Automata Theory and Formal Grammars: Lecture 2
Deterministic and Nondeterministic Finite Automata

Portions ©2000 Rance Cleaveland ©2004 James Riely

Fibonacci as a Recursively Defined Set

The $n^{\text {th }}$ Fibonacci number $f(n)$:

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=f(n-1)+f(n-2), \text { for } n \geq 2
\end{aligned}
$$

As a recursively defined set (relation)

$$
\begin{aligned}
F_{0} & =\emptyset \\
F_{i+1} & =\{\langle 0,0\rangle,\langle 1,1\rangle\} \\
& \cup\left\{\begin{array}{ll}
\left\langle n, f_{n_{1}}+f_{n_{2}}\right\rangle \left\lvert\, \begin{array}{l}
\left\langle n_{1}, f_{n_{1}}\right\rangle \in F_{i} \text { and } \\
\left\langle n_{2}, f_{n_{2}}\right\rangle \in F_{i} \\
n=n_{1}+1=n_{2}+2
\end{array}\right.
\end{array}\right\}
\end{aligned}
$$

Deterministic and Nondeterministic Finite Automata

Last Time

■ Sets Theory (Review?)
■ Logic, Proofs (Review?)

- Words, and operations on them: $w_{1} \circ w_{2}, w^{i}, w^{*}, w^{+}$

■ Languages, and operations on them: $L_{1} \circ L_{2}, L^{i}, L^{*}, L^{+}$

Today

- Deterministic Finite Automata (DFAs) and their languages
- Closure properties of DFA languages (the product construction)
- Nondeterministic Finite Automata (NFAs) and their languages
- Relating DFAs and NFAs (the subset construction)

Portions ©2000 Rance Cleaveland ©2004 James Riely
Automata Theory and Formal Grammars: Lecture 2-p.2/38

Fibonacci as a Recursively Defined Set

$$
\begin{aligned}
F_{0} & =\emptyset \\
F_{i+1} & =\{\langle 0,0\rangle,\langle 1,1\rangle\} \\
& \cup\left\{\begin{array}{ll}
\left\langle n, f_{n_{1}}+f_{n_{2}}\right\rangle & \begin{array}{l}
\left\langle n_{1}, f_{n_{1}}\right\rangle \in F_{i} \text { and } \\
\left\langle n_{2}, f_{n_{2}}\right\rangle \in F_{i} \\
n=n_{1}+1=n_{2}+2
\end{array}
\end{array}\right\}
\end{aligned}
$$

For example:

$$
\begin{aligned}
& F_{0}=\emptyset \\
& F_{1}=\{\langle 0,0\rangle,\langle 1,1\rangle\} \\
& F_{2}=\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,1\rangle\} \\
& F_{3}=\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,2\rangle\} \\
& F_{4}=\{\langle 0,0\rangle,\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,2\rangle,\langle 4,3\rangle\} \\
& F_{5}=
\end{aligned}
$$

Conventions

$\square \Sigma$ is an arbitrary alphabet. (In examples, Σ should be clear from context.)

- The variables $a-e$ range over letters in Σ.
- The variables $u-z$ range over words over Σ^{*}.
- The variables $p-q$ range over states in Q.

Finite Automata

... are "machines" for recognizing languages!

- They process input words a symbol at a time.

■ An "accept light" flashes if the symbols read in so far are "OK".

Recall
For any string w and language L :

$$
\begin{array}{rlrl}
w \circ \varepsilon & =w & & =\varepsilon \circ w \\
L \circ\{\varepsilon\} & =L & =\{\varepsilon\} \circ L \\
L^{*} & =\{\varepsilon\} \cup L \circ L^{*} & \tag{3}
\end{array}
$$

L^{*} is closed with respect to concatenation, for any L :

$$
\text { if } u \in L^{*} \text { and } v \in L^{*} \text { then } u \circ v \in L^{*}
$$

Portions ©2000 Rance Cleaveland ©2004 James Riey

Formal Definition of Finite Automata

Definition A finite automaton (DFA) is a quintuple $\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$ where:

- Q is a finite non-empty set of states;
- Σ is an alphabet;
- $q_{0} \in Q$ is the start state;
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function; and
- $A \subseteq Q$ is the set of accepting (final) states.

DFA Acceptance

Given a DFA $M=\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$ and word $w \in \Sigma^{*}$:

- M should accept w if in processing w a symbol at a time, M goes to an accepting state.
- To formalize this we define a function

$$
\delta^{*}: Q \times \Sigma^{*} \rightarrow Q
$$

$\delta^{*}(q, w)$ should be the state reached from q after processing w.

