation ∆ given below:

q σ ∆(q,σ)

q0 0 q0

q0 ε q1

q1 1 q1

q1 ε q2

q2 2 q2

L(M) = {0}∗{1}∗{2}∗.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.7/45

< > - +

Example continued

The resulting DFA M ′ has K′ = {{q0, q1, q2}, {q1, q2}, {q2}, ∅},

s′ = {q0, q1, q2}, F = {{q0, q1, q2}, {q1, q2}, {q2}} and δ′:

q σ δ′ (q,σ)

{ q0, q1, q2 } 0 { q0, q1, q2 }

{ q0, q1, q2 } 1 { q1, q2 }

{ q0, q1, q2 } 2 { q2 }

{ q1, q2 } 0 ∅

{ q1, q2 } 1 { q1, q2 }

{ q1, q2 } 2 { q2 }

{ q2 } 0,1 ∅

{ q2 } 2 { q2 }

∅ 0,1,2 ∅

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.8/45

< > - +

Another example

Let Σ = {a1, ..., an} where n ≥ 2.

Let L = {w | ∃i. ai does not appear in w }.

For example, If Σ = {a1, a2, a3} then a1a1a2 ∈ Σ but a1a2a3 /∈ Σ.

Intuitively, the NFA would work in the following manner:

Guess the symbol ai that is missing from the input.

If no symbol is missing, move to a dead state.

If a symbol ai is missing, go to state qi.

If in state qi you ever encounter ai, move to a dead state.

Otherwise eat the remaining symbols and accept.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.9/45

< > - +

Another Example (continued)

For the construction of the NFA we need one starting state q0 and one

state for each symbol in the alphabet, q1, . . . , qn.

There are ε-transitions from q0 into each of q1, . . . , qn, and self-loops

on each of q1, . . . , qn labeled with the states that are legal.

What happens when we use the construction to produce a DFA

accepting this language?

The equivalent DFA M ′ has initial state s′ = {q0, q1, q2, q3, ..., qn}.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.10/45

< > - +

Regular Languages

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.11/45

< > - +

Regular Languages

This course: a study of the computing power needed to “process”

different kinds of languages.

The first class of languages we will study: regular languages.

Regular languages are defined using regular expressions.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.12/45

< > - +

Regular Expressions

... a notation for defining languages.

Definition Let Σ be an alphabet. Then the set R(Σ) of regular

expressions over Σ is defined recursively as follows.

∅ ∈ R(Σ)

ε ∈ R(Σ)

a ∈ R(Σ) if a ∈ Σ

r + s ∈ R(Σ) if r ∈ R(Σ) and s ∈ R(Σ)

r ◦ s ∈ R(Σ) if r ∈ R(Σ) and s ∈ R(Σ)

r∗ ∈ R(Σ) if r ∈ R(Σ)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.13/45

< > - +

Comments about Regular Expressions

The previous definition just gives the syntax of regular expressions:

◦,∪, ∗ are symbols that we will shortly give an interpretation to.

Examples Let Σ = {a, b}. The following are regular expressions in

R(Σ).

a

(a+ (b ◦ b))∗

(((b∗) ◦ ((a ◦ a) + b)) ◦ ∅)

Notation

Usually, ◦ will be omitted.

Also, to reduce parentheses, we will adopt the following precedence:

∗ > ◦ > ∪.

So (((b∗) ◦ ((a ◦ a) + b)) ◦ ∅) can be written as b∗(aa+ b)∅.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.14/45

< > - +

Derived Operations

We will sometimes use the following derived operations on regular

expressions.

r+ = r ◦ (r∗)

ri =

ε if i = 0

r ◦ (ri−1) otherwise

E.g. (b+ a)2 = (b+ a) ◦ (b+ a) ◦ ε

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.15/45

< > - +

How Do Regular Expressions “Define” Lan-
guages?

To make connection with languages precise, we need to define a

semantics for regular expressions saying what they “mean”.

Semantics will be given in form of function L : R(Σ) → 2Σ
∗

.

For any regular expression r, L(r) ⊆ Σ∗ will be the language

defined by r.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.16/45

< > - +

The Semantics of Regular Expressions

Definition Fix alphabet Σ. Then L : R(Σ) → 2Σ
∗

is defined as

follows.

L(r) =

∅ if r = ∅

{ε} if r = ε

{a} if r = a and a ∈ Σ

L(s1) ∪ L(s2) if r = s1 + s2

L(s1) ◦ L(s2) if r = s1 ◦ s2

(L(s))∗ if r = s∗

Definition L ⊆ Σ∗ is a regular language if there is a regular

expression r such that L = L(r).

(Note: This is a denotational semantics.)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 3 – p.17/45

	Regular Expressions and Languages
	NFAs: Finishing Up
	NFA$emptystring $
	Relating NFA and NFA$emptystring $
	The Subset Construction for NFA{ed $emptystring $}
	Example
	Example continued
	Another example
	Another Example (continued)
	Regular Languages
	Regular Languages
	Regular Expressions
	Comments about Regular Expressions
	Derived Operations
	How Do Regular Expressions ``Define'' Languages?
	The Semantics of Regular Expressions
	Questions about Regular Languages

