Automata Theory and Formal Grammars: Lecture 3

Regular Expressions and Languages

Regular Expressions and Languages

Last Time

- Deterministic Finite Automata (DFAs) and their Languages
- Closure Properties of DFA Languages (the product construction)
- Nondeterministic Finite Automata (NFAs) and their Languages
- Relating DFAs and NFAs (the subset construction)

Today

- Regular Expressions and Regular Languages
- Properties of Regular Languages
- Relating NFAs and regular expressions: Kleene's Theorem

$NFA \varepsilon$

Sipser uses a more general definition than I gave last week:

Definition A nondeterministic finite automaton with empty transitions (NFA ε) is a quintuple $\langle Q, \Sigma, q_0, \delta, A \rangle$ where:

- \blacksquare Q is a finite set of states;
- Σ is the input alpabet;
- $q_0 \in Q$ is the start state;
- $A \subseteq Q$ is the set of accepting states; and
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to 2^Q$ is the transition function.

Theorem The set of NFA languages is identical to the set of NFA ε languages.

Proof?

One direction is trivial: An NFA (without empty transitions) is an NFA ε where for all q:

 $\delta(q,\varepsilon)=\emptyset$

Let $N = \langle Q, \Sigma, q_0, \delta, A \rangle$ be a NFA ε . We want to construct a DFA D(N) accepting the same language. States in D(N) will be sets of states from N. Let P range over states of D(N). $P \in 2^Q$, that is, $P \subseteq Q$.

$$D(N) = \langle 2^Q, \Sigma, \delta(q_0, \varepsilon), \delta_{DN}, A_{DN} \rangle$$

where

$$\delta_{DN}(P,a) = \bigcup_{q \in P} \delta^*(q,a)$$
$$A_{DN} = \{ P \mid P \in 2^Q \text{ and } P \cap A \neq \emptyset \}$$

Example

Consider the NFA M given by $K = \{q_0, q_1, q_2\}, \Sigma = \{0, 1, 2\}, s = q_0, F = \{q_2\}$ with transition relation Δ given below:

q	σ	$\Delta(\mathbf{q}, \sigma)$
q_0	0	q_0
q_0	ε	q_1
q_1	1	q_1
q_1	ε	q_2
q_2	2	$\overline{q_2}$

 $\mathcal{L}(M) = \{0\}^* \{1\}^* \{2\}^*.$

Example continued

The resulting DFA M' has $K' = \{\{q_0, q_1, q_2\}, \{q_1, q_2\}, \{q_2\}, \emptyset\},\$ $\underline{s}' = \{q_0, q_1, q_2\}, F = \{\{q_0, q_1, q_2\}, \{q_1, q_2\}, \{q_2\}\} \text{ and } \delta':$

q	σ	δ' (q, σ)
$\{ q_0, q_1, q_2 \}$	0	$\{ q_0, q_1, q_2 \}$
$\{ q_0, q_1, q_2 \}$	1	$\{ q_1, q_2 \}$
$\{ q_0, q_1, q_2 \}$	2	{ q ₂ }
$\{q_1, q_2\}$	0	Ø
$\{q_1, q_2\}$	1	$\{ q_1, q_2 \}$
$\{q_1, q_2\}$	2	{ q ₂ }
{ q ₂ }	0,1	Ø
{ q ₂ }	2	{ q ₂ }
Ø	0,1,2	Ø

Portions © 2000 Rance Cleaveland © 2004 James Riely

< > - +

Another example

Let $\Sigma = \{a_1, ..., a_n\}$ where $n \ge 2$.

Let $L = \{ w \mid \exists i. a_i \text{ does not appear in } w \}.$

For example, If $\Sigma = \{a_1, a_2, a_3\}$ then $a_1a_1a_2 \in \Sigma$ but $a_1a_2a_3 \notin \Sigma$.

Intuitively, the NFA would work in the following manner:

- Guess the symbol a_i that is missing from the input.
- If no symbol is missing, move to a dead state.
- If a symbol a_i is missing, go to state q_i .
- If in state q_i you ever encounter a_i , move to a dead state.
- Otherwise eat the remaining symbols and accept.

Another Example (continued)

For the construction of the NFA we need one starting state q_0 and one state for each symbol in the alphabet, q_1, \ldots, q_n .

There are ε -transitions from q_0 into each of q_1, \ldots, q_n , and self-loops on each of q_1, \ldots, q_n labeled with the states that are legal.