- How to define δ^{*} ?

Definition of δ^{*}

Definition Let $M=\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$ be a DFA. Then $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined recursively:

$$
\delta^{*}(q, w)= \begin{cases}q & \text { if } w=\varepsilon \\ \delta^{*}\left(\delta(q, a), w^{\prime}\right) & \text { if } w=a w^{\prime} \text { and } a \in \Sigma\end{cases}
$$

$\delta^{*}(q, w)=q^{\prime}$ if q^{\prime} the state reached by processing w, starting from q.

Example of δ^{*}

$$
\delta^{*}(0, a a b)=\delta^{*}(\delta(0, a), a b)=\delta^{*}(2, a b)
$$

$$
=\delta^{*}(\delta(2, a), b)=\delta^{*}(3, b)
$$

$$
=\delta^{*}(\delta(3, b), \varepsilon)=\delta^{*}(1, \varepsilon)
$$

$$
=1
$$

What is $\delta^{*}(0, a b a a) ?$

Portions ©2000 Rance Cleaveland ©2004 James Riely

Language of a Finite Automaton

A DFA accepts a word if it reaches an accepting state after

 "consuming" the word.Definition Let $M=\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$ be a DFA.

- M accepts $w \in \Sigma^{*}$ if $\delta^{*}\left(q_{0}, w\right) \in A$.

■ $\mathcal{L}(M)=\left\{w \in \Sigma^{*} \mid M\right.$ accepts $\left.w\right\}$ is the language accepted by M.

Example: DFA for $\left\{w \in\{0,1\}^{*} \mid w\right.$ ends in 01$\}$

DFA Languages

Definition A language $L \subseteq \Sigma^{*}$ is a DFA language if there exists a DFA M such that $L=\mathcal{L}(M)$.

- Is the set of Java numeric constants a DFA language?

$$
0 \times \mathrm{E}, 15,017,151,15 \mathrm{~L}, 15.0,1.5 \mathrm{e} 1,1.5 \mathrm{E} 1
$$

Yes! To show it build a DFA.

- Is the set of strings of balanced parentheses a DFA language?

$$
\varepsilon, \text { ab, aabb, aaabbb, }
$$

No! To show it . . . attend lecture 4.

Example: DFA for Valid Binary Numbers

- Must contain at least one digit.
- No leading Os.

Portions ©2000 Rance Cleaveland ©2004 James Riely
Automata Theory and Formal Grammars: Lecture 2-p.1438

Closure Properties for DFA Languages

Closed Sets

Let f be a unary operation $f: U \rightarrow U$. A subset $S \subseteq U$ is closed under f - equivalently, f preserves S - if

$$
\forall s \in S . f(s) \in S
$$

Let g be a binary operation $g: U \times U \rightarrow U$. A subset $S \subseteq U$ is closed under g - equivalently, g preserves S - if

$$
\forall\left\langle s_{1}, s_{2}\right\rangle \in S \times S . f\left(s_{1}, s_{2}\right) \in S
$$

- Naturals are closed under addition, not subtraction.
- Integers are closed under multiplication, not division.
- Rationals are closed under division, not square root.
- Reals are closed under square root, not exponentiation.
- Complex are closed under exponentiation.

Portions ©2000 Rance Cleaveland © 2004 James Rilly

Complementation

Theorem Let $L \subseteq \Sigma^{*}$ be a DFA language. Then so is \bar{L}.

Since L is a DFA language we know there is a DFA M accepting it.
How can we build a DFA for \bar{L} ?
Idea Reverse the accepting and nonaccepting states in M !
The proof formalizes this idea.
\square We would like to see what operations on languages "preserve" the property of being recognizable by a DFA.

- For example, suppose we wish to show the following:

Let L_{1} and L_{2} be DFA languages. Then $\overline{L_{1}}$ and $L_{1} \cap L_{2}$ are also DFA languages.

- How do we prove this? Via constructions.

Proof

- Suppose L is a DFA language. By definition, there must be a DFA M such that $\mathcal{L}(M)=L$

■ Fix $M=\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$.

- Let $\bar{M}=\left\langle Q, \Sigma, q_{0}, \delta, Q-A\right\rangle$. We show that $\mathcal{L}(\bar{M})=\bar{L}$.

