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Sets, Languages, Logic

Today

Course Overview

Administrivia

Sets Theory (Review?)

Logic, Proofs (Review?)

Words, and operations on them: w1 ◦ w2, w
i, w∗, w+

Languages, and operations on them: L1 ◦ L2, L
i, L∗, L+
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What This Course Is About

Mathematical theory of computation!

We’ll study different “machine models” (finite automata, pushdown
automata). . .

. . . with a view toward characterizing what they can compute.
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Why Study This Topic?

To understand the limits of computation.

Some things require more resources to compute, and others
cannot be computed at all. To study these issues we need
mathematical notions of “resource” and “compute”.

To learn some programming tools.

Automata show up in many different settings: compilers, text
editors, communications protocols, hardware design, . . .

First compilers took several person-years; now written by a single
student in one semester, thanks to theory of parsing.

To learn about program analysis.

Microsoft is shipping two model-checking tools. PREfix discovered
≥2000 bugs in XP (fixed in SP2).

To learn to think analytically about computing.
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Why Study This Topic?

This course focuses on machines and logics.

Analysis technique: model checking (SE431).

CSC535 focuses on languages and types.

Analysis technique: type checking (CSC535).

Both approaches are very useful.

For example, in Computer Security (SE547).
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Administrivia

Course Homepage:
http://www.depaul.edu/~jriely/csc444fall2003/

Syllabus:
http://www.depaul.edu/~jriely/csc444fall2003/syllabus.html
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Set Theory: Sets, Functions, Relations
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Sets

Sets are collections of objects.

{ }, {42}, {alice, bob}

N = {0, 1, 2, ...}

Z = {...,−2,−1, 0, 1, 2, ...}

R = the set of real numbers includings Z,
√

2, π, etc

{x ∈ N | x ≥ 5 }

Sets are unordered and insensitive to repetition.

{42, 27} = {27, 42}

{42, 42} = {42}
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http://www.depaul.edu/~jriely/csc444fall2003/
http://www.depaul.edu/~jriely/csc444fall2003/syllabus.html


What Do the Following Mean?

∅, {} empty set

a ∈ A membership

A ⊆ B subset

A ∪ B union

A ∩ B intersection

◦A complement

A − B set difference = A ∩ ◦B
⋃

i∈I Ai indexed union
⋂

i∈I Ai indexed intersection

2A power set (set of all subsets)

A × B Cartesian product = { 〈a, b〉 | a ∈ A, b ∈ B }
|A| size (cardinality, or number of elements)
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Examples

Let A = {m, n} and B = {x, y, z}

What is |A|? |B|?
2, 3

What is A × B? |A × B|?
{〈m, x〉, 〈m, y〉, 〈m, z〉, 〈n, x〉, 〈n, y〉, 〈n, z〉} , 2 × 3 = 6

What is 2A? |2A|?
{∅, {m}, {n}, {m, n}} , 22 = 4

What is 2B? |2B|?
{∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}} , 23 = 8
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Equality on Sets

Let A and B be sets. When does A = B?

When they contain the same elements.
When A ⊆ B and B ⊆ A.

Some Set Equalities

A ∪ ∅ = A

A ∩ ∅ = ∅
◦A ∪ B = ◦A ∩ ◦B (De Morgan)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (Distributivity)
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Cardinality

Cardinality is easy with finite sets.

|{1, 2, 3}| = |{a, b, c}|

What about infinite ones?

To answer this we need to understand functions.
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Binary Relations

... relate elements of a set to other elements in the set.

Definition Let A be a set. Then R is a binary relation over A if
R ⊆ A × A.

Notation We usually write a1 R a2, rather than 〈a1, a2〉 ∈ R.

Examples

{〈0, 1〉, 〈1, 2〉} is a binary relation over N.

{ 〈n, n〉 | n ∈ N } is a binary relation over N.
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Equivalence Relations

When is R ⊆ A × A an equivalence relation?

R must be

reflexive a1 R a1 holds for any a1 ∈ A.

symmetric a1 R a2 implies a2 R a1 for any a1, a2 ∈ A.

transitive a1 R a2 and a2 R a3 implies a1 R a3 for all a1, a2, a3 ∈ A.

