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omAbstra
t. We study me
hanisms that permit program 
omponents to express role 
on-straints on 
lients, fo
using on programmati
 se
urity me
hanisms, whi
h permit a

ess
ontrols to be expressed, in situ, as part of the 
ode realizing basi
 fun
tionality. In thissetting, two questions immediately arise. (1) The user of a 
omponent fa
es the issue ofsafety: is a parti
ular role su�
ient to use the 
omponent? (2) The 
omponent designerfa
es the dual issue of prote
tion: is a parti
ular role demanded in all exe
ution paths ofthe 
omponent? We provide a formal 
al
ulus and stati
 analysis to answer both questions.1. Introdu
tionThis paper addresses programmati
 se
urity me
hanisms as realized in systems su
h asJava Authenti
ation and Authorization Servi
e (jaas) and .net. These systems enable twoforms of a

ess 
ontrol me
hanisms1. First, they permit de
larative a

ess 
ontrol to des
ribese
urity spe
i�
ations that are orthogonal and separate from des
riptions of fun
tionality,e.g., in an interfa
e I, a de
larative a

ess 
ontrol me
hanism 
ould require the 
aller topossess a minimum set of rights. While 
on
eptually elegant, su
h spe
i�
ations do notdire
tly permit the enfor
ement of a

ess 
ontrol that is sensitive to the 
ontrol and data�owof the 
ode implementing the fun
tionality � 
onsider for example history sensitive se
uritypoli
ies that require runtime monitoring of relevant events. Consequently, jaas and .netalso in
lude programmati
 me
hanisms that permit a

ess 
ontrol 
ode to be intertwinedwith fun
tionality 
ode, e.g., in the 
ode of a 
omponent implementing interfa
e I. On theone hand, su
h programmati
 me
hanisms permit the dire
t expression of a

ess 
ontrolpoli
ies. However, the programmati
 approa
h leads to the 
ommingling of the 
on
eptuallyseparate 
on
erns of se
urity and fun
tionality.1998 ACM Subje
t Classi�
ation: D.3, K.6.5.Key words and phrases: role-based a

ess 
ontrol, lambda-
al
ulus, stati
 analysis.
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2 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYThere is extensive literature on poli
y languages to spe
ify and implement poli
ies(e.g., [16, 28, 15, 5, 29, 13℄ to name but a few). This resear
h studies se
urity poli
iesas separate and orthogonal additions to 
omponent 
ode, and is thus fo
used on de
larativese
urity in the parlan
e of jaas/.net.In 
ontrast, we study programmati
 se
urity me
hanisms. Our motivation is to extra
tthe se
urity guarantees provided by a

ess 
ontrol 
ode whi
h has been written inline with
omponent 
ode. We address this issue from two viewpoints:
• The user of a 
omponent fa
es the issue of safety: is a parti
ular set of rights su�
ient touse the 
omponent? (ie. with that set of rights, there is no possible exe
ution path thatwould fail a se
urity 
he
k. Furthermore, any greater set of rights will also be allowed touse the 
omponent)
• The 
omponent designer fa
es the dual issue of prote
tion: is a parti
ular set of rightsdemanded in all exe
ution paths of the 
omponent? (ie. every exe
ution path requiresthat set of rights. Furthermore, any lesser set of rights will not be allowed to use the
omponent)The main 
ontribution of this paper is separate stati
 analyses to 
al
ulate approximationsto these two questions. An approximate answer to the �rst question is a set of rights,perhaps bigger than ne
essary, that is su�
ient to use the 
omponent. On the other hand,an approximate answer to the se
ond question, is a set of rights, perhaps smaller than whatis a
tually enfor
ed, that is ne
essary to use the 
omponent.1.1. An overview of our te
hni
al 
ontributions. There is extensive literature on Role-Based A

ess-Control (rba
) models in
luding nist standards for rba
 [26, 12℄; see [11℄ fora textbook survey. The main motivation for rba
, in software ar
hite
tures (e.g., [22, 21℄)and frameworks su
h as jaas/.net, is that it enables the enfor
ement of se
urity poli
iesat a granularity demanded by the appli
ation. In these examples, rba
 allows permissionsto be de-
oupled from users: Roles are the unit of administration for users and permissionsare assigned to roles. Roles are often arranged in a hierar
hy for su

in
t representationof the mapping of permissions. Component programmers design 
ode in terms of a stati

olle
tion of roles. When the appli
ation is deployed, administrators map the roles de�nedin the appli
ation to users in the parti
ular domain.In this paper, we study a lambda 
al
ulus enri
hed with primitives for a

ess 
ontrol,dubbed λ-RBAC. The underlying lambda 
al
ulus serves as an abstra
tion of the ambientprogramming framework in a real system. We draw inspiration from the programmingidioms in jaas and .net, to determine the expressiveness required for the a

ess 
ontrolme
hanisms. In a sequen
e of .net examples2, 
losely based on [18℄, we give the reader a�avor of the basi
 programming idioms.Example 1 ( [18℄). In the .net Framework 
lr, every thread has a Prin
ipal obje
t that
arries its role. This Prin
ipal obje
t 
an be viewed as representing the user exe
utingthe thread. In programming, it often needs to be determined whether a spe
i�
 Prin
ipalobje
t belongs to a familiar role. The 
ode performs 
he
ks by making a se
urity 
all fora Prin
ipalPermission obje
t. The Prin
ipalPermission 
lass denotes the role that aspe
i�
 prin
ipal needs to mat
h. At the time of a se
urity 
he
k, the 
lr 
he
ks whether2In order to minimize the synta
ti
 barrage on the unsuspe
ting reader, our examples to illustrate thefeatures are drawn solely from the .net programming domain. At the level of our dis
ussion, there are noreal distin
tions between jaas and .net se
urity servi
es.



λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 3the role of the Prin
ipal obje
t of the 
aller mat
hes the role of the Prin
ipalPermissionobje
t being requested. If the role values of the two obje
ts do not mat
h, an ex
eption israised. The following 
ode snippet illustrates the issues:Prin
ipalPermission usrPerm =new Prin
ipalPermission (null,"Manager");usrPerm.Demand()If the 
urrent thread is asso
iated with a prin
ipal that has the the role of manager, thePrin
ipalPermission obje
ts are 
reated and se
urity a

ess is given as required. If the
redentials are not valid, a se
urity ex
eption is raised.In this vein, the intuitive operation of λ-RBAC is as follows. λ-RBAC program exe
utiontakes pla
e in the 
ontext of a role, say r, whi
h 
an be viewed 
on
retely as a set ofpermissions. The set of roles used in a program is stati
: we do not allow the dynami

reation of roles. λ-RBAC supports run-time operations to 
reate obje
ts (i.e. higher-orderfun
tions) that are wrapped with prote
ting roles. The use of su
h guarded obje
ts isfa
ilitated by operations that 
he
k that the role-
ontext r is at least as strong as theguarding role: an ex
eption is raised if the 
he
k fails.The next example illustrates that boolean 
ombinations of roles are permitted in pro-grams. In 
lassi
al rba
 terms, this is abstra
ted by a latti
e or boolean stru
ture onroles.Example 2 ( [18℄). The Unionmethod of the Prin
ipalPermission 
lass 
ombines multiplePrin
ipalPermission obje
ts. The following 
ode represents a se
urity 
he
k that su

eedsonly if the Prin
ipal obje
t represents a user in the CourseAdmin or BudgetManager roles:Prin
ipalPermission Perm1 =new Prin
ipalPermission (null,"CourseAdmin");Prin
ipalPermission Perm2 =new Prin
ipalPermission(null,"BudgetManager');// Demand at least one of the roles using Unionperm1.Union (perm2).Demand ()Similarly, there is an Interse
t method to represent a �join� operation in the role latti
e.In λ-RBAC, we assume that roles form a latti
e: abstra
ting the 
on
rete union/inter-se
tion operations of these examples. In the 
on
rete view of a role as a set of permissions,role ordering is given by supersets, ie. a role is stronger than another role if it has morepermissions; join of roles 
orresponds to the union of the sets of permissions and meet ofroles 
orresponds to the interse
tion of the sets of permissions. Some of our results assumethat the latti
e is boolean, i.e. the latti
e has a negation operation. In the 
on
rete viewof the motivating examples, the negation operation is interpreted by set 
omplement withrespe
t to a maximum 
olle
tion of permissionsOur study is parametri
 on the underlying role latti
e.The key operation in su
h programming is rights modulation. From a programmingviewpoint, it is 
onvenient, indeed sometimes required, for an appli
ation to operate underthe guise of di�erent users at di�erent times. Rights modulation of 
ourse 
omes in two�avors: rights weakening is overall a safe operation, sin
e the 
aller 
hooses to exe
ute withfewer rights. On the other hand, rights ampli�
ation is 
learly a more dangerous operation.In the .net framework, rights modulation is a
hieved via a te
hnique 
alled impersonation.



4 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYExample 3. Impersonation of an a

ount is a
hieved using the a

ount's token, as shownin the following 
ode snippet:WindowsIdentity stIdentity = new WindowsIdentity (StToken);// StToken is the token asso
iated with the Windows a

t being impersonatedWindowsImpersonationContext stImp = stIdentity.Impersonate();// now operating under the new identitystImp.Undo(); // revert ba
k
λ-RBAC has 
ombinators to perform s
oped rights weakening and ampli�
ation.We demonstrate the expressiveness of λ-RBAC by building a range of useful 
ombinatorsand a variety of small illustrative examples. We dis
uss type systems to perform the twoanalyses alluded to earlier: (a) an analysis to dete
t and remove unne
essary role-
he
ks ina pie
e of 
ode for a 
aller at a su�
iently high role, and (b) an analysis to determine the(maximal) role that is guaranteed to be required by a pie
e of 
ode. The latter analysis a
-quires parti
ular value in the presen
e of rights modulation. For both we prove preservationand progress properties.1.2. Related work. Our paper falls into the broad area of resear
h enlarging the s
ope offoundational, language-based se
urity methods (see [27, 19, 3℄ for surveys).Our work is 
lose in spirit, if not in te
hni
al development, to edit automata [16℄, whi
huse aspe
ts to avoid the expli
it intermingling of se
urity and baseline 
ode.The papers that are most dire
tly relevant to the 
urrent paper are those of Braghin,Gorla and Sassone [7℄ and Compagnoni, Garalda and Gunter [10℄. [7℄ presents the �rst 
on-
urrent 
al
ulus with a notion of rba
, whereas [10℄'s language enables privileges dependingupon lo
ation.Both these papers start o� with a mobile pro
ess-based 
omputational model. Both 
al-
uli have primitives to a
tivate and dea
tivate roles: these roles are used to prevent undesiredmobility and/or 
ommuni
ation, and are similar to the primitives for role restri
tion andampli�
ation in this paper. The ambient pro
ess 
al
ulus framework of these papers pro-vides a dire
t representation of the �sessions� of rba
� in 
ontrast, our sequential 
al
ulusis best thought of as modeling a single session.[7, 10℄ develop type systems to provide guarantees about the minimal role required forexe
ution to be su

essful � our �rst type system o

upies the same 
on
eptual spa
e as thisstati
 analysis. However, our se
ond type system that 
al
ulates minimum a

ess 
ontrolsdoes not seem to have an analogue in these papers.More globally, our paper has been in�uen
ed by the desire to serve loosely as a metalan-guage for programming rba
 me
hanisms in examples su
h as the jaas/.net frameworks.Thus, our treatment internalizes rights ampli�
ation by program 
ombinators and the am-plify role 
onstru
tor in role latti
es. In 
ontrast, the above papers use external � i.e.not part of the pro
ess language � me
hanisms (namely, user poli
ies in [10℄, and rba
-s
hemes in [7℄) to enfor
e 
ontrol on rights a
tivation. We expe
t that our ideas 
an beadapted to the pro
ess 
al
uli framework. In future work, we also hope to integrate thepowerful bisimulation prin
iples of these papers.Our paper deals with a

ess 
ontrol, so the extensive work on information �ow, e.g.,see [24℄ for a survey, is not dire
tly relevant. However, we note that rights ampli�
ationplays the same role in λ-RBAC that de
lassi�
ation and delimited release [9, 25, 20℄ plays in



λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 5the 
ontext of information �ow; namely that of permitting a

ess that would not have beenpossible otherwise. In addition, by supporting the internalizing of the ability to amplify 
oderights into the role latti
e, our system permits a

ess 
ontrol 
ode to a
tively parti
ipate inmanaging rights ampli�
ation.1.3. Rest of the paper. We present the language in Se
tion 2, the type system in Se
-tion 3 and illustrate its expressiveness with examples in Se
tion 4. We dis
uss methods for
ontrolling rights ampli�
ation in Se
tion 5. Se
tion 6 provides proofs of the theorems fromSe
tion 3. 2. The LanguageAfter a dis
ussion of roles, we present an overview of the language design. The remainingsubse
tions present the formal syntax, evaluation semanti
s, typing system, and some simpleexamples.2.1. Roles. The language of roles is built up from role 
onstru
tors. The 
hoi
e of role
onstru
tors is appli
ation dependent, but must in
lude the latti
e 
onstru
tors dis
ussedbelow. Ea
h role 
onstru
tor, κ, has an asso
iated arity, arity(κ). Roles A�E have the form
κ(A1, . . . , An).We require that roles form a boolean latti
e; that is, the set of 
onstru
tors must in
ludethe nullary 
onstru
tors 000 and 111, binary 
onstru
tors ⊔ and ⊓ (written in�x), and unary
onstru
tor ⋆ (written post�x). 000 is the least element of the role latti
e. 111 is the greatestelement. ⊓ and ⊔ are idempotent, 
ommutative, asso
iative, and mutually distributive meetand join operations respe
tively. ⋆ is the 
omplement operator.A role may be thought of as a set of permissions. Under this interpretation, 000 is theempty set, while 111 is the set of all permissions.The syntax of terms uses role modi�ers, ρ, whi
h may be of the form ↑A or ↓A. We userole modi�ers as fun
tions from roles to roles, with ρLA M de�ned as follows:

↑ALB M = A ⊔ B ↓ALB M = A ⊓ BIn summary, the syntax of roles is as follows.
κ ::= 000 | 111 | ⊔ | ⊓ | ⋆ | · · · Role 
onstru
tors
A�E ::= κ(A1, . . . , An) Roles
ρ ::= ↑A | ↓A Role modi�ersThroughout the paper, we assume that all roles (and therefore all types) are well-formed,in the sense that role 
onstru
tors have the 
orre
t number of arguments.The semanti
s of roles is de�ned by the relation �A .

= B� stating that A and B areprovably equivalent. In addition to any appli
ation-spe
i�
 axioms, we assume the standardaxioms of boolean algebra. We say that A dominates B (notation A > B) if A
.
= A ⊔ B(equivalently B

.
= A ⊓ B) is derivable. Thus we 
an 
on
lude 111 > A ⊔ B > A > A ⊓ B > 000,for any A, B.The role modi�er ↓A 
reates a weaker role (
loser to 000), thus we refer to it as a restri
tion.Dually, the modi�er ↑A 
reates a stronger role (
loser to 111), and thus we refer to it as an



6 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYampli�
ation. While this ordering follows that of the nist rba
 standard [12℄, it is dual tothe normal logi
al reading; it may be helpful to keep in mind that, viewed as a logi
, 111 is�false�, 000 is �true�, ⊔ is �and�, ⊓ is �or� and > is �implies.�2.2. Language overview. Our goal is to 
apture the essen
e of role-based systems, whereroles are used to regulate the intera
tion of 
omponents of the system. We have 
hosen tobase our language on Moggi's monadi
 metalanguage be
ause it is simple and well under-stood, yet ri
h enough to 
apture the key 
on
epts. By design, the monadi
 metalanguage isparti
ularly well suited to studying 
omputational side e�e
ts (or simply e�e
ts), whi
h are
entral to our work. (We expe
t that our ideas 
an be adapted to both pro
ess and obje
t
al
uli.)The �
omponents� in the monadi
 metalanguage are terms and the 
ontexts that usethem. To prote
t terms, we introdu
e guards of the form {A}[M℄, whi
h 
an only bedis
harged by a 
ontext whose role dominates A. The notion of 
ontext role is formalized inthe de�nition of evaluation, where A ⊲ M → N indi
ates that 
ontext role A is su�
ient toredu
e M to N . The term check M dis
harges the guard on M . The evaluation rule allows
A ⊲ check {B}[M℄ → [M℄ only if A > B.The 
ontext role may vary during evaluation: given 
ontext role A, the term ρ(M)evaluates M with 
ontext role ρLA M. Thus, when ↓B(M) is evaluated with 
ontext role A,
M is evaluated with 
ontext role A⊓B. A 
ontext may prote
t itself from a term by pla
ingthe use of the term in su
h a restri
ted 
ontext. (The syntax enfor
es a sta
k dis
ipline onrole modi�ers.) By 
ombining upwards and downwards modi�ers, 
ode may assume any roleand thus 
ir
umvent an intended poli
y. We address this issue in Se
tion 5.These 
onstru
ts are su�
ient to allow prote
tion for both terms and 
ontexts: terms
an be prote
ted from 
ontexts using guards, and 
ontexts 
an be prote
ted from termsusing (restri
tive) role modi�ers.2.3. Syntax. Let x, y, z, f , g range over variable names, and let bv range over base values.Our presentation is abstra
t with respe
t to base values; we use the types String, Int and
Unit (with value unit) in examples. We use the standard en
odings of booleans and pairs(see Example 14). The syntax of values and terms are as follows.
V,U,W ::= M,N,L ::= Values; Termsbv | x V Base Value

λx.M M N | fix M Abstra
tion{A}[M℄ check M Guard[M℄ let x= M;N Computation
ρ(M) Role Modi�erNotation. In examples, we write A(M) to abbreviate ↓000(↑A(M)), whi
h exe
utes M atexa
tly role A.The variable x is bound in the value �λx.M � (with s
ope M) and in the term � let x=M;

N � (with s
ope N). If x does not appear free in M , we abbreviate �λx.M � as �λ.M �.Similarly, if x does not appear free in N , we abbreviate � let x= M;N � as �M;N �. Weidentify syntax up to renaming of bound variables and write N{x := M} for the 
apture-avoiding substitution of M for x in N .



λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 7In the presentation of the syntax above, we have paired the 
onstru
tors on valueson the left with the destru
tors on 
omputations on the right. For example, the monadi
metalanguage distinguishes 2 from [2℄ and [1+1℄: the former is an integer, whereas thelatter are 
omputations that, when bound, produ
e an integer. The 
omputation value [M℄must be dis
harged in a binding 
ontext � see the redu
tion rule for let, below. Similarly,the fun
tion value λx.M must be dis
harged by appli
ation; in the redu
tion semanti
sthat follows, evaluation pro
eeds in an appli
ation till the term in fun
tion position redu
esto a lambda abstra
tion. {A}[M℄ 
onstru
ts a guarded value; the asso
iated destru
tor is
check .The monadi
 metalanguage distinguishes 
omputations from the values they produ
eand treats 
omputations as �rst 
lass entities. (Any term may be treated as a value via theunit 
onstru
tor [M℄.) Both appli
ation and the let 
onstru
t result in 
omputations; how-ever, the way that they handle their arguments is di�erent. The appli
ation �(λx.N) [M℄�results in N{x := [M℄}, whereas the binding � let x= [M℄;M � results in N{x := M}.2.4. Evaluation and role error. The small-step evaluation relation A ⊲ M → M ′ isde�ned indu
tively by the following redu
tion and 
ontext rules.(r-app)
A ⊲ (λx.M) N → M{x := N}

