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Abstract. The specification of the Java Memory Model (JMM) is phrased in
terms of acceptors of execution sequences rather than the standard generative
view of operational semantics. This creates a mismatch with language-based tech-
niques, such as simulation arguments and proofs of type safety.

We describe a semantics for the JMM using standard programming language tech-
niques that captures its full expressivity. For data-race-free programs, our model
coincides with the JMM. For lockless programs, our model is more expressive
than the JMM. The stratification properties required to avoid causality cycles are
derived, rather than mandated in the style of the JMM.

The JMM is arguably non-canonical in its treatment of the interaction of data races
and locks as it fails to validate roach-motel reorderings and various peephole
optimizations. Our model differs from the JMM in these cases. We develop a
theory of simulation and use it to validate the legality of the above optimizations
in any program context.

1 Introduction

In the context of shared memory imperative programs, Sequential Consistency (SC)
(Lamport 1979) enforces a global total order on memory operations that includes the
program order of each individual thread in the program. SC may be realized by a tra-
ditional interleaving semantics where shared memory is represented as a map from
locations to values. It has been observed that SC disables compiler optimizations such
as reordering of independent statements. Despite arguments that SC does not impair
efficiency (Kamil et al. 2005), this observation and others have motivated a body of
work on relaxed memory models; Adve and Gharachorloo (1996) provide a tutorial
introduction with detailed bibliography.

A first (conceptual, if not chronological) step in generalizing SC is to consider the
Data Race Free (DRF) models. Informally, a program is DRF if no execution of the pro-
gram leads to a state in which a write happens concurrently with another operation on
the same location. A DRF model requires that the programmer view of computation co-
incides with SC for programs that are DRF. The DRF viewpoint is most strongly reflected
in languages such as C++, where any program with data races is deemed erroneous, with
undefined semantics (Boehm and Adve 2008).
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Such an approach is at odds with the safety requirements of strongly typed lan-
guages that permit data races in well defined programs. Conceptually, this motivates
the investigation of the Java Memory Model (JMM); see (Manson et al. 2005) for a de-
tailed history. The JMM provides two key guarantees. First, it is a DRF model. Second, it
disallows Thin Air Reads (no-TAR). In a configuration with multiple data races the JMM
enforces a partial order on the resolution of these data races. Values that are written are
justified by an execution of the program, and thus acyclicity of causality is maintained.

The formalization of the JMM is a technical tour-de-force. However, two criticisms
are leveled at the JMM. First, the JMM is too complex. While simplicity is admittedly
in the eyes of the beholder, some of the technical content of this criticism is that the
JMM approach does not generate executions in the sense of traditional (structured) op-
erational semantics (Saraswat 2004). Rather, it provides a means to test whether a given
execution sequence is valid by providing criteria to establish the absence of causality
cycles in the resolution of data races.

This is particularly problematic for standard tools-of-the-trade that often rely on a
generative operational semantics. For example, proofs of type safety usually proceed by
showing that each step of the execution of a program maintains the invariants provided
in the type system. Similarly, (bi)simulation arguments proceed by showing that if two
configurations are related by the candidate relation, and each takes an execution step(s),
the resulting configurations are again related by the relation.

Second, the JMM impedes efficiency. As currently formalized, the JMM invalidates
a variety of natural optimizations, such as reordering of independent statements (Cen-
ciarelli et al. 2007). Sevcík and Aspinall (2008) show the incompatibility of JMM with
roach-motel reordering (moving a read into the scope of a lock), redundant read after
read elimination (reusing the results of a valid prior read) and some other peephole opti-
mizations (such as eliminating a write that precedes another write to the same variable).
As a result, the hotspot JVM has been non-compliant with the JMM (Sevcík 2008).

To address these issues, we describe a generative structured operational semantics
for a concurrent object oriented language with a relaxed memory model. For DRF pro-
grams, our model coincides with the JMM. For lockless programs, our model allows
every execution permitted by the JMM. Our model also allows executions that are for-
bidden by the JMM, but which are necessary to validate the peephole optimizations
described above, such as redundant read after read elimination. For programs with both
locks and data races, our model is better behaved than the JMM, for example, validat-
ing roach motel reorderings. Our model coincides with the JMM on the entire suite of
causality test cases associated with the JMM (Pugh 2004).

We validate the utility of our operational semantics by establishing a theory of simu-
lation. We use our study of simulation to validate several optimizations, including those
mentioned above. Since simulation is a precongruence, our results show the legality of
the transformations in any program context.

The rest of the paper is organized as follows. First, we discuss related work, then
Section 3 provides an informal introduction to the basic ideas of the paper. The formal-
ism follows in Section 4, with detailed examples in Section 5. We prove the DRF and
lockless properties in Section 6. Section 7 defines simulation for a sub-language and
shows the validity of some transformations.
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2 Related Work

There is extensive research on memory models for hardware architectures, see (Steinke
and Nutt 2004), (Luchangco 2001) and (Adve and Gharachorloo 1996) for surveys.
This has led to research on (automated) verification of properties of memory models,
e.g., see (Sarkar et al. 2009) for x86 and (Hangal et al. 2004) for Sparc TSO.

Our focus in this paper is on specifying the operational semantics for concurrent
programming languages. The memory models for OpenMP (Bronevetsky and de Supin-
ski 2007) and UPC (Yelick et al. 2004) deal with languages with weaker typing and
pointer arithmetic and focus on synchronization primitives. These models may permit
behaviors violating no-TAR (Boehm 2005). Saraswat (2004) provides a framework for
operational semantics with relaxed memory models for typed languages. Saraswat et al.
(2007) builds on this research and describes a collection of program transformations
that are permitted in a relaxed memory model. In contrast to these papers, we capture
the full expressiveness of the JMM for lockless programs, even while retaining DRF and
no-TAR.

Our program of generative operational semantics using “true-concurrency” meth-
ods follows Cenciarelli et al. (2007) and Boudol and Petri (2009). While Cenciarelli
et al. (2007) show that all their generated executions are permitted by the JMM, they do
not discuss whether their theory is as expressive as the JMM. Boudol and Petri (2009)
provide an operational model for write buffers and the ability for concurrent threads to
snoop on the values in these buffers; causality test case 16 (Pugh 2004), discussed in
Example 5, exemplifies the expressivity that is not captured.

In addition to eloquently articulating a collection of incisive examples, Aspinall
and Sevcík (2007, 2008) formalize the Java DRF guarantee using theorem-provers and
analyze several natural program transformations. Burckhardt et al. (2008) undertake
the ambitious task of verifying concurrent programs in the presence of relaxed memory
models, especially those associated with the CLR.

3 An informal introduction to our approach

We illustrate the key ideas underlying our approach using informal examples. We adopt
the following notational conventions. Let x, y and z be thread-local variables. Let f and
g be locations on the shared heap. Let l be a shared lock. Assume all heap locations
and locks are initialized to 0. Locks are initially free and a lock’s state increments on
every action; thus even states are free and odd states are locked. Let s, t and u be thread
identifiers. Write s[M] for the thread with identifier s, executing statement M, and
write the parallel composition of threads A and B as A|B.

In the SC view, each location in memory remembers only the last write to each
location. Therefore an SC execution makes it impossible for t to read 2 and then 1 from
f in the following program.

s[f=1; f=2; x=f;] | t[y=f; z=f;]. (Program A)

A relaxed memory model, such as the JMM, allows t to read 2 then 1 from f, even
though the values are written by s in the reverse order. Rather than viewing memory as
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a map from locations to values, as in the SC model, we view memory as a sequence of
actions which denote write and lock events; there are no read actions in our model. The
action sequence generated by Program A is s[f=1] s[f=2]. A read can be assigned any
value that is visible. In this case both values written by s are visible to the reads in t.

The order of statements in a program encodes the program order between actions
of a single thread. A read can not see all of the values written by its own thread. In
Program A, the read of f by s can only see 2, since 2 is written after 1 in s.

To model compiler and memory hierarchy effects, one may permit dynamic trans-
formations to the action sequence generated by a single thread, as long as this does
not introduce new behaviors. For example, it is permitted to rewrite s[f=1]s[f=2] to
s[f=2], removing the value 1, which may be visible to concurrent threads. The converse
transformation is not sound, however, since it introduces the value 1 out of thin-air.

Due to nondeterminism, the program s[f=1;]|t[g=1;] may result in either the se-
quence s[f=1]t[g=1] or the sequence t[g=1]s[f=1]. The program s[f=1;]|t[x=f;
g=x;] may produce s[f=1]t[g=0] or s[f=1]t[g=1] or t[g=0]s[f=1]. However, it can
not produce t[g=1]s[f=1] due to the data dependency between the two threads.

