Automata Theory and Formal Grammars: Lecture 3
Regular Expressions and Languages

Portions ©2000 Rance Cleaveland ©2004 James Riely
Automata Theory and Formal Grammars: Lecture $3-\mathrm{p} .1 / 45$

Regular Expressions and Languages

Last Time

- Deterministic Finite Automata (DFAs) and their Languages
- Closure Properties of DFA Languages (the product construction)
- Nondeterministic Finite Automata (NFAs) and their Languages
- Relating DFAs and NFAs (the subset construction)

Today

- Regular Expressions and Regular Languages
- Properties of Regular Languages
- Relating NFAs and regular expressions: Kleene's Theorem

Portions ©2000 Rance Cleaveland ©2004 James Riely
Automata Theory and Formal Grammars: Lecture 3-p.245

NFA ε

Sipser uses a more general definition than I gave last week:
Definition A nondeterministic finite automaton with empty transitions (NFA ε) is a quintuple $\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$ where:

- Q is a finite set of states;
- Σ is the input alpabet;
- $q_{0} \in Q$ is the start state;
- $A \subseteq Q$ is the set of accepting states; and
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow 2^{Q}$ is the transition function.

Relating NFA and NFA ε

Theorem The set of NFA languages is identical to the set of NFA ε

 languages.
Proof?

One direction is trivial: An NFA (without empty transitions) is an NFA ε where for all q :

$$
\delta(q, \varepsilon)=\emptyset
$$

Example

Consider the NFA M given by $K=\left\{q_{0}, q_{1}, q_{2}\right\}, \Sigma=\{0,1,2\}, s=q_{0}$, $F=\left\{q_{2}\right\}$ with transition relation Δ given below:

q	σ	$\Delta(\mathrm{q}, \sigma)$
q_{0}	0	q_{0}
q_{0}	ε	q_{1}
q_{1}	1	q_{1}
q_{1}	ε	q_{2}
q_{2}	2	q_{2}

$\mathcal{L}(M)=\{0\}^{*}\{1\}^{*}\{2\}^{*}$.

The Subset Construction for NFA ε

Let $N=\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$ be a NFA ε,

We want to construct a DFA $D(N)$ accepting the same language.
States in $D(N)$ will be sets of states from N.
Let P range over states of $D(N)$.
$P \in 2^{Q}$, that is, $P \subseteq Q$.

$$
D(N)=\left\langle 2^{Q}, \Sigma, \delta\left(q_{0}, \varepsilon\right), \delta_{D N}, A_{D N}\right\rangle
$$

where

$$
\begin{aligned}
\delta_{D N}(P, a) & =\bigcup_{q \in P} \delta^{*}(q, a) \\
A_{D N} & =\left\{P \mid P \in 2^{Q} \text { and } P \cap A \neq \emptyset\right\}
\end{aligned}
$$

Portions © 2000 Rance Cleaveland © © 2004 James Riely

Example continued

The resulting DFA M^{\prime} has $K^{\prime}=\left\{\left\{q_{0}, q_{1}, q_{2}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{2}\right\}, \emptyset\right\}$, $\underline{s}^{\prime}=\left\{q_{0}, q_{1}, q_{2}\right\}, F=\left\{\left\{q_{0}, q_{1}, q_{2}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{2}\right\}\right\}$ and $\delta^{\prime}:$

\mathbf{q}	σ	$\delta^{\prime}(\mathbf{q}, \sigma)$
$\left\{q_{0}, q_{1}, q_{2}\right\}$	0	$\left\{q_{0}, q_{1}, q_{2}\right\}$
$\left\{q_{0}, q_{1}, q_{2}\right\}$	1	$\left\{q_{1}, q_{2}\right\}$
$\left\{q_{0}, q_{1}, q_{2}\right\}$	2	$\left\{q_{2}\right\}$
$\left\{q_{1}, q_{2}\right\}$	0	\emptyset
$\left\{q_{1}, q_{2}\right\}$	1	$\left\{q_{1}, q_{2}\right\}$
$\left\{q_{1}, q_{2}\right\}$	2	$\left\{q_{2}\right\}$
$\left\{q_{2}\right\}$	0,1	\emptyset
$\left\{q_{2}\right\}$	2	$\left\{q_{2}\right\}$
\emptyset	$0,1,2$	\emptyset