As an example, consider =3⊆ N × N defined by i =3 j if and only if

i modulo 3 = j modulo 3

For example

0 =3 3 =3 6 6=3 1 =3 4 =3 7
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Equivalence Classes

Let R be an equivalence relation R ⊆ A × A. Let a ∈ A.
Then we write [a]R for the set of elements equivalent to a under R.

[a]R = { a′ | a R a′ }

Note that [a]R ⊆ A.

What is [1]=3
?

{1, 4, 7, 10, ...}
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Functions

When is R ⊆ A × B a function (ie, a total function)?

R must be

deterministic If a R b1 and a R b2 then b1 = b2.

total For every a ∈ A, there exists b ∈ B such that a R b holds.

Equivalently. . . For every a ∈ A, require
∣

∣{ b | a R b }
∣

∣ = 1.

If we require only determinism, we define partial functions.

Functions map elements from one set to elements from another.

f : A → B

A : domain of f

B : codomain of f

f(a) : result of applying f to a ∈ A — f(a) ∈ B.
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Relational Inverse

R−1 ⊆ B × A is the inverse of R ⊆ A × B.

Definition b R−1 a if and only if a R b.

Is the inverse of a function always a function?
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Bijections

When Is f : A → B ...

... injective (or one-to-one)?

When f(a1) = f(a2) implies a1 = a2 for any a1, a2 ∈ A.

When f−1 is deterministic

... surjective (onto)?

When for any b ∈ B there is an a ∈ A with f(a) = b.

When f−1 is total

... bijective?

When it is injective and surjective.

When f−1 is a function
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Which f : N → N Is Injective/Surjective?

f(x) = x + 1 injective, not surjective

f(x) = ⌊x
2
⌋ surjective, not injective

f(x) = |x| bijective

What if instead f : Z → Z?

f(x) = x + 1 bijective

f(x) = ⌊x
2
⌋ surjective, not injective

f(x) = |x| neither injective nor surjective
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More On Functions

Let f : A → B

If S ⊆ A then how is f(S) defined?

f(S) = { f(a) | a ∈ S }.

We have lifted f from A → B to 2A → 2B.

What is f(A) called?

The range of f .

If g : B → C then how is g ◦ f defined?

g ◦ f : A → C is defined as g ◦ f(a) = g(f(a)).

If f is a bijection, what is (f−1)−1?

f

If f is a bijection, what is f ◦ f−1(b)?

b
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Cardinality Revisited

Definition Two infinite sets have the same cardinality if there exists
a bijection between them.

Recall the naturals (N), integers (Z) and reals (R).

Theorem

|N| = |Z|
|N| = |N × N|
|N| 6= |2N|
|2N| = |R|

How would you prove these statements?
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Words
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Languages and Computation

What are computers? Symbol pushers

They take in sequences of symbols ...

... and produce sequences of symbols.

Mathematically, languages are sets of sequences of symbols (“words”)
taken from some alphabet.

Computers are language processors.

We’ll study different classes of languages with a view toward
characterizing how much computing power is needed to “process”
them.

But first, we need precise definitions of alphabet, word and language.
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Alphabets

An alphabet is a finite, nonempty set of symbols.

Examples

{ a, b, . . . , z }

{ a, b, . . . , z, ä, ö, ü, ß }

{ 0,1 }

ASCII

Alphabets are usually denoted by Σ.
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Words

A word (or string) or over an alphabet is a finite sequence of symbols
from the alphabet.

Examples

sour

süß

010101110

We write the empty string as ε.

Let Σ∗ be the set of all words over alphabet Σ.
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Words as Lists

One can think about strings as a ε-terminated list of symbols.

Examples

sour = s · o · u · r · ε
süß = s · ü · ß · ε
010101110 = 0 · 1 · 0 · 1 · 0 · 1 · 1 · 1 · 0 · ε
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Operations on Words: Length

Definition Let Σ be an alphabet. The length function | − | : Σ∗ → N

is defined inductively as follows.

|w| =







0 if w = ε

1 + |w′| if w = a · w′

E.g. |abb| = |a · b · b · ε|
= 1 + |b · b · ε|
= 1 + 1 + |b · ε|
= 1 + 1 + 1 + |ε|
= 1 + 1 + 1 + 0

= 3
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Operations on Words: Concatenation

Definition Let Σ be an alphabet. The concatenation operation
C : Σ∗ × Σ∗ → Σ is defined inductively as follows.