Synchronization makes the program order of a thread visible to other threads, po-
tentially hiding previously visible values. For example, in any execution of the program

s[l.acquire(); f=1; f=2; l.release();] |
t[l.acquire(); x=f; y=f; l.release();]

the two reads of f in t must see the same value, and therefore x= y.
Lock actions must be recorded in the memory, since they affect visibility. We write

lock actions as s[l:j], where j is an integer indicating the number of previous oper-
ations that have been performed on the lock. Thus, an even action corresponds to an
acquire and an odd action to a release. In the example, if s executes first, we get
the action sequence s[l:0]s[f=1]s[f=2]s[l:1]t[l:2]t[l:3]. Lock events in a memory
induce a global synchronization order, which is used to define visibility.

Speculation. The approach sketched above can mimic the effects of write-buffers,
cache-snooping and other non-SC executions. However it is insufficient to validate ev-
ery behavior allowed by the JMM, such as the following (Manson et al. 2005, Fig 1).

s[x=g; f=1;] | t[y=f; g=2;] (Program B)

In any SC execution, at least one of the threads must read 0. The JMM allows the execu-
tion in which s reads 2 from g and t reads 1 from f, which can result from reordering
independent statements in the two threads due to cache effects or optimization.

To accommodate such executions, we allow the execution to introduce speculation.
Let A be the original pair of threads in Program B. Speculative execution reduces A
to (>⇒A) 8 ((s〈f=1〉t〈g=2〉)⇒A), The reduction creates two copies of the original
process, which are executed in separate universes with separate copies of the state.
The left copy is called the initial process; the right, the final process. As indicated by
the notation, the initial process may assume nothing, >, whereas the final branch may
assume the speculated writes, s〈f=1〉t〈g=2〉. A valid execution is one in which every
speculation can be finalized, and therefore removed. When the speculation is removed,
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only the final process remains. The initial process is used only to justify the speculation.
We rely on angelic nondeterminism to achieve a valid speculation, if possible.

The initial copy of Program B reads 0 in at least one of the threads and generates
both writes. The final copy reads the speculative values and also generates both writes.
Since the justifying writes are generated in both copies, the speculation can be finalized.

Unconstrained speculation can break both no-TAR and DRF. We constrain specula-
tion so that it is not self justifying, but is initial, consistent and timely.

Self justifying computation allows a thread to see its own speculation, violating
no-TAR. Consider the program s[x=f; if(x==1){g=1;} f=1;]. To produce the write
s[g=1], one might speculate s〈f=1〉. There is a later write which can justify the specu-
lation. Our semantics forbids s from seeing its own speculation, however, thus ensuring
that the conditional is false and g is not written.

Initiality requires that there is a computation that justifies the speculation without
depending on the speculation. Consider the program s[x=f; g=x;] | t[y=g; f=y;]
(Pugh 2004, §4). By speculating s〈g=1〉t〈f=1〉, both threads can read 1, violating no-
TAR. The final process can produce the necessary writes s[g=1]t[f=1], but the initial
process can only write 0. Our semantics prevents the speculation from being finalized.

Consistency requires that the initial and final computations agree on certain actions.
It is necessary for DRF. Consider the following program.

s[l.acquire(); x=f; if(x==0){f=1;} l.release();] |
t[l.acquire(); y=f; if(y==0){f=2;} l.release();] |
u[l.acquire(); z=f; g=z; l.release();]

(Program C)

The program is DRF. In an SC execution, it is not possible that f is 1 and g is 2 after
execution. Using speculation t〈f=2〉, however, the final process can achieve this result
by scheduling order u, s, t, violating DRF. The initial process can produce the necessary
write, but to do so it must schedule t before s. The inconsistent use of locks makes
it impossible to finalize the speculation. Following the terminology of Manson et al.
(2005), consistency prevents “bait” (in the initial process) and “switch” (in the final
process), an intuition made precise in Example 6. Timeliness ensures that a speculation
and its justifying write are in the same synchronization context. It is also necessary for
DRF. Consider the following program.

s[l.acquire(); x=f; f=x+1; g=1; l.release();] |
t[l.acquire(); x=f; f=x+1; g=2; l.release();] |
u[l.acquire(); x=f; f=x+1; y=g; l.release();]

(Program D)

Again, the program is DRF. If s reads 0 from f, t reads 1 and u reads 2, then the order
of the threads is determined. Clearly it is unacceptable in this case for u to read 1 from
g. In the execution which runs s, then speculates s〈g=1〉, then runs t and u, the memory
after t runs is as follows.

s[l:0]s[f=1]s[g=1]s[l:1]s〈g=1〉t[l:2]t[f=2]t[g=2]t[l:3]

The speculation s〈g=1〉 is “too late” with respect to its justifying write s[g=1] since
the intervening release s[l:1] alters the synchronization context. In Section 5 we also
discuss speculations which are “too early”.
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4 The Language

We develop the ideas of the previous section for an object oriented language with lock
objects and thread parallelism. We do not explicitly treat volatile variables, final fields
and several other features of the JMM. (From the synchronization perspective, a volatile
write is similar to a lock release, a volatile read is similar to a lock acquire).

User Language. Let bt range over base type names, d over class names (including the
reserved class Lock), f and g over field names, and m over method names (including
the reserved method start). Types, T , include base types and classes (T ::= bt | d).
Let ~T ~x abbreviate T1 x1, . . . ,Tn xn. Class declarations, D , are then given as usual
(D ::= class d{~T ~f; ~M } where M ::= T m(~T ~x){M}). Fix a set of class decla-
rations satisfying the well-formedness criteria of Igarashi et al. (2001). We assume, as
there, an implicit constructor with arguments ~T ~f for each class d{~T ~f; ~M }. Define
the partial functions fields and mbody so that fields(d) = ~T~f ; if the field declarations of
d are ~T~f ; and mbody(d.m) = λ~x.M if class d contains method T m(~T ~x){M} for some
T and ~T . The abstraction λ~x.M is written λ .M when~x is the empty sequence. A class d
is runnable if mbody(d.run) = λ .M for some M. Both fields and mbody are undefined
on the reserved class Lock.

We assume disjoint sets of base values, bv ∈ BV , variables, x, y, and object names,
p, q, s, t, `. Base values include integers and the constants unit, true and false, with
operators (such as ==, +, &&) ranged over by op. Variables include the reserved variable
this. Each object name p is associated with a unique class p.class; a countable
number of object names are associated with each class. By convention, we use name
metavariables s, t for runnable objects and ` for lock objects. For any syntax category,
let fv return the set of free variables and let fn return the set of free names.

A ground value is either an object name or a base value (v,w,u ::= p | bv). An open
value may additionally be a variable (V,W,U ::= p | bv | x). The statement language
is given in administrative normal form (Flanagan et al. 1993).

M,N ::= val x = {M} N (Stack frame statement)
| val x = new d(~V); M (Creation statement)
| val x = W.m(~V); M (Method statement)
| val x = op(~V); M (Operator statement)
| val x = V.f; M (Field read statement)
|V.f = W; M (Field write statement)
| if (V) {M} else {N} (Conditional statement)
| return V; (Return statement)

As in Scala (Odersky et al. 2008), we use val to introduce local variables without
requiring explicit type annotations. To make the examples shorter, we usually drop
the val. We write ↑V for “return V;” and ↑(V,W) for “val x = new Pair(V,W);
return x;”, where x is fresh. In examples, we also use complex expressions, use infix
notation for operators and drop occurrences of “return unit;”. Thus, “y = a+b+c;”
should is sugar for “val x = +(a,b); val y = +(x,c); return unit;”, where x is
fresh. We write “val x = · · ·; M” as “· · ·; M” if x does not occur free in M. We write
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“if(V){val x = · · ·; M} else {M}” as “if (V) {val x = · · ·;} M” if x does not oc-
cur free in M; this notation extends to field write statements, conditional statements and
sequences of statements in the obvious way.

We expect that stack frame statements do not occur in the user language; they are
introduced by the dynamics. The variable x is bound with scope M in all statements of
the form “val x = · · ·; M”. We identify syntax up to renaming of bound variables and
names and write M{x := v} for the capture avoiding substitution of v for x in M. We
assume similar notation for substitution of names for names and for substitution over
other syntax categories.

Actions and processes. Shared locations are assigned values via actions. Write, ac-
quire and release actions are committable and so may be made visible at top-level.
Speculative actions are introduced by the dynamics to explore possible future execu-
tions; they are not visible at top-level. The general class of actions include the evalua-
tion context action sJ–K, belonging to thread s; this is used later to define justified reads
and speculations.

α,β ::= s[p.f=v] | s[`: j] (Committable action)
φ ,ψ ::= s〈p.f=v〉 (Speculative action)
σ ,τ ::= α | φ | sJ–K (Actions)

Write and speculative actions identify the writing thread. The write action s[p.f=v]
indicates a write by s to location p.f with value v. The speculative write s〈p.f=v〉
allows threads other than s to subsequently read v from location p.f .