Another example

$$
\begin{aligned}
& \text { Let } \Sigma=\left\{a_{1}, \ldots, a_{n}\right\} \text { where } n \geq 2 . \\
& \text { Let } L=\left\{w \mid \exists i . a_{i} \text { does not appear in } w\right\} .
\end{aligned}
$$

$$
\text { For example, If } \Sigma=\left\{a_{1}, a_{2}, a_{3}\right\} \text { then } a_{1} a_{1} a_{2} \in \Sigma \text { but } a_{1} a_{2} a_{3} \notin \Sigma \text {. }
$$

Intuitively, the NFA would work in the following manner:

- Guess the symbol a_{i} that is missing from the input.
- If no symbol is missing, move to a dead state.
- If a symbol a_{i} is missing, go to state q_{i}.
- If in state q_{i} you ever encounter a_{i}, move to a dead state.
- Otherwise eat the remaining symbols and accept.

Portions ©2000 Rance Cleaveland ©2004 James Riely

Regular Languages

Regular Expressions

... a notation for defining languages.

Definition \quad Let Σ be an alphabet. Then the set $\mathcal{R}(\Sigma)$ of regular	
expressions over Σ is defined recursively as follows.	
$\underline{\emptyset}$	$\in \mathcal{R}(\Sigma)$
$\underline{\varepsilon}$	$\in \mathcal{R}(\Sigma)$
\underline{a}	$\in \mathcal{R}(\Sigma)$ if $a \in \Sigma$
$\underline{r+s} \in \mathcal{R}(\Sigma)$ if $\underline{r} \in \mathcal{R}(\Sigma)$ and $\underline{s} \in \mathcal{R}(\Sigma)$	
$\underline{r \circ s}$	$\in \mathcal{R}(\Sigma)$ if $\underline{r} \in \mathcal{R}(\Sigma)$ and $\underline{s} \in \mathcal{R}(\Sigma)$
$\underline{r *}$	$\in \mathcal{R}(\Sigma)$ if $\underline{r} \in \mathcal{R}(\Sigma)$

Portions ©2000 Rance Cleaveland ©2004 James Riely

Derived Operations

We will sometimes use the following derived operations on regular expressions.

$$
\begin{aligned}
& \underline{r^{+}}=\underline{r \circ(r *)} \\
& \underline{r^{i}}= \begin{cases}\underline{\varepsilon} & \text { if } i=0 \\
\underline{r \circ\left(r^{i-1}\right)} & \text { otherwise }\end{cases}
\end{aligned}
$$

E.g. $(b+a)^{2}=\underline{(b+a) \circ(b+a) \circ \varepsilon}$

Comments about Regular Expressions

The previous definition just gives the syntax of regular expressions: $\underline{\circ}, \underline{\cup}, \underline{\simeq}$ are symbols that we will shortly give an interpretation to.

```
Examples Let }\Sigma={a,b}.The following are regular expressions i
\mathcal{R}(\Sigma).
```

- \underline{a}
- $(a+(b \circ b)) *$
- $\underline{(((b *) \circ((a \circ a)+b)) \circ \emptyset)}$

Notation

Usually, o will be omitted.
Also, to reduce parentheses, we will adopt the following precedence:
$\underline{*}>\underline{o}>\underline{U}$.
So $\underline{(((b *) \circ((a \circ a)+b)) \circ \emptyset)}$ can be written as $b *(a a+b) \emptyset$.

Portions ©2000 Rance Cleaveland ©2004 James Riely
Automata Theory and Formal Grammars: Lecture 3 - p. 14445

How Do Regular Expressions "Define" Languages?

To make connection with languages precise, we need to define a semantics for regular expressions saying what they "mean".