C(w1, w2) =







w2 if w1 = ε

a · (C(w′
1, w2)) if w1 = a · w′

1

E.g. C(01, 10) = C(0 · 1 · ε, 10)
= 0 · C(1 · ε, 10)
= 0 · 1 · C(ε, 10)

= 0 · 1 · 10
= 0110

Notation C(w1, w2) usually written as w1 · w2 or w1w2.
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Substrings

Using concatenation, we can define substrings.

v is a substring of a string w if there are strings x and y s.t.
w = xvy

if w = uv for some string u then v is a suffix of w

if w = uv for some string v then u is a prefix of w

Degenerate cases:

ε is a substring of any string

Any string is a substring of itself

ε is a prefix and suffix of any string

Any string is a prefix and suffix of itself
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Operations on Words: Exponentiation

Definition Let Σ be an alphabet. The exponentiation operation
−− : Σ∗ × N → Σ∗ is defined inductively as follows.

wi =







ε if i = 0

w ◦ (wi−1) otherwise

E.g. (ab)2 = ab ◦ (ab)1

= ab ◦ ab ◦ (ab)0

= ab ◦ ab ◦ ε

= abab
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Operations on Words: Reverse

Definition Let Σ be an alphabet. The reverse operation
−R : Σ∗ → Σ∗ is defined inductively as follows.

wR =







ε if w = ε

C(wR, a) if w = a · u

E.g. abcR = (a · b · c · ε)R

= C((b · c · ε)R, a)

= C(C((c · ε)R, b), a)

= C(C(C((ε)R, c), b), a)

= C(C(C(ε, c), b), a)

= C(C(c, b), a)

= C(cb, a)

= cba
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Properties of Operators on Words

ε ◦ w = w

w ◦ ε = w

w1 ◦ (w2 ◦ w3) = (w1 ◦ w2) ◦ w3

|w1 ◦ w2| = |w1| + |w2|
w1 = w

wi+j = wi ◦ wj

(wR)R = w
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Conventions

Σ is an arbitrary alphabet. (In examples, Σ should be clear from
context.)

The variables a–e range over letters in Σ.

The variables u–z range over words over Σ∗.
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Formal Definitions Using Recursive Sets
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More Formally: Alphabets and Words

Definition (Alphabet) An alphabet is a finite, non-empty set of
symbols.

Definition (Σ∗) Let Σ be an alphabet. The set Σ∗ of words (or

strings) over Σ is defined recursively as follows.

ε ∈ Σ∗

If a ∈ Σ and w ∈ Σ∗ then a · w ∈ Σ∗
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What?

ε is a special symbol representing the empty string (i.e. a string
with no symbols). You can also think of it as the “end-of-word”
marker.

a · w represents a word consisting of the letter a followed by the
word w.

Examples

ε ∈ {0, 1}∗

0 · ε ∈ {0, 1}∗

0 · 1 · 1 · 0 · ε ∈ {0, 1}∗

Notation Instances of ·, trailing ε’s are usually omitted:
0, 0110 written rather than 0 · ε, 0 · 1 · 1 · 0 · ε.
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Recall Fibonacci

The nth Fibonacci number f(n):

f(0) = 0

f(1) = 1

f(n) = f(n − 1) + f(n − 2), for n ≥ 2

0, 1, 1, 2, 3, 5, 8, 13, 21, ...
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Recursive Definitions for Functions

Recursion A method of defining something “in terms of itself”.

Fibonacci is defined in terms of itself.

Why is this OK?

Because:

There are “base cases” (n = 0, 1).

Applications of f in body are to “smaller” arguments.
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Sets Can Also Be Defined Recursively

Recursive set definitions consist of rules explaining how to build up
elements in the set from elements already in the set.

Example A set A can be defined as follows.

1 ∈ A

If a ∈ A then a + 3 ∈ A

What are elements in A?

A = {1, 4, 7, ...} = [1]=3
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Elements of Recursively Defined Sets

The previous definition specifies that A =
⋃∞

i=0
Ai, where

A0 = ∅
Ai+1 = {1} ∪ { a + 3 | a ∈ Ai }

E.g.