The meaning of a lock action s[`: j] depends on the parity of the natural number j.
When j is even, the lock is free and the corresponding action is an acquire. When j is
odd, the lock is busy and the corresponding action is a release. We write s[acq `: j] to
indicate that j is even, and s[rel `: j] to indicate that j is odd.

Let thrd(σ) return the unique thread associated with an action. For all actions other
than the evaluation context action, define loc to return the location of the action as
loc(s[p.f=v]) = loc(s〈p.f=v〉) = p.f and loc(s[`: j]) = `. Similarly, define val as
val(s[p.f=v]) = val(s〈p.f=v〉) = v : and val(s[`: j]) = j. Write actions σ and τ conflict
if loc(σ) = loc(τ); only two write actions can conflict.

The dynamics is defined using processes.

A,B ::= free p (Free object process)
| runnable p (Runnable object process)
| lock `: j (Lock process)
| s[M] (Thread process)
| A|B (Parallel process)
| (ν p)A (Scope restriction process)
| α A (Action process)
| φ A (Guarded process)
| >⇒A8φ⇒B (Speculation process)

The name p is bound with scope A in the process (ν p)A. We identify processes up to
renaming of bound names.
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A top-level process contains no subterms that are guarded processes, φ A, but may
contain speculations. In speculation >⇒A8φ⇒B, we refer to A as the initial process
and to B as the final process. We write >⇒A8φ1 · · ·φn⇒B as shorthand for

>⇒A8φ1⇒(>⇒A8φ2⇒ ···(>⇒A8φn⇒B) · · ·).

An initial process has no free names or variables and contains a single thread. Initial
processes have the form (νs)s[M].

We assume several well-formedness criteria, which are true of initial processes and
preserved by structural order and reduction. Let def return the defined names of a pro-
cess; for example def (free p) = def (runnable p) = def (p[M]) = def (lock p: j) =
{p}. Let lockact(A) return the lock actions in A with thread identifiers removed; for
example lockact(s[`:i]A) = {[` : i]}∪ lockact(A). A process is well-formed if (1) in
any subprocess A|B, def (A)∩ def (B) = /0, (2) in any subprocess A|B, lockact(A)∩
lockact(B) = /0, (3) in any action s[`:i], `.class = Lock, (4) in any action s〈p.f=v〉
or s[p.f=v], p.class 6= Lock, and (5) in any subprocess >⇒A8φ⇒B, thrd(φ) ∈
def (A). For the remainder of the paper, we consider only well-formed processes.

Evaluation contexts and justified reads. Evaluation contexts are defined as follows.

C ::= J–K | A|C | C|A | (ν p)C | α C | φ C

The name p is not bound in evaluation context (ν p)C. There is no evaluation context
for speculation processes; these are treated specially in the semantics.

We define the notion C justifies read p.f=v by s to mean that context C contains
a visible write t [p.f=v] or speculation t ′〈p.f=v〉, where t ′ 6= s). The notion C justifies
speculation φ is defined similarly.

To begin, define acts(C) to return the sequence of labeled actions occurring before
the hole in C.

acts(J–K) = sJ–K acts(A|C) = acts(C) acts(α C) = α acts(C)
acts((νq)C) = acts(C) acts(C|A) = acts(C) acts(φ C) = φ acts(C)

Note that it is not possible for the hole to happen before any action. Given action se-
quence ~σ define program order (<~σ

po) and synchronizes-with (<~σ
sw) as follows.

i <~σ
po j iff i < j and thrd(σi) = thrd(σ j)

i <~σ
sw j iff σi = s[rel `:k] and σ j = t [acq `:k+1]for some s, t, ` and odd k

Note that (<~σ
sw) = /0 if ~σ contains no lock actions. Define happens-before order (<~σ

hb)
to be the transitive closure of the union of program order and synchronizes-with.

Definition 1 (Intervening write and justified read). We say that there is no interven-
ing write between i and k in ~σ if for every j such that σ j is a write action and i<~σ

hb j <~σ
hb

k, we have that loc(σ j) 6= loc(σi).
Let ~σ = acts(C). Let k be the index of sJ–K in ~σ . We say that C justifies read p.f=v

(by s) if there exists some i, with no intervening write between i and k in ~σ , such that
σi = t [p.f=v], for some t (possibly equal to s), or σi = t ′〈p.f=v〉, for some t ′ 6= s. 2
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For the purpose of reading, speculations are “transparent” in the sense that they do
not obscure the prior writes. Both writes and speculations (of other threads) can be used
to justify reads. Only writes can be used to justify speculations.

Definition 2 (Intervening release and justified speculation). We say that there is no
intervening release between i and k in ~σ if for every j such that σ j is a release action
and i <~σ

hb j <~σ
hb k, we have that thrd(σ j) 6= thrd(σi).

Let ~σ = acts(C). Let k be the index of sJ–K in ~σ . We say that C justifies specula-
tion s〈p.f=v〉 if there exists some i, with no intervening write nor intervening release
between i and k in ~σ , such that σi = s[p.f=v]. 2

The requirement that there be no intervening release between a write and the specula-
tion that it justifies is motivated by Program D (Section 3). Since any synchronization
edge originates from a release action, the absence of intervening releases ensures that a
speculation and the write justifying it occupy the same position in the synchronization
order and the happens-before relation.

Single-threaded action reordering and structural order. We define . as a relation on
single-threaded action sequences. That is ~σ .~τ is defined only if thrd(~σ) = thrd(~τ) =
{s}, for some s.

Definition 3. Let . be the least precongruence (~σ~τ . ~σ ′~τ ′ whenever ~σ . ~σ ′ and~τ .~τ ′)
on single-threaded action sequences that satisfies all instances of the following axiom
schemata, where ~σ

.
./~τ abbreviates the axiom schemata ~σ .~τ and~τ . ~σ .

(A-NONLOCK) If σ and τ are nonlock actions that do not conflict then στ
.
./ τσ .

(A-ACQUIRE) If σ is a write and τ is an acquire then στ . τσ .
(A-RELEASE) If σ is a release and τ is a write then στ . τσ .
(A-ABSORPTION1) If σ is a write then σ . σσ .
(A-ABSORPTION2) If σ and τ are conflicting writes then τσ . σ .
(A-ABSORPTION3) If σ , τ and τ ′ are conflicting writes then ττ ′σ

.
./ τ ′τσ . 2

If ~σ .~τ then ~σ “simulates” ~τ; that is, all reads permitted by ~τ are also permitted
by ~σ . This can be viewed as an adaptation of Lea’s (2008) cookbook to our memory
actions.

A-NONLOCK allows write actions and speculative actions in the same thread to
commute. A-ACQUIRE and A-RELEASE permit enlarging the scope of locks. These rules
are necessary to validate roach motel (Example 10). Were we to allow speculations to
commute with lock actions, DRF would fail (Example 8).

In an SC model, later writes completely overwrite earlier writes to the same loca-
tion. The absorption laws reflect approximations that are available in our relaxed mem-
ory model. The first rule allows identical writes to be copied. The second rule allows
any write to be eliminated when there is a subsequent “protecting” write to the same
location. The third rule allows reordering behind a protecting write. Thus, we get:

Lemma 4. If ~σ is a single-threaded sequence of write actions then ~σ . ~σ~σ .
PROOF. Use the first absorption law to make multiple adjacent copies of each action.
Use the remaining laws to rearrange them into the required order. 2
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(S-PAR)

A|A′
.≡ A′|A

(S-FREE)

A
.≡ A|(ν p)(free p)

(S-NU-NU)

(ν p)(ν p′)A
.≡ (ν p′)(ν p)A

(S-PAR-PAR)

B|(A|A′)
.≡ (B|A)|A′

(S-PAR-PREFIX)

B|(σA)= σ(B|A)

(S-PAR-NU)

p /∈ fn(B)
B|((ν p)A)

.≡ (ν p)(B|A)

(S-PAR-SPECULATION)

thrd(φ) /∈ def (B)
B|(>⇒A8φ⇒A′)=>⇒(B|A)8φ⇒(B|A′)

(S-NU-PREFIX)

p /∈ fn(σ)

(ν p)σA
.≡ σ(ν p)A

(S-NU-SPECULATION)

p /∈ fn(φ)
(ν p)(>⇒A8φ⇒A′)

.≡>⇒((ν p)A)8φ⇒((ν p)A′)

(S-PREFIX-PREFIX)

στ . τσ

στA= τσA

(S-SPECULATION-PREFIX)

(thrd(σ) 6= thrd(φ))∨ (φσ . σφ)

>⇒(σ A)8φ⇒(σ A′) = σ (>⇒A8φ⇒A′)

Fig. 1. Structural order (A= B)

We define A = B to be the smallest precongruence on processes that satisfies the
axioms in Figure 1 (where A

.≡ B abbreviates the two axioms A= B and B= A). Many
of the rules follow Milner (1991). We discuss the exceptions.