- Semantics will be given in form of function $\mathcal{L}: \mathcal{R}(\Sigma) \rightarrow 2^{\Sigma^{*}}$.
- For any regular expression $\underline{r}, \mathcal{L}(\underline{r}) \subseteq \Sigma^{*}$ will be the language defined by \underline{r}.

The Semantics of Regular Expressions

Definition Fix alphabet Σ. Then $\mathcal{L}: \mathcal{R}(\Sigma) \rightarrow 2^{\Sigma^{*}}$ is defined as follows.

$$
\mathcal{L}(\underline{r})= \begin{cases}\emptyset & \text { if } \underline{r}=\underline{\emptyset} \\ \{\varepsilon\} & \text { if } \underline{r}=\underline{\varepsilon} \\ \{a\} & \text { if } \underline{r}=\underline{a} \text { and } a \in \Sigma \\ \mathcal{L}\left(\underline{s}_{1}\right) \cup \mathcal{L}\left(\underline{s}_{2}\right) & \text { if } \underline{r}=\underline{s_{1}+s_{2}} \\ \mathcal{L}\left(\underline{s}_{1}\right) \circ \mathcal{L}\left(\underline{s}_{2}\right) & \text { if } \underline{r}=\underline{s_{1} \circ s_{2}} \\ (\mathcal{L}(\underline{s}))^{*} & \text { if } \underline{r}=\underline{s_{*}}\end{cases}
$$

Definition $L \subseteq \Sigma^{*}$ is a regular language if there is a regular expression \underline{r} such that $L=\mathcal{L}(\underline{r})$.
(Note: This is a denotational semantics.)

Portions © 2000 Rance Cleaveland © 2004 James Riely

Questions (cont.)

Let $\Sigma=\{a, b\}$.

1. What is a regular expression for all words in Σ^{*} ending in a ? $\underline{(a+b) * a}$
2. What is a regular expression for all odd-length words in Σ^{*} ? $((a+b)(a+b)) *(a+b)$
3. How do you prove that L_{1} comprising words with exactly two b 's is regular?
Give a regular expression \underline{r}_{1} such that $\mathcal{L}\left(\underline{r}_{1}\right)=L_{1}$. One choice for r_{1} is $a * b a * b a *$.
4. How do you prove that L_{2} consisting of words not containing $a b$ is regular?
Give a regular expression \underline{r}_{2} such that $\mathcal{L}\left(\underline{r}_{2}\right)=L_{2}$. One choice for \underline{r}_{2} is $\underline{b * a *}$.

Questions about Regular Languages

1. What language does $(a+b) *$ define?

All strings built from a and b.

$$
\begin{aligned}
\mathcal{L}(\underline{(a+b) *}) & =(\mathcal{L}(\underline{a+b}))^{*} \\
& =(\mathcal{L}(\underline{a}) \cup \mathcal{L}(\underline{b}))^{*} \\
& =(\{a\} \cup\{b\})^{*}=\{a, b\}^{*}
\end{aligned}
$$

2. What is $\mathcal{L}(((a+b)(a+b)) *)$?

All even-length strings from $\{a, b\}^{*}$.

$$
\begin{aligned}
\mathcal{L}(((a+b)(a+b)) * & =(\mathcal{L}(\underline{(a+b)(a+b)}))^{*} \\
& =(\mathcal{L}(\underline{a+b}) \circ \mathcal{L}(\underline{a+b}))^{*} \\
& =(\{a, b\} \circ\{a, b\})^{*} \\
& =\{a a, a b, b a, b b\}^{*}
\end{aligned}
$$

Simplifying Regular Expressions

Definition Let $\underline{r}_{1}, \underline{r}_{2}$ be regular expressions. Then $\underline{r}_{1}=\mathcal{L} \underline{r}_{2}$ exactly when $\mathcal{L}\left(\underline{r}_{1}\right)=\mathcal{L}\left(\underline{r}_{2}\right)$.