A0 = ∅
A1 = {1} ∪ ∅ = {1}
A2 = {1} ∪ {4} = {1, 4}
A3 = {1} ∪ {4, 7} = {1, 4, 7}
A4 =

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.40/74



More Generally

Recursive set definitions consist of rules of following forms:
c ∈ A for some constant c

If a ∈ A and p(a) then f(a) ∈ A for some predicate p and function f

Then A =
⋃∞

i=0
Ai, where

A0 = ∅
Ai+1 = { c | c ∈ A is a rule }∪

{f(a) | If a ∈ A and p(a) then f(a) ∈ A is a rule

∧ a ∈ Ai ∧ p(a)}

E.g. In previous example:

p(a) is “true”

f(a) = a + 3
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More Formally: Alphabets and Words

Definition (Σ∗) Let Σ be an alphabet. The set Σ∗ of words (or

strings) over Σ is defined recursively as follows.

ε ∈ Σ∗

If a ∈ Σ and w ∈ Σ∗ then a · w ∈ Σ∗

(Σ∗) =
⋃∞

i=0
(Σ∗)i, where

(Σ∗)0 = ∅
(Σ∗)i+1 = ε ∪ { a · w | a ∈ Σ and w ∈ (Σ∗)i }

Convention: we write 0, 10 rather than 0 · ε, 1 · 0 · ε.
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An example

(Σ∗) =
⋃∞

i=0
(Σ∗)i, where

(Σ∗)0 = ∅
(Σ∗)i+1 = ε ∪ { a · w | a ∈ Σ and w ∈ (Σ∗)i }

For example, let Σ = {0, 1}

(Σ∗)0 = ∅
(Σ∗)1 = {ε} ∪ ∅ = {ε}
(Σ∗)2 = {ε} ∪ {0, 1} = {ε, 0, 1}
(Σ∗)3 = {ε} ∪ {0, 1, 00, 01, 10, 11} = {ε, 0, 1, 00, 01, 10, 11}
(Σ∗)4 =

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, ...}
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Generally...

Σ∗ =
⋃∞

i=0
(Σ∗)i, where

(Σ∗)0 = ∅
(Σ∗)1 = {ε}
(Σ∗)2 = {ε} ∪ { a · ε | a ∈ Σ }

= {ε} ∪ { a | a ∈ Σ }
(Σ∗)3 = {ε} ∪ { a · w′ | a ∈ Σ ∧ w′ ∈ (Σ∗)2 }

= {ε} ∪ { a · ε | a ∈ Σ } ∪ { a1 · a2 · ε | a1, a2 ∈ Σ }
= {ε} ∪ { a | a ∈ Σ } ∪ { a1a2 | a1, a2 ∈ Σ }
...

Note. (Σ∗)i consists of all words containing up to i − 1 symbols from Σ.
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Languages
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Languages

... are just sets of words, i.e. subsets of Σ∗!

Definition Let Σ be an alphabet. Then a language over Σ is a
subset of Σ∗.

Question What is 2Σ
∗

?

The set of all languages over Σ!
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Operations on Languages

The usual set operations may be applied to languages: ∪,∩, etc. One
can also “lift” operations on words to languages.

Definition Let Σ be an alphabet, and let L, L1, L2 ⊆ Σ∗ be
languages.

Concatenation: L1 ◦ L2 = {w1 ◦ w2 | w1 ∈ L1 ∧ w2 ∈ L2 }.

Exponentiation: Let i ∈ N. Then Li is defined recursively as follows.

Li =







{ε} if i = 0

L ◦ Li−1 otherwise

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.47/74

Examples of Language Operations

{ab, aa} ◦ {bb, a} = {ab ◦ bb, ab ◦ a, aa ◦ bb, aa ◦ a}
= {abbb, aba, aabb, aaa}

{01, 1}2 = {01, 1} ◦ {01, 1}1

= {01, 1} ◦ {01, 1} ◦ {01, 1}0

= {01, 1} ◦ {01, 1} ◦ {ε}
= {0101, 011, 101, 11}
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Operations on Languages: Kleene Closure

Kleene closure (pronounced “clean-y”) is another important operation
on languages.

Definition Let Σ be an alphabet, and let L ⊆ Σ∗ be a language.
Then the Kleene closure, L∗, of L is defined recursively as follows.