In order to allow speculation about objects that are not yet initialized, we separate
object allocation and initialization. The structural rule S-FREE allows object names to
be in scope before the corresponding call to the constructor.

The prefix and speculation rules are ordered so that parallel components can go
under action prefixes and speculations, but can not come out. S-PAR-PREFIX effectively
fixes the order of operations between threads once those operations become visible to
other threads. The S-PREFIX-PREFIX and S-SPECULATION-PREFIX rules are induced
by the single-threaded commutation rules. In the S-SPECULATION-PREFIX rule, the
required order condition on actions holds for all the branches of speculation; so, it is
appropriate to think of this as a “forall” speculation rule, in contrast to the “exists”
speculation rule in the forthcoming reduction semantics.

The rules do not allow speculations to commute with each other; adding this rule
would not affect contextual equivalence, but would affect the (finer) simulation relation
introduced later, which is sensitive to the order of speculations.

In the remainder of the paper, let ≡ denote the kernel of =.

Reduction. Process reduction is defined as the least relation satisfying the rules and
axioms given in Figure 2.� is the reflexive and transitive closure of (=)∪ (→).

Again, many of the rules are standard. The built-in operators R-OPERATOR and the
conditionals, R-IF-TRUE and R-IF-FALSE, carry no surprises. Method calls are imple-
mented as usual by R-METHOD, R-FRAME and R-RETURN. The assumption of well-
formedness guarantees that there is at most one thread for each object s, and therefore
R-FRAME introduces no nondeterminism. Frames are deleted when a function returns.

The reserved methods acquire and release update the shared global counter as-
sociated with the appropriate lock object. As in Java, the reserved method start starts
method run under the thread identity of the receiving object. As per Java semantics,
this is a synchronization event, which we enforce using a fresh “dummy” lock.
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(R-FRAME)

C
q

s[N]
y
→ C′

q
s[N′]

y

C
q

s[val x = {N}M]
y

→ C′
q

s[val x = {N′}M]
y

(R-RETURN)

C
q

s[val x = {return v;}M]
y

→ C
q

s[M{x:=v}]
y

(R-IF-TRUE)

C
q

s[if (true) {M} else {N}]
y

→ C
q

s[M]
y

(R-IF-FALSE)

C
q

s[if (false) {M} else {N}]
y

→ C
q

s[N]
y

(R-NEW)

p.class= d fields(d) = ~T~f
C

q
free p | s[val x = new d(~v); M]

y

→ C
q
runnable p | s[p.~f=~v] s[M{x:=p}]

y

(R-NEW-LOCK)

C
q
free ` | s[val x = new Lock(); M]

y

→ C
q
lock `:0 | s[M{x:=`}]

y

(R-METHOD)

p.class= d mbody(d.m) = λ~y.N
C

q
s[val x = p.m(~v); M]

y

→ C
q

s[val x = {N{this:=p}{~y:=~v}}M]
y

(R-OPERATOR)

w is the result of applying op to~v
C

q
s[val x = op(~v); M]

y

→ C
q

s[M{x:=w}]
y

(R-METHOD-START)

p.class= d mbody(d.run) = λ~y.N
C

q
free ` | runnable t | s[val x = t.start(); M]

y

→ C
q

t [`:1] t[N{this:=t}] | s[`:0] s[M{x:=unit}]
y

(R-METHOD-ACQUIRE)

j is even
C

q
lock `: j | s[val x = `.acquire(); M]

y

→ C
q
lock `: j+1 | s[`: j] s[M{x:=unit}]

y

(R-METHOD-RELEASE)

j is odd
C

q
lock `: j | s[val x = `.release(); M]

y

→ C
q
lock `: j+1 | s[`: j] s[M{x:=unit}]

y

(R-FIELD-WRITE)

C
q

s[p.f = v; M]
y

→ C
q

s[p.f=v] s[M]
y

(R-SPECULATION-BEGIN)

thrd(φ) ∈ def (A)
C

q
A
y

→ C
q
>⇒A8φ⇒A

y

(R-SPECULATION-END)

C justifies speculation φ

C
q
>⇒A8φ⇒B

y

→ C
q

B
y

(R-FIELD-READ)

C justifies read p.f=v by s
C

q
s[val x = p.f; M]

y

→ C
q

s[M{x:=v}]
y

(R-SPECULATION-CONTEXT1)

C
q

A
y
→ C

q
A′

y

C
q
>⇒A8φ⇒B

y

→ C
q
>⇒A′ 8φ⇒B

y

(R-SPECULATION-CONTEXT2)

C
q

φB
y
→ C

q
φB′

y

C
q
>⇒A8φ⇒B

y

→ C
q
>⇒A8φ⇒B′

y

Fig. 2. Reduction (A→ B)
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Non-locks are initialized via R-NEW, consuming a free name of the appropriate
class and initializing the fields using write actions by the initializing thread. We ignore
types as much as possible, therefore all non-locks are runnable once initialized.

New lock creation is addressed separately in rule R-NEW-LOCK. The state of the
lock is stored as an integer counter, which enforces sequential consistency on lock ac-
tions. Locks with even state may be acquired, and those with odd state released. (Both
fields and mbody are undefined on the reserved class Lock.)

R-FIELD-WRITE describes field writes. This is a relaxed memory model, so the
field writes become actions that float into the evaluation context, rather than updat-
ing a shared location. Field reads, as described in rule R-FIELD-READ, may take any
value that is justified by the evaluation context. In a program with data races or locks,
this could be nondeterministic.

Speculation can occur at any point, using R-SPECULATION-BEGIN. The initial
branch has guard >, indicating that this branch may make no additional assumptions.
The final branch has a speculative action as its guard. The final branch may use the
speculation to justify reads. R-SPECULATION-CONTEXT lets each branch of speculation
evolve independently. This typically happens by using the structural rules of Figure 1 to
bring parallel threads and locks into the speculation to enable computation. Results from
an active speculation can only leak to the outside world via S-SPECULATION-PREFIX.
If all branches produce an action, it can potentially float out into the surrounding en-
vironment. This is significant, since only actions that manage to make it outside of a
speculation may be used to finalize it R-SPECULATION-END.

5 Examples

In the following examples, we assume an initialization thread which sets the initial state
and starts the threads. We assume a single object p, with four fields, f, g, h, and e. To
make the examples shorter, we elide the object name from field references, writing p.f
as f. All fields are initially set to 0. (Further examples may be found in Appendix D.)

Example 5 (Pugh (2004) §16). Consider the following variation of Program B from
Section 3, which uses a single field: s[x=f;f=1;↑x] | t[y=f;f=2;↑y]. As in the
JMM, the outcome s[↑2]|t[↑1] is possible. In our semantics, one may speculate
s〈f=1〉 and t〈f=2〉 , resulting in the following reduction.

� >⇒ (s[x=f;f=1;↑x] | t[y=f;f=2;↑y])
8 s〈f=1〉t〈f=2〉⇒(s[x=f;f=1;↑x] | t[y=f;f=2;↑y])

The read actions from each thread may now read any justifiable value. In the final
branch, the value read may come from the speculation, as below.

� >⇒ (s[f=1;↑0] | t[f=2;↑0])
8 s〈f=1〉t〈f=2〉⇒(s[f=1;↑2] | t[f=2;↑1])

The write actions can then be performed. Because the same writes actions are performed
in each branch, the write actions may leave the speculation using the structural order
(S-PAR-PREFIX and S-SPECULATION-PREFIX).
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� >⇒ (s [f=1 ]s[↑0] | t [f=2 ]t[↑0])
8 s〈f=1〉t〈f=2〉⇒(s [f=1 ]s[↑2] | t [f=2 ]t[↑1])

= s [f=1 ]t [f=2 ](>⇒ (s[↑0] | t[↑0])
8 s〈f=1〉t〈f=2〉⇒(s[↑2] | t[↑1]) )

→ s [f=1 ]t [f=2 ](s[↑2] | t[↑1])

The speculation is justified, allowing us to use R-SPECULATION-END. 2

Most of the examples deal with integer fields because this is the typical style in
the literature. Given that our semantics separates name binding from object initializa-
tion, as runtime systems do, dealing with object fields is no more complicated. For
example, in s[x=f;f=new d();↑x] | t[y=f;f=new d();↑y] | free q | free r,
reduction can proceed as above. In this case we speculate s〈f=q〉 and t〈f=r〉 , resulting
in s [f=q ]t [f=r ] (s[↑r] | t[↑q] | runnable q | runnable r)

Before getting negative, we present two more “positive” examples, which are con-
sistent with the JMM. Example 6 discusses inlining. Example 7 discusses nested spec-
ulation. Inlining can reduce the number of concurrent reads available, but can also add
flexibility in reordering writes if there are data or control dependencies between threads
that prevent reordering.