$$
\begin{aligned}
& \text { Some Laws for }=\mathcal{L} \\
& \underline{r+\emptyset}=\mathcal{L} \underline{r} \\
& \underline{r \circ \emptyset}=\mathcal{L} \underline{\emptyset \circ r}=\mathcal{L} \quad \underline{\emptyset} \\
& \underline{r \circ \varepsilon}=\mathcal{L} \underline{\varepsilon \circ r}=\mathcal{L} \quad \underline{r} \\
& \underline{r_{1} \circ\left(r_{2} \circ r_{3}\right)}=\mathcal{L} \underline{\left(r_{1} \circ r_{2}\right) \circ r_{3}} \\
& \frac{r_{1} \circ\left(r_{2}+r_{3}\right)}{}=\mathcal{L} \underline{\left(r_{1} \circ r_{2}\right)+\left(r_{1} \circ r_{3}\right)} \\
& \frac{(r+s) *}{(r+\varepsilon) *}=\mathcal{L} \underline{r *} \text { if } \mathcal{L}(\underline{s}) \subseteq \mathcal{L}(\underline{r *})
\end{aligned}
$$

Finite Languages and Regularity

Definition
words.
Example language L is finite if it contains a finite number of
is not.

is not.
It turns out that every finite language is regular!
E.g. Regular expression for L_{1} is $a a+b+a b a$.

A proof of this fact would use induction (on what?) and might rely on a lemma ("subtheorem") about singleton languages.

Finite Languages are Regular

Lemma Any finite language is regular.

Proof: Define the relation $f_{\text {lang }} \subset 2^{\Sigma^{*}} \rightarrow \mathcal{R}(\Sigma)$ as follows

$$
f_{\text {lang }}(L)= \begin{cases}\begin{array}{l}
\underline{\emptyset}
\end{array} & \text { when } L=\emptyset \\
\underline{r+r^{\prime}} & \text { when } L=\{w\} \cup L^{\prime} \text { and } f_{\text {word }}(w)=\underline{r} \\
& \text { and } f_{\text {lang }}\left(L^{\prime}\right)=\underline{r}^{\prime}\end{cases}
$$

By induction on $k \in \mathbb{N}$, show that if $|L|=k$ then $\mathcal{L}\left(f_{\text {lang }}(L)\right)=L$.

Note that $f_{\text {lang }}$ is not actually a well defined function.
We need to pick words $\{w\}$ deterministically
This can be done by defining an order on regular expressions.

Singleton Languages are Regular

Lemma For any $w \in \Sigma^{*}$, the language $\{w\}$ is regular.

Proof: Define the function $f_{\text {word }}: \Sigma^{*} \rightarrow \mathcal{R}(\Sigma)$ as follows

$$
f_{\text {word }}(w)= \begin{cases}\underline{\varepsilon} & \text { when } w=\varepsilon \\ \underline{a r^{\prime}} & \text { when } w=a w^{\prime} \text { and } f_{\text {word }}\left(w^{\prime}\right)=\underline{r^{\prime}}\end{cases}
$$

By induction on w, show that for all $w, \mathcal{L}\left(f_{\text {word }}(w)\right)=\{w\}$.
For a more detailed version, see the following slides.

Portions ©2000 Rance Cleaveland ©2004 James Riey

Singleton Languages Detail (1)

Lemma Let Σ be an alphabet, and let $w \in \Sigma^{*}$. Then the language

 $\{w\}$ is regular.How do we prove this? First, write down the logical form.
Logical Form $\forall w \in \Sigma^{*} . P(w)$, where $P(w)$ is " $\{w\}$ is regular."
We can prove this by induction on the definition of Σ^{*}; i.e. we could prove the statement $\forall k \in \mathbb{N} . \forall w \in\left(\Sigma^{*}\right)_{k} . P(w)$.

Another possibility: do induction on the length of w. Using this proof method, the statement to be shown is:

$$
\forall n \in \mathbb{N} . \forall w \in \Sigma^{*} .(|w|=n) \text { implies } P(w)
$$

Singleton Languages Detail (2)

The proof proceeds by induction on word length; the statement to be proved is $\forall n \in \mathbb{N}$. $Q(n)$, where $Q(n)$ is
$" \forall w \in \Sigma^{*} .(|w|=n) \longrightarrow\{w\}$ "is regular".