1. ε ∈ L∗.

2. If w ∈ L and w′ ∈ L∗ then w ◦ w′ ∈ L∗

E.g. {01}∗ = {ε, 01, 0101, 010101, ...}

What is ∅∗?
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What is L∗ Mathematically?

Since L∗ is defined recursively, we know that L∗ =
⋃∞

i=0
(L∗)i, where:

(L∗)0 = ∅
(L∗)i+1 = {ε} ∪ {u ◦ v | u ∈ L and v ∈ (L∗)i }

(L∗)1 = {ε}
(L∗)2 = {ε} ∪ {w ◦ ε | w ∈ L }

= {ε} ∪ L

(L∗)3 = {ε} ∪ {w ◦ w′ | w ∈ L ∧ w′ ∈ (L∗)2 }
= {ε} ∪ L ∪ (L ◦ L)

(L∗)i consists of words obtained by gluing together up to i − 1 copies
of words from L.
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A Variation on L∗

Definition Let L ⊆ Σ∗. Then L+ is defined inductively as follows.

L ⊆ L+.

If v ∈ L and w ∈ L+ then v ◦ w ∈ L+.

Difference between L∗, L+: ε is not guaranteed to be an element of
L+!
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Properties of L1 ◦ L2, Li, L∗, L+

L ◦ ∅ = ∅ (1)

L ◦ {ε} = L (2)

L1 ◦ (L2 ◦ L3) = (L1 ◦ L2) ◦ L3 (3)

L1 ◦ (L2 ∪ L3) = (L1 ◦ L2) ∪ (L1 ◦ L3) (4)

L1 = L (5)

Li+j = Li ◦ Lj (6)

L∗ =
∞
⋃

i=0

Li (7)

L+ =

∞
⋃

i=1

Li (8)

L+ = L ◦ L∗ (9)
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Logic
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Logic ...

... is the study of propositions and proofs.

Propositions: Statements that are either true or false.

Proof: A rigorous argument that a proposition is true.

Propositions are built up ....

... from (nonlogical/domain-specific) predicates and atomic
propositions...

E.g. “x is prime”, “f is differentiable”

... using logical constructors.
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What Do the Following Logical Constructors
Mean?

∧ conjunction (“and”)

∨ disjunction (“or”)

¬ negation (“not”)

−→ implication (“if ... then”, “implies”)

←→ bi-implication (“if and only if”)

∀ universal quantifier (“for all”)

∃ existential quantifier (“there exists”)

Examples (Propositions)

1. ∀f : R → R. “f is differentiable” −→ “f is continuous”

2. ¬∃x ∈ N. “x is prime” ∧ (∀y ∈ N. y ≥ x −→ ¬“y is prime”).
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Formulas and Instantiations

Definition A formula is a proposition containing propositional and
predicate variables.
E.g. ¬(p ∧ q), ∀x : N. P (x)

Definition A substitution is a function R mapping propositional
variables to propositions and predicate variables to predicates.
E.g. R where R(p) = “1 > 0”, R(q) = “1 < 0”, and R(P ) = “x > x + 1”

Definition An instantiation of a formula f by substitution R (notation:
f [R]) is a proposition obtained by replacing each variable p in f with
R(p).

E.g.
(¬(p ∧ q))[R] = ¬( 1 > 0 ∧ 1 < 0 )

(∀x : N. P (x))[R] = ∀x : N. x + 1 > x
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Logical Implications, Logical Equivalences, and
Tautologies

Definition Let f, g be formulas.

f logically implies g (notation: f =⇒ g) if for every substitution R

such that f [R] is true, g[R] is also true.

f and g are logically equivalent (notation: f ⇐⇒ g) if for every
substitution R, f [R] and g[R] are either both true or both false.

f is a tautology if for every substitution R, f [R] is true (equivalently,
f ≡ true).

Intuitively, f =⇒ g and f ≡ g reflect truths that hold independently of
any domain-specific information.
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Examples of Implications, Equivalences and Tau-
tologies

p ∧ q =⇒ p ∨ q Disjunctive weakening (I)

p =⇒ p ∨ q Disjunctive weakening (II)

¬¬p ≡ p Double negation

p −→ q ≡ (¬p) ∨ q Material implication

¬(p ∨ q) ≡ (¬p) ∧ (¬q) DeMorgan’s Laws

p −→ q ≡ (¬q) −→ (¬p) Contrapositive

¬∀x. P (x) ≡ ∃x.¬P (x) DeMorgan’s Laws

p ∨ (¬p) ≡ true Law of Excluded Middle
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Propositions, Natural Language, and Mathematics

In this course we will devote a lot of attention to proofs of assertions
about different models of computation.