Example 6 (Manson et al. (2005) figures 11 and 12). Consider the following.

s[x=f; if(x==0){f=1;} y=f; g=y; ↑(x,y)] |
u[z=g; f=z; ↑z]

The outcome s[↑(1,1)]|u[↑1] is possible. Speculate s〈g=1〉 u〈f=1〉 . The initial
branch can produce s [f=1 ] s [g=1 ] u [f=1 ] in that order. Note that the write by u
must follow the s’s write to g, but is not dependent on the s’s write to f. The semantics
can therefore reorder the writes by s before making them visible to u, resulting in the
sequence s [g=1 ] u [f=1 ] s [f=1 ] . The final branch can produce s [g=1 ] and u [f=1 ] ,
in any order, but can not produce s [f=1 ] . We can therefore reach the following state.

>⇒ s [g=1 ]u [f=1 ]s [f=1 ](s[↑(0,1)]|u[↑1])
8 s〈g=1〉u〈f=1〉⇒(s [g=1 ]u [f=1 ](s[↑(1,1)]|u[↑1]))

� s [g=1 ]u [f=1 ](>⇒ s [f=1 ](s[↑(0,1)]|u[↑1])
8 s〈g=1〉u〈f=1〉⇒(s[↑(1,1)]|u[↑1]))

� s [g=1 ]u [f=1 ](s[↑(1,1)]|u[↑1])

Thus, the result is possible.
The situation changes, however, if we split thread s as follows. In this case, the

result s[↑1]|t[↑1]|u[↑1] is impossible.

s[x=f; if(x==0){f=1;} ↑x] | t[y=f; g=y; ↑y] |
u[z=g; f=z; ↑z]

The dependency between s [f=1 ] and t [g=1 ] now crosses two threads, and therefore
s [f=1 ] must be ordered before any subsequent actions. We reach the following state.
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>⇒ s [f=1 ](s[↑0]|(t [g=1 ](t[↑1]|u [f=1 ]u[↑1])))
8 · · ·

= >⇒ s [f=1 ]t [g=1 ]u [f=1 ](s[↑0]|t[↑1]|u[↑1])
8 · · · ⇒ t [g=1 ]u [f=1 ](s[↑1]|t[↑1]|u[↑1])

In this case, however, we can not move the writes by t or u through to justify the
speculation since they are blocked by s [f=1 ] in the initial branch and this write can
not be matched by the final branch. 2

Example 7 (Pugh (2004) §11). Consider s[x=h;e=x;y=f;g=y;↑(x,y)] | t[w=e;
z=g;h=z;f=1;↑(w,z)]. To get the result s[↑(1,1)]|t[↑(1,1)],we first speculate
t〈f=1〉s〈g=1〉 , then t〈h=1〉 , and then s〈e=1〉 . These speculations result in a four-
hole context.
>⇒ J–K1
8 t〈f=1〉s〈g=1〉⇒>⇒ J–K2

8 t〈h=1〉⇒>⇒ J–K3
8 s〈e=1〉⇒J–K4

Placing the term into this context creates four copies of the initial process, which we
will refer to by number. Process 1 justifies the outer speculation, each subsequent pro-
cess justifies the next speculation, and process 4 is the final process. To succeed, all
processes must generate t [f=1 ] and s [g=1 ] , processes 2–4 must generate t [h=1 ] ,
and processes 3 and 4 must generate s [e=1 ] .

Process 1 can perform the writes t [h=0 ]t [f=1 ] and s [e=0 ]s [g=1 ] . The second
write of s is only possible after the second write of t. The semantics can reorder the
writes of t, keeping the first write private, and likewise for s. The other processes can
reduce without any dependencies between threads and can therefore perform the same
reordering. Thus we can get the following processes.

1: t [f=1 ]s [g=1 ](t [h=0 ]t[↑(0,0)]|s [e=0 ]s[↑(0,1)])
2: t [f=1 ]s [g=1 ]t [h=1 ](t[↑(0,1)]|s [e=0 ]s[↑(0,1)])
3: t [f=1 ]s [g=1 ]t [h=1 ]s [e=1 ](t[↑(0,1)]|s[↑(1,1)])
4: t [f=1 ]s [g=1 ]t [h=1 ]s [e=1 ](t[↑(1,1)]|s[↑(1,1)])

Using this stratification, the speculations can be discharged and the result is allowed.
The multiple nesting of speculations is necessary. While the write s [e=1 ] is al-

ready possible in process 2, this write can only happen after the write to h in t. This
dependency makes it impossible for process 2 to publish s [g=1 ] without the neces-
sarily preceding t [h=1 ] . This in turn prohibits the outer speculation from finalizing
because process 1 can not match t [h=1 ] . 2

The examples above demonstrate out-of-order reads, a hallmark of relaxed memory
models. These examples argue informally that the model is “relaxed enough”. We now
revisit the examples given in Section 3, to argue that it is not “too relaxed”.

The program s[x=f; if(x==1){g=1;} f=1; y=g; ↑y] should not be allowed to
produce s[↑1]. Such self justifying executions are prevented by our semantics. Since
only s can produce writes, only speculations by s can be finalized (via R-SPECULA-
TION-END and Definition 2); yet reads by s can not be justified by its own speculations
(Definition 1). Speculation is useless in single-threaded programs, as it should be.
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Initiality prevents the program s[x=f;g=x;↑x] | t[y=g;f=y;↑y] from producing
the outcome t[↑1]. The initial branch can not write anything but 0; therefore no useful
speculations can be finalized via R-SPECULATION-END.

Consistency prevents Program C (Section 3) from producing the illegal execution
reported there. S-SPECULATION-PREFIX prevents such executions by requiring that the
initial and final branch of a speculation must execute the same actions in the same order.
The actual requirement is slightly weaker, since S-SPECULATION-PAR and Definition 3
allow some reordering; but no reordering is allowed on lock actions.

Timeliness prevents Program D (Section 3) from producing the illegal execution re-
ported there. This example motivates the “no intervening release” clause of Definition 2,
which ensures that the speculation can not be finalized. Whereas Program D describes a
speculation that occurs too late with respect to its justifying write, Example 8 discusses
one that occurs too early.

Example 8. Consider the following program.

s[l.acquire(); x=f; f=x+1; g=1; l.release(); ↑x] |
u[l.acquire(); x=f; f=x+1; y=g; l.release(); ↑(x,y)]

Clearly s[↑1]|u[↑(0,1)] is unacceptable. If we attempt to get this result by first
allowing u to acquire the lock, then speculating s〈g=1〉, we arrive at

u [l:0 ]
>⇒ u[f=1]u[l:1]s[l:2]s[f=2]s[g=1]s[l:3](s[↑1]|u[↑(0,0)])
8 s〈g=1〉⇒u[f=1]u[l:1]s[l:2]s[f=2]s[g=1]s[l:3](s[↑1]|u[↑(0,1)]).

The actions of u can commute with the speculation since they belong to a different
thread, but the actions of s can not, since s〈g=1〉s[l:2] 6 . s[l:2]s〈g=1〉; clause A-
ACQUIRE of Definition 3 applies to write actions, but not speculations. Thus the specu-
lation can not be finalized. 2

The final two examples demonstrate areas where our model differs from the JMM.
Example 9 shows that our model allows executions of lockless programs that are not
allowed by the JMM. Example 10 shows that our model is incomparable to the JMM for
programs with both locks and data races. In both cases, our model validates optimiza-
tions that are disallowed by the JMM. See Section 7 for more general results.

Example 9 (Sevcík (2008) §5.3.2). This example discusses redundant read after read
elimination. Consider the following program.

s[x=f; g=x;] |
t[y=g; if(y==1){z=g; f=z;} else {f=1;}; ↑y]

The outcome t[↑1] is allowed using the speculation s〈g=1〉. Both initial and final
branches produce the actions t[f=1]s[g=1]. The same behavior is allowed, with the
same speculation, if the boxed statement pair is replaced by “f=y;”. Our semantics
validates the transformation. The JMM disallows the behavior for the original program,
but allows it for the transformed one (Sevcík 2008), thus invalidating the transformation.