(
-app)
A ⊲ M → M ′

A ⊲ M N → M ′ N(r-fix)
A ⊲ fix (λx.M) → M{x := fix (λx.M)}

(
-fix)
A ⊲ M → M ′

A ⊲ fix M → fix M ′(r-
hk)
A ⊲ check {B}[M℄ → [M℄ A > B

(
-
hk)
A ⊲ M → M ′

A ⊲ check M → check M ′(r-bind)
A ⊲ let x= [M℄;N → N{x := M}

(
-bind)
A ⊲ M → M ′

A ⊲ let x= M;N → let x= M ′;N(r-mod)
A ⊲ ρ(V ) → V

(
-mod)
ρLA M ⊲ M → M ′

A ⊲ ρ(M) → ρ(M ′)The rules r/
-app for appli
ation, r/
-fix for �xed points and r/
-bind for let arestandard. r-
hk ensures that the 
ontext role is su�
ient before dis
harging the relevantguard. 
-mod modi�es the 
ontext role until the relevant term is redu
ed to a value, atwhi
h point r-mod dis
ards the modi�er.The evaluation semanti
s is designed to ensure a role-monotoni
ity property. In
reasingthe available role-
ontext 
annot invalidate transitions, it 
an only enable more evolution.Lemma 4. If B ⊲ M → M ′ and A > B then A ⊲ M → M ′.Proof. (Sket
h) The 
ontext role is used only in r-
hk. Result follows by indu
tion on theevaluation judgement.



8 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYVia a series of 
onse
utive small steps, the �nal value for the program 
an be determined.Su

essful termination is written A ⊲ M ։ V whi
h indi
ates that A is authorized to runthe program M to 
ompletion, with result V . Viewed as a role-indexed relation on terms,
։ is re�exive and transitive.De�nition 5. (a) M0 evaluates to Mn at A (notation A ⊲ M0 ։ Mn) if there exist terms
Mi su
h that A ⊲ Mi → Mi+1, for all i (0 ≤ i ≤ n − 1). (b) M diverges at A (notation
A ⊲ M →ω) if there exist terms Mi su
h that A ⊲ Mi → Mi+1, for all i ∈ N.Evaluation 
an fail be
ause a term diverges, be
ause a destru
tor is given a value of thewrong shape, or be
ause an inadequate role is provided at some point in the 
omputation.We refer to the latter as a role error (notation A ⊲ M  err), de�ned indu
tively as follows.
A ⊲ check {B}[M℄  err

A 6> B
ρLA M ⊲ M  err

A ⊲ ρ(M)  err

A ⊲ M  err

A ⊲ M N  err

A ⊲ M  err

A ⊲ fix M  err

A ⊲ M  err

A ⊲ let x= M;N  err

A ⊲ M  err

A ⊲ check M  errExample 6. Re
all from Se
tion 2.3 that B(M) abbreviates ↓000(↑B(M)), and de�ne
test<B> as follows3.

test<B> △

= check {B}[unit℄
test<B> is a 
omputation that requires 
ontext role B to evaluate. For example, ↓B⋆(test<B>)produ
es a role error in any 
ontext, sin
e ↓B⋆ restri
ts any role-
ontext to the negation ofthe role B.Example 7. We now illustrate how terms 
an provide roles for themselves. Consider thefollowing guarded fun
tion:

from<A,B> △

= {A}[λy.B(y)℄
from<A,B> is a guarded value that may only be dis
harged by A, resulting in a fun
tionthat runs any 
omputation at B. Let test<B> △

= check {B}[unit℄. No matter what therelationship is between A and B, the following evaluation su

eeds:
A ⊲ let z= check from<A,B>; z test<B> ։ B(test<B>) ։ [unit℄

from<A,B> is far too powerful to be useful. After the A-guard is dis
harged, the resultingfun
tion will run any 
ode at role B. One 
an provide spe
i�
 
ode, of 
ourse, as in λy.B(M).Su
h fun
tions are inherently dangerous and therefore it is desirable 
onstrain the way inwhi
h su
h fun
tions are 
reated. The essential idea is to atta
h suitable 
he
ks to a fun
tionsu
h as λg.λy.B(g y), whi
h takes a non-privileged fun
tion and runs it under B. Thereare a number of subtleties to 
onsider in providing a general purpose infrastru
ture to 
reateterms with rights ampli�
ation. When should the guard be 
he
ked? What fun
tions shouldbe allowed to run, and in what 
ontext? In Example 21, we dis
uss the treatment of theseissues using the Domain and Type Enfor
ement a

ess 
ontrol me
hanism.3We do not address parametri
ity here; the bra
kets in the names test<B> and from<A,B> are merelysuggestive.



λ-RBAC: PROGRAMMING WITH ROLE-BASED ACCESS CONTROL 93. TypingWe present two typing systems that 
ontrol role errors in addition to shape errors.The �rst typing system determines a 
ontext role su�
ient to avoid role errors; thatis, with this role, there is no possible exe
ution path that 
auses a role error. This systemenables the removal of unne
essary role-
he
ks in a pie
e of 
ode for a 
aller at a su�
ientlyhigh role.The se
ond system determines a 
ontext role ne
essary to avoid role errors; that is, anyrole that does not dominate this role will 
ause every exe
ution path to result in a role error.Stated di�erently, the se
ond system 
al
ulates the role that is 
he
ked and tested on everyexe
ution path and thus determines the amount of prote
tion that is enfor
ed by the 
allee.Te
hni
ally, the two systems di�er primarily in their notions of subtyping. In the absen
eof subtyping, the typing system determines a 
ontext role that is both ne
essary and su�
ientto exe
ute a term without role errors.Be
ause it 
learly indi
ates the point at whi
h 
omputation is performed, the monadi
metalanguage is attra
tive for reasoning about se
urity properties, whi
h we understand as
omputational e�e
ts. The type [T ] is the type of 
omputations of type T . We extend the
omputation type [T ] to in
lude an e�e
t that indi
ates the guards that are dis
harged duringevaluation of a term. Thus the term check {A}[1+1℄ has type 〈A〉[Int] � this type indi
atesthat the redu
tion of the term to a value (at type Int) requires A. Guarded values inhabittypes of the form {A}[T ] � this type indi
ates the prote
tion of A around an underlyingvalue at type T . These may be dis
harged with a check, resulting in a term inhabiting the
omputation type 〈A〉[T ].The syntax of types is given below, with the 
onstru
tors and destru
tors at ea
h typere
alled from Se
tion 2.3.
T, S ::= V,U,W ::= M,N,L ::= Types; Values; Terms