Base case. We must show $Q(0)$, i.e. that for any word w, if $|w|=0$, then $\{w\}$ is regular. So fix w and assume that $|w|=0$. This implies that $w=\varepsilon$. But $\{\varepsilon\}$ is regular, since the regular expression $\underline{\varepsilon}$ is such that $\mathcal{L}(\underline{\varepsilon})=\{\varepsilon\}$.

Induction step. We must show that for any $n, Q(n) \longrightarrow Q(n+1)$. So fix n and assume (induction hypothesis) that $Q(n)$ holds. We must prove $Q(n+1)$, i.e. that for any w of length $n+1,\{w\}$ is regular. Now fix w and assume that $|w|=n+1$; we must find a regular expression \underline{r} such that $\mathcal{L}(\underline{r})=\{w\}$.

Portions ©2000 Rance Cleaveland ©2004 James Riely
Automata Theory and Formal Grammars: Lecture 3 - -25645

Closure Properties for Regular Languages

Theorem The class of regular languages is closed with respect to \cup, \circ, and *.

For example, consider language union.
Suppose that L_{1} and L_{2} are regular; we want to prove that $L_{1} \cup L_{2}$ is also regular. To do so, we must find a regular expression \underline{r}_{12} such that $\mathcal{L}\left(\underline{r}_{12}\right)=L_{1} \cup L_{2}$.

Since L_{1} and L_{2} are regular there exist regular expressions $\underline{r}_{1}, \underline{r}_{2}$ such that $\mathcal{L}\left(\underline{r}_{1}\right)=L_{1}$ and $\mathcal{L}\left(\underline{r}_{2}\right)=L_{2}$. Now consider $\underline{r}_{12}=\underline{r_{1}+r_{2}}$.

$$
\begin{aligned}
\mathcal{L}\left(\underline{r}_{12}\right) & =\mathcal{L}\left(\underline{r}_{1} \cup r_{2}\right) & & \text { Definition of } \underline{r}_{12} \\
& =\mathcal{L}\left(\underline{r}_{1}\right) \cup \mathcal{L}\left(\underline{r}_{2}\right) & & \text { Definition of } \mathcal{L} \\
& =L_{1} \cup L_{2} & & \text { Assumption }
\end{aligned}
$$

Conseqently, $L_{1} \cup L_{2}$ is regular.

Singleton Languages Detail (3)
By definition of $|w|$, since $|w|=n+1$ there must exist $a \in \Sigma$ and $w^{\prime} \in \Sigma^{*}$ such that $w=a \circ w^{\prime}$ and $\left|w^{\prime}\right|=n$. The induction hypothesis guarantees that $\left\{w^{\prime}\right\}$ is regular, i.e. that there is a regular expression \underline{r}^{\prime} with $\mathcal{L}\left(\underline{r}^{\prime}\right)=\left\{w^{\prime}\right\}$. Now consider the regular expression $\underline{r}=\underline{a \circ r^{\prime}}$.

$$
\begin{aligned}
\mathcal{L}(\underline{r}) & =\mathcal{L}\left(\underline{a} \circ r^{\prime}\right) & & \text { Definition of } \underline{r} \\
& =\{a\} \circ\left\{w^{\prime}\right\} & & \text { Definition of } \mathcal{L} \\
& =\left\{a \circ w^{\prime}\right\} & & \text { Definition of } \circ \\
& =\{w\} & &
\end{aligned}
$$

Consequently, $\{w\}$ is regular.

Kleene's Theorem

Relating Automata and Regular Languages

```
So far we have three ways of "defining" languages:
    | Regular expressions
    - DFAs
    | NFAs
```

We also know that that languages definable using DFAs are the same as those definable using NFAs.
What about languages definable using regular expressions?
They coincide with those for DFAs/NFAs!