■ For any $w \in \Sigma^{*}$,

$$
\delta^{*}\left(q_{0}, w\right) \notin A \quad \text { iff } \quad \delta^{*}\left(q_{0}, w\right) \in Q-A
$$

This holds trivially by induction on length of w.
■ Thus, for any $w, w \in \mathcal{L}(\bar{M})$ if and only if $w \notin \mathcal{L}(M)$.

- Thus, $\mathcal{L}(\bar{M})=\bar{L}$. QED

Example of Complementation Construction

Portions © 2000 Rance Cleaveland ©2004 James Riely
Automata Theory and Formal Grammars: Lecture 2-p.21/38

The Product Construction

$$
\begin{aligned}
& \text { Let } M=\left\langle Q_{M}, \Sigma, q_{M}, \delta_{M}, A_{M}\right\rangle \text { be a DFA. } \\
& \text { Let } N=\left\langle Q_{N}, \Sigma, q_{N}, \delta_{N}, A_{N}\right\rangle \text { be a DFA. } \\
& \text { Define } \Pi(M, N) \text { as } \\
& \qquad \Pi(M, N)=\left\langle Q_{M} \times Q_{N}, \Sigma,\left\langle q_{M}, q_{N}\right\rangle, \delta_{M N}, A_{M} \times A_{N}\right\rangle
\end{aligned}
$$

where

$$
\delta_{M N}\left(\left\langle q_{1}, q_{2}\right\rangle, a\right)=\left\langle\delta_{M}\left(q_{1}, a\right), \delta_{N}\left(q_{2}, a\right)\right\rangle
$$

Lemma For any $w \in \Sigma^{*}, q_{1} \in Q_{M}$, and $q_{2} \in Q_{N}$,

$$
\delta_{M N}^{*}\left(\left\langle q_{1}, q_{2}\right\rangle, w\right)=\left\langle\delta_{M}^{*}\left(q_{1}, w\right), \delta_{N}^{*}\left(q_{2}, w\right)\right\rangle .
$$

Proof?

And how does this help show that $\mathcal{L}(\Pi(M, N))=\mathcal{L}(M) \cap \mathcal{L}(N)$?

Theorem Let $L_{1}, L_{2} \subseteq \Sigma^{*}$ be DFA languages. Then $L_{1} \cap L_{2}$ is a DFA language.

To prove this we will use the Product Construction.

- Given two DFAs M and N, the product construction builds a new DFA $\Pi(M, N)$ that "runs" M and N in parallel.
$\square \Pi(M, N)$ then accepts a word iff both M and N do.
- So $\mathcal{L}(\Pi(M, N))=\mathcal{L}(M) \cap \mathcal{L}(N)$!

How do we define Π ?

Portions ©2000 Rance Cleaveland ©2004 James Riely

Example of Product Construction

A Corollary about Closure for DFA Languages

What's a "corollary"? An "obvious consequence".

Corollary Let $L_{1}, L_{2} \subseteq \Sigma^{*}$ be DFA languages. Then so are $L_{1} \cup L_{2}$
and $L_{1}-L_{2}$.
Why is this an "obvious consequence" of what we have seen before?

Nondeterministic Finite Automata

- Regular DFAs require exactly one transition per state for each input symbol.
- Nondeterministic FAs allow any number of transitions!

Why study NFAs? Because they are easier to work with sometimes....

NFAs Can Be Smaller Than DFAs!

Consider language $L \subseteq\{0,1\}^{*}$ given by regular expression $(0+1)^{*} 0(0+1)(0+1)\left(3^{r d}\right.$ symbol from right is a 0$)$.

NFA

FA

Formal Definition of NFAs

Definition A nondeterministic finite automaton (NFA) is a quintuple
$\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$ where:

- Q is a finite set of states;
$\square \Sigma$ is the input alpabet;
- $q_{0} \in Q$ is the start state;
- $A \subseteq Q$ is the set of accepting states; and
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function.

Idea $\delta(q, a)$ records the set of states reachable from q via an a-transition.

Example

Languages of NFAs: Defining δ^{*}

To formalize acceptance we first define a function $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$; $\delta^{*}(q, w)$ contains all the states reachable from q after processing w.

