Automata Theory and Formal Grammars: Lecture 2

Deterministic and Nondeterministic Finite Automata

Deterministic and Nondeterministic Finite Automata

Last Time

- Sets Theory (Review?)
- Logic, Proofs (Review?)
- Words, and operations on them: $w_1 \circ w_2, w^i, w^*, w^+$
- Languages, and operations on them: $L_1 \circ L_2, L^i, L^*, L^+$

Today

- Deterministic Finite Automata (DFAs) and their languages
- Closure properties of DFA languages (the product construction)
- Nondeterministic Finite Automata (NFAs) and their languages
- Relating DFAs and NFAs (the subset construction)

Fibonacci as a Recursively Defined Set

The n^{th} Fibonacci number f(n):

$$\begin{array}{rcl} f(0) &=& 0 \\ f(1) &=& 1 \\ f(n) &=& f(n-1) + f(n-2), \, \text{for } n \geq 2 \end{array}$$

As a recursively defined set (relation)

$$F_{0} = \emptyset$$

$$F_{i+1} = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle\}$$

$$\cup \left\{ \langle n, f_{n_{1}} + f_{n_{2}} \rangle \middle| \begin{array}{c} \langle n_{1}, f_{n_{1}} \rangle \in F_{i} \text{ and} \\ \langle n_{2}, f_{n_{2}} \rangle \in F_{i} \text{ and} \\ n = n_{1} + 1 = n_{2} + 2 \end{array} \right.$$

Fibonacci as a Recursively Defined Set

$$F_{0} = \emptyset$$

$$F_{i+1} = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle\}$$

$$\cup \left\{ \langle n, f_{n_{1}} + f_{n_{2}} \rangle \middle| \begin{array}{c} \langle n_{1}, f_{n_{1}} \rangle \in F_{i} \text{ and} \\ \langle n_{2}, f_{n_{2}} \rangle \in F_{i} \text{ and} \\ n = n_{1} + 1 = n_{2} + 2 \end{array} \right\}$$

For example:

$$F_{0} = \emptyset$$

$$F_{1} = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle\}$$

$$F_{2} = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 1 \rangle\}$$

$$F_{3} = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle\}$$

$$F_{4} = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 4, 3 \rangle\}$$

$$F_{5} =$$

Conventions

- Σ is an arbitrary alphabet. (In examples, Σ should be clear from context.)
- The variables a-e range over letters in Σ .
- The variables u-z range over words over Σ^* .
- The variables p-q range over states in Q.

Recall

For any string *w* and language *L*:

$$w \circ \varepsilon = w \qquad \qquad = \varepsilon \circ w \tag{1}$$

$$L \circ \{\varepsilon\} = L = \{\varepsilon\} \circ L$$

$$L^* = \{\varepsilon\} \cup L \circ L^*$$
(2)
(3)

 L^* is closed with respect to concatenation, for any L:

if $u \in L^*$ and $v \in L^*$ then $u \circ v \in L^*$

Finite Automata

... are "machines" for recognizing languages!

They process input words a symbol at a time.

An "accept light" flashes if the symbols read in so far are "OK".

Formal Definition of Finite Automata

Definition A finite automaton (DFA) is a quintuple $\langle Q, \Sigma, q_0, \delta, A \rangle$ where:

- \blacksquare Q is a finite non-empty set of states;
- Σ is an alphabet;
- $q_0 \in Q$ is the start state;
- $\delta: Q \times \Sigma \to Q$ is the transition function; and
- $A \subseteq Q$ is the set of accepting (final) states.

DFA Acceptance

Given a DFA $M = \langle Q, \Sigma, q_0, \delta, A \rangle$ and word $w \in \Sigma^*$:

- M should accept w if in processing w a symbol at a time, M goes to an accepting state.
- To formalize this we define a function

 $\delta^*: Q \times \Sigma^* \to Q$

 $\delta^*(q,w)$ should be the state reached from q after processing w.

• How to define δ^* ?

Example of δ^*

$$\delta^*(0, aab) = \delta^*(\delta(0, a), ab) = \delta^*(2, ab)$$
$$= \delta^*(\delta(2, a), b) = \delta^*(3, b)$$
$$= \delta^*(\delta(3, b), \varepsilon) = \delta^*(1, \varepsilon)$$
$$= 1$$

What is $\delta^*(0, abaa)$?

Definition of δ^*

Definition Let $M = \langle Q, \Sigma, q_0, \delta, A \rangle$ be a DFA. Then $\delta^* : Q \times \Sigma^* \to Q$ is defined recursively:

$$\delta^*(q,w) = \begin{cases} q & \text{if } w = \varepsilon \\ \delta^*(\delta(q,a),w') & \text{if } w = aw' \text{ and } a \in \Sigma \end{cases}$$

 $\delta^*(q, w) = q'$ if q' the state reached by processing w, starting from q.

Language of a Finite Automaton

A DFA accepts a word if it reaches an accepting state after "consuming" the word.

Definition Let $M = \langle Q, \Sigma, q_0, \delta, A \rangle$ be a DFA.

• *M* accepts $w \in \Sigma^*$ if $\delta^*(q_0, w) \in A$.

• $\mathcal{L}(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \} \text{ is the language accepted by } M.$

Example: DFA for $\{ w \in \{0,1\}^* \mid w \text{ ends in } 01 \}$

Example: DFA for Valid Binary Numbers

- Must contain at least one digit.
- No leading 0s.