Portions ©2000 Rance Cleaveland © 2004 James Rilely

Converting Regular Expressions into NFAs

Somehow, we need to get "operational content" (i.e. states and transitions) out of regular expressions. Basic regular expressions are easy:

Regular Expression	NFA
$\underline{\emptyset}$	
$\underline{\varepsilon}$	
$\underline{a}(\in \Sigma)$	

But how do we handle the operators $\underline{\cup}, \underline{\circ}$ and $\underline{*}$?

- Book uses on approach based on NFAs that also have ε-transitions.

■ We'll pursue a different approach.

Theorem $L \subseteq \Sigma^{*}$ is regular if and only if there is a DFA M with $L=\mathcal{L}(M)$.

How can we show this? By giving constructions for converting:

- regular expressions to DFAs; and
- DFAs to regular expressions.

Today we will only prove the first part.
Instead of building DFAs from regular expressions we will construct NFAs. (Why is this sufficient?)

Portions ©2000 Rance Cleaveland ©2004 James Riely
Automata Theory and Formal Grammars: Lecture $3-\mathrm{p} .3045$

Converting Regular Expressions into NFAs (cont.)

(Recall: $\mathcal{R}(\Sigma)$ is the set of regular expressions over Σ.)

1. We'll define a predicate $\sqrt{ }$ on regular expressions; $\underline{r} \sqrt{ }$ should hold exactly when $\varepsilon \in \mathcal{L}(\underline{r})$.
2. We'll also define a relation $\longrightarrow \subseteq \mathcal{R}(\Sigma) \times \Sigma \times \mathcal{R}(\Sigma)$. Intuitively, \longrightarrow should explain how to "build" words in $\mathcal{L}(\underline{r})$: if $\underline{r} \xrightarrow{a} \underline{r}^{\prime}$ then any word $w^{\prime} \in \mathcal{L}\left(\underline{r}^{\prime}\right)$ should give rise to a word in $a w^{\prime} \in \mathcal{L}(\underline{r})$.
3. We'll then use these to construct a NFA from \underline{r} as follows.

- States are regular expressions.
- Start state is \underline{r}.
- Transitions given by \longrightarrow
- Accepting states given by $\sqrt{ }$.

Defining $\sqrt{ }$

Definition is recursive on structure of regular expressions!		
Definition	Let Σ be an alphabet. Then $\sqrt{ }$ is d	
	$\underline{\varepsilon}$ always	(1)
	$\underline{r *} \sqrt{ }$ always	(2)
	$\underline{(r+s)} \sqrt{ }$ if $\underline{r} \sqrt{ }$	(3)
	$\underline{(r+s)} \sqrt{ }$ if $\underline{s} \sqrt{ }$	(4)
	$\underline{(r s)} \sqrt{ }$ if $\underline{r} \sqrt{ }$ and $\underline{s} \sqrt{ }$	(5)

Proving $\sqrt{ }$ Is Correct

$$
\begin{aligned}
& \square \underline{r} \\
& \square \underline{g}=\underline{\varepsilon} \\
& \square \\
& \underline{r}=\underline{a} \\
& \square \underline{r}=\underline{r_{1}+r_{2}} \\
& \square \underline{r}=\underline{r_{1} \circ r_{2}} \\
& \square \underline{r}=\underline{r_{1} *}
\end{aligned}
$$

Proof Outline The proof proceeds by induction on \underline{r}, where the induction hypothesis allows the assumption of the result for "smaller"
\underline{r}^{\prime}. One would then do a case analysis based on the structure of \underline{r} :

Examples of $\sqrt{ }$

$$
\begin{array}{ll}
\underline{\varepsilon a *} \sqrt{ } & \text { since } \underline{\varepsilon} \sqrt{ } \text { and } \underline{a} * \sqrt{ } \\
\neg((a+b) \sqrt{ }) & \text { since neither } \underline{a} \sqrt{ } \text { nor } \underline{b} \sqrt{ } \\
\underline{(1+(1+01) * \sqrt{ }} & \text { since } \underline{(1+01) * \sqrt{ }} \\
\neg(\underline{(1+01(1+01) * \sqrt{ })} & \text { since } \neg(\underline{01} \sqrt{ })
\end{array}
$$