Definition Let $M=\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$ be a NFA. Then $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$ is defined as follows.

$$
\delta^{*}(q, w)= \begin{cases}\{q\} & \text { if } w=\varepsilon \\ \bigcup_{q^{\prime} \in \delta(q, a)} \delta^{*}\left(q^{\prime}, w^{\prime}\right) & \text { if } w=a w^{\prime} \text { and } a \in \Sigma\end{cases}
$$

Note that $\delta^{*}(q, w)$ gives us the set of all possible outcomes of processing w from state q.

Portions ©2000 Rance Cleaveland ©2004 James Riely

Languages of NFAs

- As with DFAs, the language of a NFA consists of the words that it accepts.

■ In a NFA nondeterministic choices require "guessing": which transition should be taken? Some paths may lead to accepting states, whereas others do not.

- A NFA accepts a word if it is possible to make the guesses so that we reach an accepting state.
- This is called angelic nondetermism. We have access to an oracle that always guesses correctly.

Languages of NFAs: Formal Definition

Definition Let $M=\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$ be a NFA, and let $w \in \Sigma^{*}$.

- M accepts w if $\delta^{*}\left(q_{0}, w\right) \cap A \neq \emptyset$.
- The language, $\mathcal{L}(M)$, of M is defined by: $\mathcal{L}(M)=\left\{w \in \Sigma^{*} \mid M\right.$ accepts $\left.w\right\}$

So M accepts w if it is possible to reach an accepting state after processing w.

Portions ©2000 Rance Cleaveland ©2004 James Riely

The Subset Construction: Intuition

So What Is Relationship Between DFAs and NFAs?

Theorem

1. For any DFA M there is a NFA N such that $\mathcal{L}(N)=\mathcal{L}(M)$.
2. For any NFA N there is a DFA M such that $\mathcal{L}(M)=\mathcal{L}(N)$.

Proof of 1 is easy, since any DFA "is" a NFA. But 2?

- Idea behind proof is to define DFA that "tracks" behavior of NFA on a given input word.
- This construction is often called the subset construction because states in the DFA correspond to set of states in the NFA.

The Subset Construction

Let $N=\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle$ be a NFA.

We want to construct a DFA $D(N)$ accepting the same language.
States in $D(N)$ will be sets of states from N.
Let P range over states of $D(N)$.
$P \in 2^{Q}$, that is, $P \subseteq Q$.

$$
D(N)=\left\langle 2^{Q}, \Sigma,\left\{q_{0}\right\}, \delta_{D N}, A_{D N}\right\rangle
$$

where

$$
\begin{aligned}
\delta_{D N}(P, a) & =\bigcup_{q \in P} \delta(q, a) \\
A_{D N} & =\left\{P \mid P \in 2^{Q} \text { and } P \cap A \neq \emptyset\right\}
\end{aligned}
$$

Note that $\delta^{*}\left(q_{0}, w\right) \in Q$, whereas $\delta_{D N}^{*}\left(\left\{q_{0}\right\}, w\right) \subseteq Q$.

Example of Subset Construction

Note. Only reachable states in $D(N)$ are represented. (In practice, not all subsets of Q are reachable from $\left\{q_{0}\right\}$, and these need not be added explicitly to $D(N)$.)

Correctness of Subset Construction

$$
\begin{aligned}
& \text { Let } N=\left\langle Q, \Sigma, q_{0}, \delta, A\right\rangle \text { be a NFA. } \\
& D(N)=\left\langle 2^{Q}, \Sigma,\left\{q_{0}\right\}, \delta_{D N}, A_{D N}\right\rangle \text { where - for } P \in 2^{Q} \text { - } \\
& \delta_{D N}(P, a)=\bigcup_{q \in P} \delta(q, a) \text { and } A_{D N}=\{P \mid P \cap A \neq \emptyset\} .
\end{aligned}
$$

Theorem For any NFA $N, \mathcal{L}(N)=\mathcal{L}(D(N))$.
Recall that $\delta^{*}\left(q_{0}, w\right) \in Q$, whereas $\delta_{D N}^{*}\left(\left\{q_{0}\right\}, w\right) \subseteq Q$.
The proof relies on the following observations. For any $w \in \Sigma^{*}$:

- $\delta^{*}\left(q_{0}, w\right)=\delta_{D N}^{*}\left(\left\{q_{0}\right\}, w\right)$

■ $\delta^{*}\left(q_{0}, w\right) \cap A \neq \emptyset$ if and only if $\delta_{D N}^{*}\left(\left\{q_{0}\right\}, w\right) \in A_{D N}$
Consequently, $w \in \mathcal{L}(N)$ if and only if $w \in \mathcal{L}(D(N))$!