These statements are usually given in English, e.g.

A language L is regular if and only if it can be recognized by
some FA M .

In order to prove statements like these it is extremely useful to know
the “logical structure” of the statement: that is, to “convert” it into a
proposition!

E.g.
∀L. “L is a language” −→ (“L is regular” ←→ ∃M. “M is a FA” ∧ “M recognizes L”)
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Translating Natural Langauge into Logic

Phrase Logical construct

“... not ...” ¬
“... and ...” ∧
“... or ...” ∨
“if ... then ..., “... implies ...”, −→
“... only if ...”

“... if and only if ...”, ←→
“... is logically equivalent to ...”

“... all ...”, “... any ...” ∀
“... exists ...”, “... some ...” ∃
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Proofs

Proofs are rigorous arguments for the truth of propositions. They come
in one of two forms.

Direct proofs: Use “templates” or “recipes” based on the logical form of
the proposition.

Indirect proofs: Involve the direct proof of a proposition that logically
implies the one we are interested in.
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Direct Proofs

Logical Form Proof recipe

¬p Assume p and then derive a contradiction.

p ∧ q Prove p; then prove q.

p ∨ q Prove either p or q.

p −→ q Assume p and then prove q.

p ←→ q Prove p −→ q; then prove q −→ p.

∀x. P (x) Fix a generic x and then prove P (x).

∃x. P (x) Present a specific value a and prove P (a).
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Sample Direct Proof

A theorem is a statement to be proved.

Theorem A language L is regular if and only if it is recognized by
some FA M .

Logical Form
∀L. “L is a language” −→ (“L is regular” ←→ ∃M. “M is a FA” ∧ “M recognizes L”)

Proof Fix a generic L (∀) and assume that L is a language (−→);
we must prove that L is regular if and only if it is recognized by some
FA M . So assume that L is regular; we must now show that some FA
M exists such that M recognizes L (first part of ←→).... Now assume
that some FA M exists such that M recognizes L; we must show that
L is regular (second part of ←→)....

This is not a complete proof; we need to know the definitions to
continue. But notice that the logical form gets us started!
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Indirect Proofs

... rely on proof of a statement that logically implies the one we are
interested in.

Examples

To prove... It suffices to prove... Terminology

p ¬¬p “Proof by contradiction”

p −→ q (¬q) −→ (¬p) “Proof by contrapositive”
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Mathematical Induction...

... is an indirect proof technique for statements having logical form

∀k ∈ N. P (k).

Induction proofs have two parts.

Base case: Prove P (0).

Induction step: Prove ∀k ∈ N. (P (k) −→ P (k + 1)). The P (k) is often
called the induction hypothesis.

Note that an induction proof is actually a proof of the following:

P (0) ∧ (∀k ∈ N. P (k) −→ P (k + 1))

Why does this logically imply ∀k ∈ N. P (k)?
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Sample Induction Proof

Theorem For any natural number k,
∑k

i=0
2i = 2k+1 − 1

Logical Form ∀k ∈ N. P (k), where P (k) is
∑k

i=0
2i = 2k+1 − 1

Proof The proof proceeds by induction.

Base case: We must prove P (0), i.e.
∑0

i=0
2i = 21 − 1. But

∑0

i=0
2i = 20 = 1 = 2 − 1 = 21 − 1.

Induction step: We must prove ∀k ∈ N. P (k) −→ P (k + 1). So fix a
generic k ∈ N and assume (induction hypothesis) that P (k) holds, i.e.
that

∑k

i=0
2i = 2k+1 − 1 is true. We must prove P (k + 1), i.e. that

∑k+1

i=0
2i = 2k+2 − 1. The proof proceeds as follows.
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Proof (cont.)