Defining \longrightarrow

Definition Let Σ be an alphabet. Then for $\underline{r}, \underline{r}^{\prime} \in \operatorname{Reg}(\Sigma)$ and $a \in \Sigma, \underline{r} \xrightarrow{a} \underline{r}^{\prime}$ is defined as follows.

$$
\begin{align*}
\underline{a} \xrightarrow{a} \underline{\varepsilon} & \text { if } a \in \Sigma \tag{1}\\
\underline{r+s} \xrightarrow{a} \underline{r}^{\prime} & \text { if } \underline{r} \xrightarrow{a} \underline{r}^{\prime} \tag{2}\\
\underline{r+s} \xrightarrow{a} \underline{s}^{\prime} & \text { if } \underline{s} \xrightarrow{a} \underline{s}^{\prime} \tag{3}\\
\underline{r s} \xrightarrow{a} \underline{r^{\prime} s} & \text { if } \underline{r} \xrightarrow{a} \underline{r}^{\prime} \tag{4}\\
\underline{r s} \xrightarrow{a} \underline{s}^{\prime} & \text { if } \underline{s} \xrightarrow{a} \underline{s}^{\prime} \text { and } \underline{r} \sqrt{ } \tag{5}\\
\underline{r *} \xrightarrow{a} \underline{r^{\prime}(r *)} & \text { if } \underline{r} \xrightarrow{a} \underline{r}^{\prime} \tag{6}
\end{align*}
$$

Examples of \longrightarrow

■ $\underline{0+1} \xrightarrow{0} \underline{\varepsilon}$ Why?
$\underline{0} \xrightarrow{0} \underline{B} \quad$ By rule for $\underline{0}$
$\underline{0+1} \xrightarrow{0} \underline{\varepsilon} \quad$ By first rule for $\underline{\cup}$

- $(a b b+a) * \xrightarrow{a} \underline{\varepsilon b b(a b b+a) * \text { Why? }}$

$$
\begin{array}{ll}
\underline{a} \xrightarrow{a} \underline{\varepsilon} & \text { By rule for } \underline{a} \\
\underline{a b b} \xrightarrow{a} \underline{\varepsilon b b} & \text { By first rule for } \underline{\circ} \\
\underline{a b b+a} \xrightarrow{a} \underline{\varepsilon b b} & \text { By first rule for } \underline{\cup} \\
\underline{(a b b+a) * \xrightarrow{\varepsilon b b b(a b b+a) *}} & \text { By rule for } \underline{*}
\end{array}
$$

Computing Outgoing Transitions

In building NFAs we will need to be able to compute the set of outgoing transitions from regular expression \underline{r}, i.e. the set $\left\{\left\langle a, \underline{r}^{\prime}\right\rangle \mid \underline{r} \xrightarrow{a} \underline{r}^{\prime}\right\}$.

How do we do it? Recursively!

- If \underline{r} is $\underline{\emptyset}$ or $\underline{\varepsilon}$, it has no transitions: $\}$.
- If \underline{r} is a, it has one transition: $\{\langle a, \underline{\varepsilon}\rangle\}$.
- Otherwise, recursively compute transitions of subexpressions of \underline{r}. Then use rules to convert transitions of subexpressions into transitions for \underline{r}.

Proving \longrightarrow Correct
Lemma Let $\underline{r} \in \operatorname{Reg}(\Sigma), a \in \Sigma$, and $w^{\prime} \in \Sigma^{*}$. Then:

$$
a w^{\prime} \in \mathcal{L}(\underline{r}) \quad \text { iff } \quad \exists \underline{r}^{\prime} \in \operatorname{Reg}(\Sigma) \cdot \underline{r} \xrightarrow{a} \underline{r}^{\prime} \text { and } w^{\prime} \in \mathcal{L}\left(\underline{r}^{\prime}\right)
$$

Note This lemma says two things about \longrightarrow.