Base bv | x V Base Value
T � S λx.M M N | fix M Abstra
tion
{A}[T ] {A}[M℄ check M Guard
〈A〉[T ] [M℄ let x= M;N Computation

ρ(M) Role Modi�er3.1. Subtyping. The judgments of the subtyping and typing relations are indexed by αwhi
h ranges over {1, 2}. The subtyping relation for 〈A〉[T ] re�e
ts the di�eren
e betweenthe two type systems.If role A su�
es to enable a term to evaluate without role errors, then any higher role
ontext also avoids role errors (using Lemma 4). This explains the subtyping rule for the�rst type system � in parti
ular, ⊢1 〈A〉[T ] <: 〈111〉[T ], re�e
ting the fa
t that the top role issu�
ient to run any 
omputation.On the other hand, if a role A of the role-
ontext is 
he
ked and tested on every exe
utionpath of a term, then so is any smaller role. This explains the subtyping rule for the �rsttype system � in parti
ular, ⊢2 〈A〉[T ] <: 〈000〉[T ], re�e
ting the fa
t that the bottom role isva
uously 
he
ked in any 
omputation.
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⊢α Base <: Base

⊢α T <: T ′

⊢α {A}[T ] <: {A′}[T ′]
if α = 1 then A′

> Aif α = 2 then A > A′

⊢α T ′ <: T ⊢α S <: S′

⊢α T � S <: T ′ � S′

⊢α T <: T ′

⊢α 〈A〉[T ] <: 〈A′〉[T ′]
if α = 1 then A′

> Aif α = 2 then A > A′Lemma 8. The relations ⊢α T <: S are re�exive and transitive.3.2. Type systems. Typing is de�ned using environments. An environment,
Γ ::= x1:T1, . . . , xn:Tnis a �nite partial map from variables to types.As usual, there is one typing rule for ea
h synta
ti
 form plus the rule t-sub for sub-sumption, whi
h allows the use of subtyping. Upwards and downwards role modi�ers haveseparate rules, dis
ussed below. The typing rules for the two systems di�er only in their no-tion of subtyping and in the side 
ondition on t-mod-dn; we dis
uss the latter in Example 15.(t-base)

Γ ⊢α bv : Base

(t-var)
Γ, x:T ,Γ′ ⊢α x : T

(t-sub)
Γ ⊢α M : T

Γ ⊢α M : T ′
⊢α T <: T ′(t-abs)

Γ, x:T ⊢α M : S

Γ ⊢α λx.M : T � S
x /∈ dom(Γ)

(t-app)
Γ ⊢α M : T � S Γ ⊢α N : T

Γ ⊢α M N : S

(t-fix)
Γ ⊢α M : T � T

Γ ⊢α fix M : T(t-grd)
Γ ⊢α M : T

Γ ⊢α {A}[M℄ : {A}[T ]

(t-
hk)
Γ ⊢α M : {A}[T ]

Γ ⊢α check M : 〈A〉[T ](t-unit)
Γ ⊢α M : T

Γ ⊢α [M℄ : 〈000〉[T ]

(t-bind)
Γ ⊢α M : 〈A〉[T ] Γ, x:T ⊢α N : 〈B〉[S]

Γ ⊢α let x= M;N : 〈A ⊔ B〉[S]
x /∈ dom(Γ)(t-mod-up)

Γ ⊢α M : 〈B〉[T ]

Γ ⊢α ↑A(M) : 〈B ⊓ A⋆〉[T ]

(t-mod-dn)
Γ ⊢α M : 〈B〉[T ]

Γ ⊢α ↓A(M) : 〈B〉[T ]
if α = 1 then A > BThe rules t-base, t-var, t-sub, t-abs, t-app and t-fix are standard. For example,the identity fun
tion has the expe
ted typing, ⊢α λx.x : T � T, for any T . Nonterminating
omputations 
an also be typed; for example, ⊢α fix (λx.x) : T, for any T .Any term may be inje
ted into a 
omputation type at the least role using t-unit. Thus,in the light of the earlier dis
ussion on subtyping, if ⊢α M : T then, in the �rst system, [M℄inhabits 〈A〉[T ] for every role A; in the se
ond system, the term inhabits only type 〈000〉[T ],indi
ating that no 
he
ks are required to su

essfully evaluate the value [M℄.
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ombined using t-bind4. If M inhabits 〈A〉[T ] and N inhabits
〈B〉[S], then �M;N � inhabits 〈A ⊔ B〉[S]. More generally, we 
an dedu
e:

⊢α λx. let x′= x;x′ : 〈A〉[〈B〉[T ]]� 〈A ⊔ B〉[T ]In the �rst type system, this rule is motivated by noting that the role 
ontext A⊔B su�
esto su

essfully avoid role errors in the 
ombined 
omputation if A (resp. B) su�
es for M(resp. N). For the se
ond type system, 
onsider a role C that is not bigger than A ⊔ B �thus C is not bigger than at least one of A,B. If it is not greater than A, by assumption ontyping of M , every 
omputation path of M in role 
ontext C leads to a role-error. Similarlyfor B. Thus, in role 
ontext C, every 
omputation path in the 
ombined 
omputationleads to a role error. Furthermore, using the earlier subtyping dis
ussion, the sequen
e alsoinhabits 〈111〉[S] in the �rst system and 〈000〉[S] in the se
ond.The rule t-grd types basi
 values with their prote
tion level. The higher-order versionof {A}[℄ has the natural typing:
⊢α λx.{A}[x℄ : T � {A}[T ]Re
all that in the transition relation, check {A}[N℄ 
he
ks the role 
ontext against A. Thetyping rule t-
hk mirrors this behavior by 
onverting the prote
tion level of values into
onstraints on role 
ontexts. For example, we have the typing:

⊢α λx.check x : {A}[T ]� 〈A〉[T ]In the spe
ial 
ase of typing Γ ⊢α check {A}[N℄ : 〈A〉[T ], we 
an further justify in the twosystems as follows. In terms of the �rst type system, the role 
ontext passes this 
he
k if itis at least A. In terms of the se
ond type system, any role 
ontext that does not in
lude Awill 
ause a role-error.Role modi�ers are treated by separate rules for upwards and downwards modi�ers.The rule for t-mod-up is justi�ed for the �rst type system as follows. Under assumptionthat B su�
es to evaluate M without role-errors, 
onsider evaluation of ↑A(M) in role
ontext B ⊓A⋆. This term 
ontributes A to role 
ontext yielding A⊔ (B ⊓A⋆) = (A⊔B)⊓
(A ⊔ A⋆) = B for the evaluation of M . For the se
ond type system, assume that if a role isnot greater than B, then the evaluation of N leads to a role error. Consider the evaluationof ↑A(M) in a role 
ontext C that does not ex
eed B ⊓ A⋆. Then, the evaluation of Mpro
eeds in role 
ontext C ⊔ A whi
h does not ex
eed B and hen
e 
auses a role error byassumption.The rule for t-mod-dn is justi�ed for the �rst type system as follows. Under assumptionthat B su�
es to evaluate M without role-errors, and A is greater than B 
onsider evaluationof ↓A(M) in role 
ontext B. This term alters role-
ontext B to B⊓A = B for the evaluationof M , whi
h su�
es. For the se
ond type system, assume that if a role is not greater than
B, then the evaluation of N leads to a role error. Consider the evaluation of ↓A(M) in arole 
ontext C that does not ex
eed B. Then, C ⊓A 
ertainly does not ex
eed B and so theevaluation of M 
auses a role error by assumption.Example 16 and Example 15 dis
uss alternate presentations for the rules of typing forthe role modi�ers.In stating the results, we distinguish 
omputations from other types. Lemma 10 holdstrivially from the de�nitions.4The distin
tion between our system and dependen
y-based systems 
an be see in t-bind, whi
h in d

[1, 2, 30℄ states that ⊢ let x= M;N : 〈B〉[S] if B > A, where ⊢ M : 〈A〉[T ] and x:T ⊢ N : 〈B〉[S].



12 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYDe�nition 9. Role A dominates type T (notation A ≥ T ) if T is not a 
omputation type,or T is a 
omputation type 〈B〉[S] and A > B.Lemma 10. (a) If A > B and B ≥ T then A ≥ T . (b) If ⊢1 T <: S and A ≥ S then A ≥ T .(
) If ⊢2 T <: S and A ≥ T then A ≥ S.The following theorems formalize the guarantees provided by the two systems. Theproofs may be found in Se
tion 6.Theorem 11. If ⊢1 M : T and A ≥ T , then either A ⊲ M →ω or A ⊲ M ։ V for some V .Theorem 12. If ⊢2 M : T and A 6≥ T , then either A ⊲ M →ω or there exists N su
h that
A ⊲ M ։ N and A ⊲ N  err.For the �rst system, we have a standard type-safety theorem. For the se
ond system,su
h a safety theorem does not hold; for example ⊢2 check {111}[unit℄ : 〈111〉[Unit] and 111 ⊲

check {111}[unit℄ → [unit℄ but 6⊢2 [unit℄ : 〈111〉[Unit]. Instead Theorem 12 states that a termrun with an insu�
ient 
ontext role is guaranteed either to diverge or to produ
e a roleerror.3.3. Simple examples.Example 13. We illustrate 
ombinators of the language with some simple fun
tions. Theidentity fun
tion may be given its usual type:
⊢α λx.x : T � TThe unit of 
omputation 
an be used to 
reate a 
omputation from any value:

⊢α λx.[x℄ : T � 〈000〉[T]The let 
onstru
t evaluates a 
omputation. In this following example, the result of the
omputation x′ must itself be a 
omputation be
ause it is returned as the result of thefun
tion:
⊢α λx. let x′= x; x′ : 〈A〉[〈B〉[T]]� 〈A ⊔ B〉[T]The guard 
onstru
t 
reates a guarded term:

⊢α λx.{A}[x℄ : T� {A}[T]The 
he
k 
onstru
t dis
harges a guard, resulting in a 
omputation:
⊢α λx.check x : {A}[T]� 〈A〉[T]The upwards role modi�er redu
es the role required by a 
omputation.

⊢α λx.↑B(x) : 〈A〉[T]� 〈A ⊓ B⋆〉[T]The �rst typing system requires that any 
omputation performed in the 
ontext of a down-ward role modi�er ↓B() must not require more than role B:
⊢α λx.↓B(x) : 〈A〉[T]� 〈A〉[T] (where B > A if α = 1)In the �rst type system, the last two judgments may be generalized as follows:

⊢1 λx.ρ(x) : 〈ρLA M〉[T]� 〈A〉[T]Thus a role modi�er may be seen as transforming a 
omputation that requires the modi�erinto one that does not. For further dis
ussion see Example 16.
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h Booleans, tru
△

= λt.λf. t and fls
△

= λt.λf. f, illustratethe use of subtyping. In the two systems, these may be given the following types.
Bool1 △

= 〈A〉[T ]� 〈B〉[T ]� 〈A ⊔ B〉[T ] ⊢1 tru, fls : Bool1
Bool2 △

= 〈A〉[T ]� 〈B〉[T ]� 〈A ⊓ B〉[T ] ⊢2 tru, fls : Bool2These types re�e
t the intuitions underlying the two type systems. The �rst type systemre�e
ts a �maximum over all paths� typing, whereas the se
ond re�e
ts a �minimum over allpaths� typing. The 
onditional may be interpreted using the following derived rules.
Γ ⊢1 L : Bool1 Γ ⊢1 M : 〈A〉[T ] Γ ⊢1 N : 〈B〉[T ]

Γ ⊢1 if L then M else N : 〈A ⊔ B〉[T ]

Γ ⊢2 L : Bool2 Γ ⊢2 M : 〈A〉[T ] Γ ⊢2 N : 〈B〉[T ]

Γ ⊢2 if L then M else N : 〈A ⊓ B〉[T ]
�Example 15 (t-mod-dn). The side 
ondition on t-mod-dn does not e�e
t typability inse
ond typing system, but may unne
essarily de
rease the a

ura
y of the analysis, as 
anbe seen from the following 
on
rete example.Let M,N be terms of type 〈B〉[T ].

Γ ⊢α M : 〈B〉[T ]

Γ ⊢α M : 〈A ⊓ B〉[T ]
(t-sub)

Γ ⊢α ↓A(M) : 〈A ⊓ B〉[T ]
(t-mod-dn)With the side 
ondition, the term let x= ↓A(M);N would have to be given a type of theform 〈A⊓B〉[T ], even though both M and N have type 〈B〉[T ]. Without the side 
ondition,the �better� type 〈B〉[T ] may be given to the entire let expression.Example 16 (Alternative rule for role modi�ers). In the �rst typing system, t-mod-upand t-mod-dn may be repla
ed with the following rule, whi
h we 
all t-mod-*.