Conversely, Sevcík (2008, §5.3.4) demonstrates a behavior that is allowed by the
JMM, but invalidated by an irrelevant read introduction. Again, our semantics allows
the behavior both before and after the transformation. (See Example 20. ) 2
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Example 10 (Sevcík (2008) §5.3.3). (Roach motel optimization). Consider whether
the following program.

s[l.acquire(); f=2; l.release();] |
t[l.acquire(); f=1; l.release();] |
u[x=f; l.acquire();

y=h; if(x==2){g=1;} else {g=y;}
l.release(); ↑(x,y)] |

v[z=g; h=z; ↑z]

The outcome u[↑(1,1)]|v[↑1] is possible using the speculation v〈h=1〉. The initial
branch schedules as follows: s, u’s initial read, t, u’s acquire and write, v, then u’s
release. This allows the initial branch to reduce to the following.

s[l:0]s[f=2]s[l:1]t[l:2]t[f=1]t[l:3]
u[l:4]u[g=1]v[h=1]u[l:5](u[↑(2,0)]|v[↑1])

The final branch performs the same schedule, except that t executes before u’s ini-
tial read, with the speculation occurring after u’s acquire. Using the false case of the
conditional, it produces the same action sequence, but with the desired result.

This execution become impossible after reversing the order of the statements in the
boxed term so that the lock is acquired before the read: “l.acquire(); x=f;”. Now
the actions of threads s, t and u are now totally ordered and therefore the relation of
t and u’s initial read must be consistent in the initial and final branches. If the initial
branch reads 1 from f, then it must write v[h=0]. If the initial branch reads 2 from f,
then the final branch must also read 2 and therefore can not produce the desired result.

Our semantics validates the transformation; the JMM does not. In a reversal of our
results, the JMM disallows the first execution, but allows the second (Sevcík 2008). 2

6 Analysis

Informally, one can see that the speculation construct can not create thin air reads be-
cause it enjoys initiality (there is a computation justifying the speculation that does not
use the speculation) and consistency (the only way in which results from an active spec-
ulation can leak to the outside world is via the S-SPECULATION-PREFIX rules). Thus,
any speculation is validated by an execution consistent with the final execution.

Every valid JMM execution of a lockless program can be mimicked by the system in
this paper. See Appendix B for proof sketch. We now show that our semantics coincides
with SC (and therefore with the JMM) for DRF programs. As shown by Example 10, our
semantics is incomparable to the JMM for programs with both data-races and locks.

Our model does not record read actions. In order to define read-write data races,
we use a modified reduction relation, which introduces a read actions into the process,
notation spp.f=vq. A read write data race occurs whenever there is a race between a read
and a write. Define 7→ as in Figure 2, but for the rule R-FIELD-READ, which becomes

C justifies s〈p.f=v〉
C

q
s[val x = p.f; M]

y
7→ C

q
spp.f=vq s[M{x:=v}]

y .
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Define the partial function acts(A) = acts(C), if A = CJs[M]K for some C and M. We
say that A has a read-write data race if ~σ = acts(C) and there exists i and j such that
σi = t pp.f=vq and σ j = s[p.f=w] such that i 6<~σ

hb j and j 6<~σ
hb i. Define a write-write

data race similarly.
A process A is speculation-free if it has no subterm that is a speculation process.

Write A0→ ·· · → An to abbreviate A0 (→∪=) · · · (→∪=) An, and similarly for 7→.
A reduction sequence A0→ ··· → An is top-level if A0 and An are speculation-free.

The speculation-free assumption on top-level processes is reasonable because user
programs do not have speculations; speculations are only created by the operational
semantics. Speculation transitions are redundant in read-write data race free reduction
sequences.

Definition 11. Let A′i be derived from Ai by replacing each speculation (>⇒A8φ⇒B)
by the final branch (B). By induction on n, such an A′i exists for each Ai. A top-level
reduction sequence A0 7→ · · · 7→ An is read-write data race free, if none of the A′i, so
defined, has a read-write data race. 2

Lemma 12. Let the top-level reduction sequence A0 → ·· · → An be read-write data
race free. Then, there is a reduction sequence A0 = B0→ ··· → Bn = An, such that for
all j ∈ {1, . . . ,n}, B j is speculation-free.
PROOF. See Appendix A. 2

For processes that are also write-write data race free, each read is matched by a unique
write. Thus, the memory may be treated as a map from locations to values without
any change to the possible reductions, ensuring that DRF programs can be executed in
standard SC fashion.

7 Simulation

The goal of this section is to define a simulation relation that is a precongruence and
that validates interesting examples. We are not concerned if the relation is finer than
orders based on testing or contextual equivalence. For simplicity, we restrict our atten-
tion in this section to processes that do not contain name binders, object initialization or
method calls other than acquire and release. For this class of processes, we impose
the following additional well-formedness criterion: in any subprocess >⇒A8φ⇒B,
def (A) = def (B).

Intuitively, A simulates B if A and B have the same memory and whenever B reduces,
then A can reduce to a matching process. The definition is complicated by the possible
interleaving of actions and speculations, and the various ways that a context can interact
with an environment. Rather than comparing memories, we compare environment con-
texts: E ::= J–K | α E | φ E | s[↑v]|E. The environment context s[↑v]|E contains
a placeholder for environment actions performed by thread s, in parallel with the rest of
the context.

For a set of thread names S, the context E is complete iff for every σ ∈ E such that
s = thrd(σ) /∈ S, it is the case that s[↑v] occurs in E after σ .

In the remainder of this section, we use S to refer to the set of non-environment
threads. Threads not in S can be used by the environment.
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Definition 13. Given a set S of thread names and a binary relation R on well-formed
processes, we define S ` A F (R) B to hold iff the following conditions are satisfied.

(Threads) def (A) = def (B) and S⊆ thrds(A) and for all s ∈ thrds(A)\S, if s[M] occurs
in A or B then M =↑ unit.

(Well-formed) For all C, CJAK is well-formed iff CJBK is well-formed.
(Reduction) For all B′, if B→ B′ then there exists A′ such that A� A′ and S ` A′ R B′.
(Structural order) For all B′ if B = B′ then there exists A′ such that A� A′ and S `

A′ R B′.
(Equivalent top-level choices) For all B′, φ , B′′, if B = EJ>⇒B′ 8φ⇒B′′K then there

exists A′, ψ , A′′ such that (1) A = EJ>⇒A′ 8ψ⇒A′′K, (2) S ` EJA′K R EJB′K, and
(3) S ` EJφA′′K R EJψB′′K.

(Equivalent actions/guards/returns) For all E, B′ if B = EJB′K then there exists A′ such
that A = EJA′K.

(Environment writes) For each s∈ thrds(A)\S if B′ is obtained from B by replacing ev-
ery occurrence of s[↑unit] with s[p.f=v]s[↑unit] and similarly for A′ obtained
from A, then S ` A′ R B′.

(Top-level lock removal) For all ~σ , B′ and for all ` in the fixed set of lock names if
B = ~σ(lock `: j|B′) then there exists A′ such that A = ~σ(lock `: j|A′) and S `
~σA′ R ~σB′.

(Top-level lock addition) For all ` in the fixed set of lock names if (lock `: j|B) is
well-formed then S ` (lock `: j|A) R (lock `: j|B).

(Environment locks) For each s in thrds(A)\S if
– the occurrences of lock `: j|s[↑unit] in B account for all occurrences of

s[↑unit] in B, and
– B′ is obtained from B by replacing all occurrences of lock `: j|s[↑unit] with
lock `: j+1|s[`: j]s[↑unit],

then
– the occurrences of lock `: j|s[↑unit] in A account for all occurrences of

s[↑unit] in A,
– A′ is obtained from A by replacing all occurrences of lock `: j|s[↑unit] with
lock `: j+1|s[`: j]s[↑unit], and

– S ` A′ R B′.

Define S ` A& B to be the largest relation such that S ` A& B implies S ` A F (&) B.
Define the order A& B iff for all complete E such that EJAK and EJBK are well-formed,
we have thrds(A) ` EJAK& EJBK.

Consider terms M and N with no free variables but perhaps free names. Define the
order M & N iff there exists t such that t[M]& t[N] The choice of t is irrelevant in this
definition. 2

Proposition 14. & is a precongruence on processes and on terms. 2

We now use the theory of simulation to validate several optimizations. The first
inequality shows that writes can be reordered. The second demonstrates roach motel
reordering. The third demonstrates redundant read after read elimination. Since simu-
lation is a precongruence, the transformations are valid in any program context.
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Proposition 15. The following inequivalences hold.

p.f=1;p.g=1;↑unit & p.g=1;p.f=1;↑unit
p.f=1;`.acquire();↑unit & `.acquire();p.f=1;↑unit

val x=p.f;val y=p.f;M & val x=p.f;M{y:=x}

PROOF. See Appendix C. 2

8 Conclusion

This paper follows the research program of Cenciarelli et al. (2007) and Boudol and
Petri (2009) in attempting to fit relaxed memory models into generative structured op-
erational semantics. The technical novelty is manifest in the “speculation” construct. We
show that the basic properties of the JMM hold in our setting. Our contributions advance
the state-of-the-art in two ways. (1) We expand the expressivity of these methods to in-
clude full JMM behaviors for lockless programs and general object-oriented programs.
(2) We describe simulation methods and precongruence results for the sublanguage that
corresponds to the first-order imperative shared-memory computing.