- If $\underline{r} \xrightarrow{a} \underline{r}^{\prime}$ and $w^{\prime} \in \mathcal{L}\left(\underline{r}^{\prime}\right)$ then $a w^{\prime} \in \mathcal{L}(\underline{r})$.
- If $a w^{\prime} \in \mathcal{L}(\underline{r})$ for some $a \in \Sigma$ then there is some \underline{r}^{\prime} such that $\underline{r} \xrightarrow{a} \underline{r}^{\prime}$ and $w^{\prime} \in \mathcal{L}\left(\underline{r}^{\prime}\right)$.

In other words, the construction of every non- ε element in $\mathcal{L}(\underline{r})$ can be "initiated" using \longrightarrow !

Example: Computing Outgoing Transitions

What are transitions of $0+1$?

- Compute transitions of $\underline{0}:\{\langle 0, \underline{\varepsilon}\rangle\}$
- Compute transitions of $\underline{1}:\{\langle 1, \underline{\varepsilon}\rangle\}$

■ From above and rules for $\underline{\cup}$, transitions for $\underline{0+1}$ are $\{\langle 0, \underline{\varepsilon}\rangle,\langle 1, \underline{\varepsilon}\rangle\}$
What are transitions of $a * b *$?

- Compute transitions of $\underline{a *}$.

■ Compute transitions of $\underline{a}:\{\langle a, \underline{\varepsilon}\rangle\}$.
■ From above and rule for $\underset{\sim}{ }$, transitions for $\underline{a *}$ are $\{\langle a, \underline{\varepsilon} a *\rangle\}$.

- Compute transitions for $\underline{b *}$: they are $\{\langle b, \underline{\varepsilon b *}\rangle\}$

■ Since $\underline{a *} \sqrt{ }$, both rules for \underline{o} are applicable, and transitions for $\underline{a * b *}$ are $\{\langle a, \underline{\varepsilon a * b *}\rangle,\langle b, \underline{\varepsilon b *}\rangle\}$.

Building NFAs Using \longrightarrow and $\sqrt{ }$

Suppose that

$$
\underline{r}_{0} \xrightarrow{a_{1}} \underline{r}_{1} \xrightarrow{a_{2}} \cdots \underline{r}_{n-1} \xrightarrow{a_{n}} \underline{r}_{n}
$$

and $\underline{r}_{n} \sqrt{ }$. Then the lemmas about $\sqrt{ }$ and \longrightarrow guarantee that $a_{1} \ldots a_{n} \in \mathcal{L}\left(\underline{r}_{0}\right)$.
This suggests a way to build a NFA from a regular expression \underline{r}.
■ States are regular expressions "reachable" from \underline{r} by some number of \longrightarrow steps.

- Start state is \underline{r}.

Transitions given by \longrightarrow.

- Accepting states given by $\sqrt{ }$.

Portions ©2000 Rance Cleaveland ©2004 James Rilly

Building NFA for $(a b b \underline{\bigcup} a) \underline{*}$

Initially

$Q=\{(a b b+a) *\}$
toProc $=\{\underline{(a b b}+a) *\}$

Transitions for $(a b b+a) *$:
$\{\langle a,(a b b+a) *\rangle,\langle a, b b(a b b+a) *\rangle\}$
$Q=\{\underline{(a b b+a) *,}, \underline{b b(a b b+a) *}\}$
toProc $=\{b b(a b b+a) *\}$

Building NFAs: Implementation

One way to implement previous strategy: build states, transitions in NFA for \underline{r} in demand-driven manner.

- Start with state set $Q=\{\underline{r}\}$.
- Maintain set toProc of states whose outgoing transitions need to be calculated; initially, toProc $=\{\underline{r}\}$.
- While toProc is nonempty, choose an element from it, compute outgoing transitions from it, and add target states of transitions to Q and toProc if necessary.

Portions ©2000 Rance Cleaveland ©2004 James Riely

Implications of Kleene's Theorem

1. Regular languages are closed with respect to complement and intersection.
2. Theorem has practical importance.
ls *.c OS's convert regular expressions to DFAs to implement this
egrep String search utility converts regular expressions to DFAs
lex Scanner generator used in compiler construction; converts regular expressions for keywords, identifiers into DFAs