Γ ⊢1 M : 〈ρLB M〉[T ]

Γ ⊢1 ρ(M) : 〈B〉[T ]Consider ρ = ↑A. Be
ause C > (A ⊔ C) ⊓ A⋆, the following are equivalent.
Γ ⊢1 M : 〈A ⊔ C〉[T ]

Γ ⊢1 ↑A(M) : 〈C〉[T ]
(t-mod-*) Γ ⊢1 M : 〈A ⊔ C〉[T ]

Γ ⊢1 ↑A(M) : 〈(A ⊔ C) ⊓ A⋆〉[T ]
(t-mod-up)

Γ ⊢1 ↑A(M) : 〈C〉[T ]
(t-sub)Be
ause (D ⊓ A⋆) ⊔ A > D, the following are equivalent.

Γ ⊢1 M : 〈D〉[T ]

Γ ⊢1 M : 〈(D ⊓ A⋆) ⊔ A〉[T ]
(t-sub)

Γ ⊢1 ↑A(M) : 〈D ⊓ A⋆〉[T ]
(t-mod-*) Γ ⊢1 M : 〈D〉[T ]

Γ ⊢1 ↑A(M) : 〈D ⊓ A⋆〉[T ]
(t-mod-up)Consider ρ = ↓A. Be
ause A > A ⊓ C and C > A ⊓ C, the following are equivalent.

Γ ⊢1 M : 〈A ⊓ C〉[T ]

Γ ⊢1 ↓A(M) : 〈C〉[T ]
(t-mod-*) Γ ⊢1 M : 〈A ⊓ C〉[T ]

Γ ⊢1 ↓A(M) : 〈A ⊓ C〉[T ]
(t-mod-dn)

Γ ⊢1 ↓A(M) : 〈C〉[T ]
(t-sub)



14 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYSuppose A > D. Then D ⊓ A > D, and the following are equivalent.
Γ ⊢1 M : 〈D〉[T ]

Γ ⊢1 M : 〈D ⊓ A〉[T ]
(t-sub)

Γ ⊢1 ↓A(M) : 〈D〉[T ]
(t-mod-*) Γ ⊢1 M : 〈D〉[T ]

Γ ⊢1 ↓A(M) : 〈D〉[T ]
(t-mod-dn) �Example 17 (A sublanguage). The following proper sublanguage is su�
ient to en
ode the
omputational lambda 
al
ulus. Here values and terms are disjoint, with values assignedvalue types T and terms assigned 
omputation types 〈A〉[T ].

T, S ::= Base | T � 〈A〉[S] | {A}[T ]

V,U,W ::= bv | x | λx.M | {A}[V ℄
M,N,L ::= [V ℄ | V U | fix V | check V | let x= M;N | ρ(M)En
oding the Chur
h Booleans in this sublanguage is slightly more 
ompli
ated than inExample 14; tru and fls must a

ept thunks of type Unit� 〈A〉[S] rather than the simplerblo
ks of type 〈A〉[S].Operations on base values that have no 
omputational e�e
t are pla
ed in the languageof values rather than the language of terms. The resulting terms may be simpli�ed at anytime without a�e
ting the 
omputation (e.g., [1+2 == 3℄ may be simpli�ed to [tru℄).Example 18 (Relation to 
onferen
e version). The language presented here is mu
h simplerthan that of the 
onferen
e version of this paper [14℄. In parti
ular, the 
onferen
e version
ollapsed guards and abstra
tions into a single form {A}[λx.M℄ with types of the form

T � {A ⊲ B}[S], whi
h translates here as {A}
[

T � 〈B〉[S]
]: the immediate guard of theabstra
tion is A, whereas the e�e
t of applying the abstra
tion is B.In addition, the 
onferen
e version 
ollapsed role modi�
ation and appli
ation: theappli
ation ↓C V U �rst 
he
ked the guard of V , then performed the appli
ation in a
ontext modi�ed by ↓C. In the 
urrent presentation, this translates as � let x= check V ;

↓C(x U).� 4. ExamplesIn this se
tion we assume nullary role 
onstru
tors for user roles, su
h as Alice, Bob,
Charlie, Admin, and Daemon.Example 19 (ACLs). Consider a read-only �lesystem prote
ted by A

ess Control Lists(ACLs). One 
an model su
h a system as:

filesystem
△

= λname. if name=="file1" then check {Admin}["data1"℄
else if name=="file2" then check {Alice ⊓ Bob}["data2"℄
else ["error: file not found"℄If Admin ≥ Alice ⊓ Bob then 
ode running in the Admin role 
an a

ess both �les:

Admin ⊲ filesystem "file1" ։ check {Admin}["data1"℄ ։ ["data1"℄
Admin ⊲ filesystem "file2" ։ check {Alice ⊓ Bob}["data2"℄ ։ ["data2"℄If Alice 6≥ Admin then 
ode running as Alice 
annot a

ess the �rst �le but 
an a

ess these
ond:
Alice ⊲ filesystem "file1" ։ check {Admin}["data1"℄  err

Alice ⊲ filesystem "file2" ։ check {Alice ⊓ Bob}["data2"℄ ։ ["data2"℄
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ode running as Charlie 
annot a

ess either �le:
Charlie ⊲ filesystem "file1" ։ check {Admin}["data1"℄  err

Charlie ⊲ filesystem "file2" ։ check {Alice ⊓ Bob}["data2"℄  errThe �lesystem 
ode 
an be assigned the following type, meaning that a 
aller mustpossess a role from ea
h of the ACLs in order to guarantee that a

ess 
he
ks will not fail.If, in addition, Admin ≥ Alice ⊓ Bob then the �nal role is equal to Admin.
⊢1 filesystem : String� 〈Admin ⊔ (Alice ⊓ Bob) ⊔ 000〉[String]In the above type, the �nal role 000 arises from the �unknown �le� bran
h that does not requirean a

ess 
he
k. The la
k of an a

ess 
he
k explains the weaker ⊢2 type:
⊢2 filesystem : String� 〈Admin ⊓ (Alice ⊓ Bob) ⊓ 000〉[String]This type indi
ates that filesystem has the potential to expose some information to unprivi-leged 
allers with role Admin⊓ (Alice⊓Bob)⊓000 .