What happens when we use the construction to produce a DFA accepting this language?

The equivalent DFA M' has initial state $\underline{s}' = \{q_0, q_1, q_2, q_3, ..., q_n\}$.

Regular Languages

This course: a study of the computing power needed to "process" different kinds of languages.

The first class of languages we will study: regular languages.

Regular languages are defined using regular expressions.

Regular Expressions

... a notation for defining languages.

Definition Let Σ be an alphabet. Then the set $\mathcal{R}(\Sigma)$ of regular expressions over Σ is defined recursively as follows.

$$\begin{split} & \underline{\emptyset} \in \mathcal{R}(\Sigma) \\ & \underline{\varepsilon} \in \mathcal{R}(\Sigma) \\ & \underline{a} \in \mathcal{R}(\Sigma) \text{ if } a \in \Sigma \\ & \underline{r+s} \in \mathcal{R}(\Sigma) \text{ if } \underline{r} \in \mathcal{R}(\Sigma) \text{ and } \underline{s} \in \mathcal{R}(\Sigma) \\ & \underline{r \circ s} \in \mathcal{R}(\Sigma) \text{ if } \underline{r} \in \mathcal{R}(\Sigma) \text{ and } \underline{s} \in \mathcal{R}(\Sigma) \\ & r * \in \mathcal{R}(\Sigma) \text{ if } \underline{r} \in \mathcal{R}(\Sigma) \text{ and } \underline{s} \in \mathcal{R}(\Sigma) \end{split}$$

Comments about Regular Expressions

The previous definition just gives the syntax of regular expressions: $\underline{\circ}, \underline{\cup}, \underline{*}$ are symbols that we will shortly give an interpretation to.

Examples Let $\Sigma = \{a, b\}$. The following are regular expressions in $\mathcal{R}(\Sigma)$.

■ <u>a</u>

$$\blacksquare (a + (b \circ b)) *$$

$$\blacksquare \ \underline{(((b*) \circ ((a \circ a) + b)) \circ \emptyset)}$$

Notation

Usually, $\underline{\circ}$ will be omitted.

Also, to reduce parentheses, we will adopt the following precedence:

 $\underline{*} > \underline{\circ} > \underline{\cup}.$

So $(((b*) \circ ((a \circ a) + b)) \circ \emptyset)$ can be written as $b*(aa + b)\emptyset$.

Derived Operations

We will sometimes use the following derived operations on regular expressions.

$$\underline{r^{+}} = \underline{r \circ (r*)}$$

$$\underline{r^{i}} = \begin{cases} \underline{\varepsilon} & \text{if } i = 0\\ \underline{r \circ (r^{i-1})} & \text{otherwise} \end{cases}$$

E.g.
$$(b+a)^2 = (b+a) \circ (b+a) \circ \varepsilon$$

How Do Regular Expressions "Define" Languages?

To make connection with languages precise, we need to define a semantics for regular expressions saying what they "mean".

- Semantics will be given in form of function $\mathcal{L} : \mathcal{R}(\Sigma) \to 2^{\Sigma^*}$.
- For any regular expression \underline{r} , $\mathcal{L}(\underline{r}) \subseteq \Sigma^*$ will be the language defined by \underline{r} .

The Semantics of Regular Expressions

Fix alphabet Σ . Then $\mathcal{L} : \mathcal{R}(\Sigma) \to 2^{\Sigma^*}$ is defined as Definition follows. $\mathcal{L}(\underline{r}) = \begin{cases} \emptyset & \text{if } \underline{r} = \underline{\emptyset} \\ \{\varepsilon\} & \text{if } \underline{r} = \underline{\varepsilon} \\ \{a\} & \text{if } \underline{r} = \underline{a} \text{ and } a \in \Sigma \\ \mathcal{L}(\underline{s}_1) \cup \mathcal{L}(\underline{s}_2) & \text{if } \underline{r} = \underline{s}_1 + \underline{s}_2 \\ \mathcal{L}(\underline{s}_1) \circ \mathcal{L}(\underline{s}_2) & \text{if } \underline{r} = \underline{s}_1 \circ \underline{s}_2 \\ (\mathcal{L}(\underline{s}))^* & \text{if } \underline{r} = \underline{s} \ast \end{cases}$ $L \subseteq \Sigma^*$ is a regular language if there is a regular Definition expression <u>r</u> such that $L = \mathcal{L}(\underline{r})$. (Note: This is a denotational semantics.)