∑k+1

i=0
2i = (

∑k
i=0

2i) + 2k+1 Definition of
∑

= 2k+1 − 1 + 2k+1 Induction hypothesis

= (2 · 2k+1) − 1 Arithmetic

= 2k+2 − 1 Exponentiation
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Strong Induction (Skip)

Also used to prove statements of form ∀n ∈ N.P (n)

Like regular induction but with “stronger” induction hypothesis and
no explicit base case.

Notation [i..j) = {i, i + 1, ..., j − 1}.

Strong induction argument consists of proof of following

∀n ∈ N. (∀k ∈ [0..n). P (k)) −→ P (n)

∀k ∈ [0..n). P (k) is usually called the induction hypothesis.

Proof usually requires a case analysis on values n can take.
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Example Strong Induction Proof (Skip)

Theorem Consider f : N → N given as follows.

f(n) =







1 if n = 0, 1

f(n − 1) + f(n − 2) otherwise

Prove that f(n) ≤ ( 5

3
)n all n ∈ N.

Logical Form ∀n ∈ N. P (n), where P (n) is “f(n) ≤ ( 5

3
)n”.

Proof Proceeds by strong induction. So fix n ∈ N and assume
(induction hypothesis) ∀k ∈ [0..n).P (k); we must prove P (n). We now
do a case analysis on n.
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Example Strong Induction Proof (cont.) (Skip)

n = 0: We must show P (0), i.e. f(0) ≤ ( 5

3
)0. But f(0) = 1 = ( 5

3
)0.

n = 1: We must show P (1), i.e. f(1) ≤ ( 5

3
)1. This follows because

f(1) = 1 < 5

3
= ( 5

3
)1.

n ≥ 2: In this case we argue as follows.

f(n) = f(n − 1) + f(n − 2) Definition of f

≤ ( 5

3
)n−1 + ( 5

3
)n−2 Induction hypothesis

(twice)

= ( 5

3
)n−2 · ( 5

3
+ 1) Factoring

= ( 5

3
)n−2 · ( 8

3
) Algebra

< ( 5

3
)n−2 · ( 5

3
)2 8

3
= 24

9
< 25

9
= ( 5

3
)2

= ( 5

3
)n Exponents
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Proving Properties of Recursively Defined Sets

Suppose A is a recursively defined set; how do we prove a statement
of form:

∀a ∈ A. P (a)

Use induction!

Recall that A =
⋃∞

i=0
Ai.

∀a ∈ A. P (a) is logically equivalent to ∀k ∈ N. (∀a ∈ Ak. P (a)).

The latter statement has the correct form for an induction proof!
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Example Proof about Recursively Defined Set

Theorem Let A ⊆ N be the set defined as follows.

1. 0 ∈ A

2. If a ∈ A then a + 3 ∈ A.

Prove that any a ∈ A is divisible by 3.

Logical form ∀a ∈ A. P (a), where P (a) is “a is divisible by 3”.

Proof Proceeds by induction. The statement to be proved has form
∀k ∈ N. Q(k), where Q(k) is ∀a ∈ Ak. P (a).

Base case: k = 0. We must prove Q(0), i.e. ∀a ∈ A0. P (a), i.e. for
every a ∈ A0, a is divisible by 3. This follows immediately since A0 = ∅.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 1 – p.72/74



Sample Proof (cont.)

Induction step: We must prove that ∀k ∈ N. (Q(k) −→ Q(k + 1)). So fix
k ∈ N and assume Q(k), i.e. ∀a ∈ Ak. P (a) (induction hypothesis). We
must show Q(k + 1) = ∀a ∈ Ak+1. P (a), i.e. we must show that every
a ∈ Ak+1 is divisible by 3 under the assumption that every a ∈ Ak is
divisible by 3. So fix a generic a ∈ Ak+1. Based on the definition of A a

is added into Ak+1 in one of two ways.

a = 0. In this case a is certainly divisible by 0, since 0 = 0 · 3.

a = b + 3 for some b ∈ Ak. By the induction hypothesis b is divisible
by 0, i.e. b = 3 · c some c ∈ N. But then a = b + 3 = 3 · (c + 1), and
thus a is divisible by 3.
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Notes on Proof

In the induction proof the base case was trivial; this will always be
the case when using induction to prove properties of recursive
sets! So it can be omitted.

The induction step amounts to showing that the constants have the
right property and that each application of a rule “preserves” the
property.
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