Our treatment of programs with both data races and locks provides a technically
robust variation on JMM ideas. For example, our methods validate expected roach-motel
reordering laws and related peephole optimizations.
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A Proof of Lemma 12

By induction on the length of the transition sequence.
In the inductive step, the key case is R-SPECULATION-BEGIN when A0 =C

q
B
y

and
A1 =C

q
>⇒B8φ⇒B

y
. Since An is speculation-free without loss of generality assume

that the speculation end rule is invoked in the transition to An. Let thrd(φ) = twr.
Recall that the sole use of speculative actions is in the read rule R-FIELD-READ.

The possibilities are as follows.
(1) There is no use of R-FIELD-READ in s that uses φ . In this case, the speculation

is redundant, and there is a reduction from A0 to An that does not use this speculation
and with at least one less reduction.

(2) There is a use of R-FIELD-READ in s that uses φ . Let C′Js[val x = p.f; M]K
be the read in question. (By inspection of the semantic rules, there can only be one use
of R-FIELD-READ in deducing a single transition.) We show that the read can produce
the same value without considering the speculation.

Let βwr be the write action that justifies the closing of the speculation in the reduc-
tion sequence to An. Let ~τ = acts(An). Let k be the index of tJ–K in ~τ . Let the position
of βwr in~τ be iwr. By Definition 2, thrd(βwr) = twr. Let the position of the marked action
(corresponding to the read) in~τ be ird .

Since there is no read-write data race, the read and write must have one of the
following relations.

(2)(a) The write happens-before the read (iwr <
~τ
hb ird). We show that the speculative

action is not used in this case by showing that βwr is visible to the read1. It suffices to
show that there is no intervening write between iwr and ird . We prove by showing that
that the presence of an intervening write leads to a contradiction.

There are two cases to consider depending on the thread of the intervening write.
(2)(a)(i) Intervening write in thread different from twr: Since~τ justifies φ . So, there

is no intervening release between iwr and k, implying that there is no intervening release
between iwr and ird . Thus, there can not be a synchronization edge between positions
iwr and ird in ~τ . So, there can not be an intervening write between iwr and ird in ~τ in a
thread different from twr. (Compare Example 8.)

(2)(a)(ii) Intervening write in thread twr: In this case there is an intervening write
between iwr and k contradicting our assumption that βwr justifies closing of the specula-
tion.

(2)(b) The read happens-before the write (ird <~τ
hb iwr). We show that βwr can not

move outside the scope of the speculation and thus can not justify the closing of the
speculation. Thus, this case leads to a contradiction.

There are two subcases.
(2)(b)(i) The read is program-order before the write. In this case, twr = s and Defi-

nition 1 does not permit the speculation φ to be used to justify the read. So, this is not
possible.

(2)(b)(ii) The read is synchronization-order before the write. That is, there is a re-
lease of some lock by s after the read that enables an acquire in thrd(βwr) before βwr.

1 Thanks to an anonymous referee who detected a bug in this portion of the proof in an earlier version of
this paper.
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The following non-commutations are in play:

φ twr [acq `: j] 6 . twr [acq `: j] φ

twr [acq `: j] βwr 6 . βwr twr [acq `: j]

So, there there is no way to use the S-SPECULATION-PREFIX rules to move βwr outside
the scope of the speculation. So, this is not possible. (Compare Program D, Section 3.)

B Lockless programs

For lockless programs, Example 9 showed that our model allows executions that are not
allowed by the JMM. We now show that our model is strictly more expressive than the
JMM for lockless programs. Perhaps surprisingly, the absorption laws of Definition 3
are used in this proof.

As in Section 5, we assume an initialization thread which sets the initial state and
starts the threads. The adjective “lockless” applies to the threads so started — our rules
for starting threads already forces the initialization actions of the initialization thread
to “happen-before” any action in the thread. As in the JMM literature, we assume only
integer shared locations, whose values are initially set to 0 in the initialization thread.

Consider a lockless program with data races. We use the JMM version of Definition
5.9 (page 100) of Sevcík (2008) as our starting point. Thus, we are using the JMM
versions of the conditions (2,6). In this extended abstract, we highlight the constraints
that are relevant to the proof sketch. For a valid execution, this definition provides a
stratification via a collection of executions Ei, for 0≤ i≤ n−1. Execution Ei commits
actions Ci+1, and the definition constrains C1⊆ ·· · ⊆Cn. In this lockless case, the idea is
that an uncommitted read in execution Ei can only be connected to a write that precedes
it in the program order of Ei.

Wlog, we assume that Ci+1 \Ci contains atmost one write that we denote αi+1.
For a read action rd∈Ci, there is an associated write action denoted by W(rd) whose

value is given by V(W(rd)). Consider the set

{s〈p.f=v〉 | (∃rd) rd ∈Ci and s = thrd(W(rd)) and
p.f = loc(rd) and v = V(W(rd))
and thrd(W(rd)) 6= thrd(rd)}

and let ~φi be any sequence containing all the elements of this set in an order.
We build on intuitions from Example 7. Given an initial process B, we define the

initial speculative process A0 as follows.

A0 = (>⇒B8~φ1⇒A1)

A j = (>⇒B8~φ j+1⇒A j+1)
An−1 = B

The intention is that the jth copy of B will execute as per the execution E j. The required
assumptions for this execution, namely ~φ j, are present because of the surrounding spec-
ulation context.

For j ∈ {1, . . . ,n− 1}, define D j = α1 . . .α j. Fix an arbitrary j. We first show that
E j, in the context of speculation ~φ j, produces the write sequence D j+1.
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(1) Let D j+1|s) be the restriction of D j+1 to a particular thread s. By assumption on
E j, s can produce the set of writes in D j+1|s. However, these writes may not be in the
order indicated by D j+1|s and the sequence of writes by s as per E j could potentially
also include other writes not included in D j+1. However, since there are no locks, we
can use the absorption laws of Definition 3 to add prefix D j+1|s to the actual write
sequence produced by s under execution E j. The proof of this follows that of lemma 4.

(2) By definition, every read in E j is fulfilled either by the speculative context ~φ j
or by a write that happens before it. Thus, no read in a thread s of E j relies on writes
in a different thread t 6= s, and the write actions produced by different threads in E j are
fully commutable by the dynamics. Therefore, the result of step (1) above for individ-
ual threads lifts to E j that (potentially) consists of several threads, to yield the write
sequence D j+1.

Given this, we now reason informally that all levels of this nested speculation can
be successfully closed to show that computation En−1 can be achieved as the result of
executing A0. The first step of our argument is that A j produces the write sequence
D j+1. This proceeds by a reverse induction from n− 1 down to 0. The base case is by
assumption on En−1. By the inductive step, A j+1 produces the writes D j+2 and hence the
prefix D j+1. By assumption, E j produces the write sequence D j+1. Therefore the two
branches of the speculation are consistent up to D j+1. Thus, the complete commutation
of writes with speculations embodied in Definition 3 and rule S-SPECULATION-PREFIX
of Figure 1 enables A j to produce the write sequence D j+1.

The second step of our argument is that the speculation of A j can be closed suc-
cessfully. This proceeds by a forward induction from 0 up to n−1. From the preceding
step, A0 produces D1 that suffices for justifying ~φ1. Therefore the base case follows. For
showing the inductive case, use the inductive hypothesis to get that all the speculations
above A j have been closed. From the above step, A j produces D j+1 and hence all the
writes needed to justify ~φ j+1. Therefore the branch for A j+1 can be chosen in A j.

C Simulation proof sketches

In proving simulations, it is useful to define speculation contexts, where context holes
are labelled with natural numbers. Each natural number must occur on at most one
context hole in a D context. We write labels(D) for the finite set of natural numbers
labelling context holes in D.

D ::= J–Kn | α D | φ D | t[↑v]
| lock `: j | D|D | >⇒D8φ⇒D

Here J–Kn is a context hole labelled with natural number n.
Consider a speculation context D. Given a map P from labels(D) to processes,

define DJPK to be the process obtained by replacing context hole J–Kn with P(n) for
all n in labels(D).

Given a map G from labels(D) to pairs of processes, define DJG K to be the pair of
processes (DJG ◦ fstK, DJG ◦ sndK).
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We sketch a proof for the first case of Proposition 15, by defining a simulation can-
didate relation and then showing that it is indeed a simulation. First, define the following
processes.

A1 = t[p.g=1;p.f=1;↑unit]
A2 = t [p.g=1]t[↑unit]
A3 = t[↑unit]
B1 = t[p.f=1;p.g=1;↑unit]
B2 = t[p.g=1;↑unit]
B3 = t[↑unit]

Note that the following hold.

A1→→= t [p.f=1]A2 A2 = t [p.g=1]A3

B1→ t [p.f=1]B2 B2→ t [p.g=1]B3

For the result, by definition, we must show the following.

A1 = t[p.f=1;p.g=1;↑unit]& t[p.g=1;p.g=1;↑unit]= B1

That is, for all complete E such that EJA1K and EJB1K are well-formed, we must show
{t} ` EJA1K& EJB1K. We construct a larger relation that is a simulation.

First, define the relation R on processes as follows.

R = {(A1,B1),(A2,B2),(A3,B3)}

Next, define the simulation candidate relation.

R= {DJG K | G is a map from labels(D) to R}

The R simulation candidate is closed under E since D contexts are more general than
E contexts, so establishing that R is a simulation is sufficient.

We require that for all processes A and B,

{t} ` A R B implies {t} ` A& B.

We prove this by coinduction, i.e., we must show for all processes A and B,

{t} ` A R B implies {t} ` AF(R)B.

We briefly comment on some of the cases, assuming the following R-related processes,

{t} ` (DJP1K) R (DJP2K)

where P1 = G ◦ fst and P2 = G ◦ snd, for some G mapping from labels(D) to R.

– Threads and well-formed are immediate from the definition of R.
– Reduction. Consider reductions in DJP2K that involve an occurrence of B1 or B2

from P2 in the context hole J–Kn. The R-FIELD-WRITE rule, perhaps using R-SPEC-
ULATION-CONTEXT, is applied as follows.
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• If P2(n) = B1 then

DJP2K→ DJP2 +{n 7→ t [p.f=1]B2}K

where P2 +{n 7→ · · ·} denotes the update of function P2 at domain element n. In
this case, P1(n) = A1, so

DJP1K(→→=)DJP1 +{n 7→ t [p.f=1]A2}K.

We obtain a new choice context D′ by replacing J–Kn with t [p.f=1]J–Kn, and thus
get back to R-related processes.

• If P2(n) = B2 then

DJP2K→ DJP2 +{n 7→ t [p.g=1]B3}K

In this case, P1(n) = A2, so

DJP1K = DJP1 +{n 7→ t [p.g=1]A3}K.

We obtain a new choice context D′ by replacing J–Kn with t [p.g=1]J–Kn, and thus
get back to R-related processes.

The only other possible reductions for DJP2K are R-SPECULATION-BEGIN and R-
SPECULATION-END. Since B1, B2, B3 are thread processes, such reductions occur
entirely within D, and can be applied to both DJP1K and DJP2K equally. By intro-
ducing new context holes for context holes duplicated in R-SPECULATION-BEGIN,
we stay in R.

– Structural order. Only thread processes are substituted into the RHS DJP2K. Thus any
structural reordering is confined to D being reordered to D′ (subject to the processes
substituted into D and D′ having the same defined threads, which they do here), and
thus there is a matching reordering on the LHS.

– Equivalent top-level choices and equivalent actions/guards/returns. Observe that B3
has the only return on the RHS, and it is paired with A3 which also has a return. These
two cases follow immediately from the fact that the same D is used on both sides of
DJP1K and DJP2K, and there are no actions in the RHS processes B1, B2, B3.

– Environment writes. Writes in other threads occur in D and thus apply to both LHS
and RHS immediately.

– Top-level lock removal. None of the processes in R contain lock processes, so if a
lock process is available to be removed, it must be a subprocess of D only (on both
the LHS and RHS) and can be removed from both and stay in R.

– Top-level lock addition. The set of D is closed under parallel composition with lock
processes.

– Environment locks. For a thread s 6= t, any occurrence of lock `: j|s[↑unit] must
be a subprocess of D only (so on both the LHS and RHS). Replacing occurrences of
lock `: j|s[↑unit] in D with lock `: j+1|s[`: j]s[↑unit] yields D′ which yields
a well-formed process after substitution whenever D yields a well-formed process
after the same substitution.
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D Further examples

Example 16. Consider the following program.

s[x=f; if(x){g=1;} ↑x] |
t[y=g; if(y){f=1;} ↑y]

The program is DRF. There is no execution that sets either f or g to 1 and therefore the
outcome s[↑1]|t[↑1] is impossible.

To see how our semantics disallows the behavior, let us try to get the result by
speculating that s〈g=1〉 , where we show only t.

� · · ·
>⇒ t[y=g; if(y){f=1;} ↑y]
8 s〈g=1〉⇒t[y=g; if(y){f=1;} ↑y]

� · · ·
>⇒ t[if(0){f=1;} ↑0]
8 s〈g=1〉⇒t[if(1){f=1;} ↑1]

� · · ·
>⇒ t[↑0] 8 t〈g=1〉⇒t [f=1 ]t[↑1]

Since the initial branch is not capable of generating the write t [f=1 ] , the write from
the final branch can not leave the speculation; therefore it is not visible to the other
thread. If the write were visible then the initial branch could also produce the write, and
the justifying write could then escape and finalize the speculation, causing a thin air
read.

Note that if thread s is copied into the speculation, then the thin air reads can occur
in the speculation; however, the speculation can never be finalized since the writes do
not occur in the initial branch. 2

Example 17 (Pugh (2004) §8). Consider the following program.

s[x=f; y=1+x*x-x; g=y; ↑(x,y)] |
t[z=g; f=z; ↑z]

The result s[↑(1,1)]|t[↑1] is possible via the speculation t〈f=1〉 s〈g=1〉 . The ini-
tial process produces the writes s[g=1] t[f=1], in order. These writes can be matched
by the final process allowing the speculation to be removed and giving the desired re-
sult. Pugh (2004) §1 and §2, among others, are similar. 2

Example 18 (Pugh (2004) §5). Consider the following program.

s[x=f; g=x; ↑x] | u[h=1;] |
t[y=g; f=y; ↑y] | v[z=h; f=z; ↑z]

The result s[↑1]|t[↑1]|v[↑0] is not allowed by the JMM, nor our semantics. Any
attempt to get the result must speculate that f or g is 1. Suppose we speculate t〈f=1〉
(the case for the speculation v〈f=1〉 is similar and is omitted). The initial branch can
only achieve this by scheduling u [h=1 ] , v [f=1 ] , s [g=1 ] and t [f=1 ] in that order.
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For v to produce the correct write, it must read u [h=1 ] . Since there is a cross-thread
data dependency between each write and the next, the first three writes must be outside
the parallel composition and therefore their relative order is fixed. This means that the
final branch must match at least the first two action, in order. But this is not possible,
since the final branch must write v [f=0 ] in order to get the desired return value for
v[↑0]. As a result, the speculation can not be finalized with the desired return values.
The same reasoning applies to Pugh (2004) §10 which uses control dependencies rather
than data dependencies. 2

Example 19 (Pugh (2004) §17). Consider the following program.

s[z=f; if(z!=1){f=1;} x=f; g=x; ↑(z,x)] |
t[y=g; f=y; ↑y]

The result s[↑(1,1)]|t[↑1] follows if we speculate t〈f=1〉 .
The initial process can perform writes s[f=1] s[g=1] t[f=1]. The write t[f=1]

depends on s[g=1], but not on s[f=1]. Therefore the initial process may reach state
s[g=1]t[f=1](s[f=1]s[↑(0,1)]|t[↑1]).

The final process can not produce the write s[f=1], but it can reach state s[g=1]
t[f=1](s[↑(1,1)]|t[↑1]). Since the initial and final branches agree, the writes can
leave the speculation and the speculation can be finalized.

(Note that Pugh (2004) §19, which divides thread s in two, fails here as it does for
the JMM (Sevcík 2008). The reasons are the same as in Example 6.) 2

Example 20 (Sevcík (2008) §5.3.4). This example discusses irrelevant read introduc-
tion. Consider the following program.

s[x=h; if(x==0){z=f; if(z==1){g=1;}}
else{w=f; g=x;} ↑x] |

t[f=1; y=g; h=y; ↑y]

The outcome s[↑1]|t[↑1] is allowed using nested speculation s〈g=1〉 then t〈h=1〉.
There are three terms in the nested speculation, all of which perform prefixes of the
action sequence t[f=1]s[g=1]t[h=1]. The two initial branches both execute the true
case of the conditional, resulting in s[↑0]. The final branch executes the false case,
giving the desired result.

Removing the boxed statement has no effect on the execution. The result is also
validated by our semantics when the irrelevant read is introduced.

The JMM allows the behavior with the boxed statement, but disallows it without
(Sevcík 2008). 2