= 000, perhaps 
ausing the 
ode to be �aggedfor se
urity review.Example 20 (Web server). Consider a web server that provides remote a

ess to the �lesys-tem des
ribed above. The web server 
an use the role assigned to a 
aller to a

ess the�lesystem (unless the web server's 
aller withholds its role). To prevent an atta
ker deter-mining the non-existen
e of �les via the web server, the web server fails when an attempt ismade to a

ess an unknown �le unless the Debug role is a
tivated.
webserver

△

= λname. if name=="file1" then filesystem name

else if name=="file2" then filesystem name

else check {Debug}["error: file not found"℄For example, 
ode running as Ali
e 
an a

ess "file2" via the web server:
Alice ⊲ webserver "file2" ։ filesystem "file2" ։ ["data2"℄The a

ess 
he
k in the web server does prevent the ��le not found� error message leakingunless the Debug role is a
tive, but, unfortunately, it is not possible to assign a role stri
tlygreater than 000 to the web server using the se
ond type system. The filesystem type does notre
ord the di�erent roles that must be 
he
ked depending upon the �lename argument.

⊢2 webserver : String� 〈Admin ⊓ (Alice ⊓ Bob) ⊓ 000〉[String] (derivable)
6⊢2 webserver : String� 〈Admin ⊓ (Alice ⊓ Bob) ⊓ Debug〉[String] (not derivable) �Example 21 illustrates how the Domain-Type Enfor
ement (dte) a

ess 
ontrol me
ha-nism [6, 31℄, found in Se
urity-Enhan
ed Linux (selinux) [17℄, 
an be modelled in λ-RBAC.Further dis
ussion of the relationship between rba
 and dte 
an be found in [11, 13℄.Example 21 (Domain-Type Enfor
ement). The dte a

ess 
ontrol me
hanism grants ordenies a

ess requests a

ording to the 
urrent domain of running 
ode. The 
urrent domain
hanges as new programs are exe
uted, and transitions between domains are restri
ted inorder to allow, and also for
e, 
ode to run with an appropriate domain. The restri
tions upondomain transitions are based upon a dte type asso
iated with ea
h program to exe
ute. Forexample, the dte poli
y in [31℄ only permits transitions from a domain for daemon pro
essesto a domain for login pro
esses when exe
uting the login program, be
ause 
ode running inthe login domain is highly privileged. This e�e
t is a
hieved by allowing transitions from



16 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYthe daemon domain to the login domain only upon exe
ution of programs asso
iated witha parti
ular dte type, and that dte type is assigned only to the login program.The essen
e of dte 
an be 
aptured in λ-RBAC, using roles to model both domains anddte types, and the 
ontext role to model the 
urrent domain of a system. We start bybuilding upon the 
ode fragment λg.λy.B(g y), dis
ussed in Example 7, that allows afun
tion 
he
king role B to be exe
uted in the 
ontext of 
ode running at a di�erent role.We have the typing (for emphasis we use extra parentheses that are not stri
tly ne
essarygiven the usual right asso
iativity for the fun
tion type 
onstru
tor):
⊢α λg.λy.B(g y) : (T � 〈B〉[S])� (T � 〈000〉[S])To aid readability, and �xing types T and S for the remainder of this example, de�ne:

R △

= R � (T � 〈000〉[S])So that the previous typing be
omes:
⊢α λg.λy.B(g y) : T� 〈B〉[S]To restri
t the use of the privileged fun
tion λg.λy.B(g y), it 
an be guarded by a role Ea
ting as a dte type, where the asso
iation of the dte type E with a fun
tion is modelledin the sequel by 
ode that 
an a
tivate role E. The guarded fun
tion 
an be typed as:

⊢α {E}[λg.λy.B(g y)℄ : {E}[T� 〈B〉[S]]We now de�ne a fun
tion domtrans<A, E, B> for a domain transition from domain (role)
A to domain (role) B upon exe
ution of a fun
tion asso
iated with dte type (also a role)
E. The fun
tion �rst veri�es that the 
ontext role dominates A, and then permits useof the privileged fun
tion λg.λy.B(g y) by 
ode that 
an a
tivate role E. The fun
tion
domtrans<A, E, B> is de�ned by:

domtrans<A, E, B> △

= λf.λx.check {A}[unit℄; f {E}[λg.λy.B(g y)℄ xWe have the typing:
⊢α domtrans<A, E, B> : {E}[T � 〈B〉[S]]� (T � 〈A〉[S])The above type shows that domtrans<A, E, B> 
an be used to turn a fun
tion 
he
king role

B into a fun
tion 
he
king role A, but only when the role E is available�in 
ontrast to thetype (T � 〈B〉[S])� (T � 〈A〉[S]) that does not require E.In order to make use of domtrans<A, E, B>, we must also 
onsider 
ode that 
an a
tivate
E. We de�ne a fun
tion assign<E> that takes a fun
tion f and a
tivates E in order to a

essthe privileged 
ode λg.λy.B(g y) from domtrans<A, E, B>. The fun
tion assign<E> isde�ned by:

assign<E> △

= λf.λx.λy. let g= E(check x);g f yAnd we have the typing:
⊢α assign<E> : (T � 〈B〉[S])� {E}[T � 〈B〉[S]]Therefore the fun
tional 
omposition of assign<E> and domtrans<A, E, B> has type:

(T � 〈B〉[S])� (T � 〈A〉[S])To show that in the presen
e of both assign<E> and domtrans<A, E, B>, 
ode running with
ontext A 
an exe
ute 
ode 
he
king for role 
ontext B, we 
onsider the following redu
tions
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ontext A, where we take F
△

= λz.check {B}[unit℄ and underline terms to indi
atethe redex:
domtrans<A, E, B> (assign<E> F) unit

= (λf.λx.check {A}[unit℄; f ({E}[λg.λy.B(g y)℄) x) (assign<E> F) unit

→ (λx.check {A}[unit℄; (assign<E> F) ({E}[λg.λy.B(g y)℄) x) unit

→ check {A}[unit℄; (assign<E> F) ({E}[λg.λy.B(g y)℄) unit

→ (assign<E> F) ({E}[λg.λy.B(g y)℄) unit

=
(

(λf.λx.λy. let g= E(check x);g f y) F
)

({E}[λg.λy.B(g y)℄) unit

→ (λx.λy. let g= E(check x);g F y) ({E}[λg.λy.B(g y)℄) unit

→ (λy. let g= E(check {E}[λg.λy.B(g y)℄);g F y) unit

→ let g= E(check {E}[λg.λy.B(g y)℄);g F unit

→ let g= E([λg.λy.B(g y)℄);g F unit

։ let g= [λg.λy.B(g y)℄; g F unit

→ (λg.λy.B(g y)) F unit

→ (λy.B(F y)) unit

→ B(F unit)
= B((λz.check {B}[unit℄) unit)
→ B(check {B}[unit℄)
→ B([unit℄)
։ [unit℄The strength of dte lies in the ability to fa
tor a

ess 
ontrol poli
ies into two 
ompo-nents: the set of permitted domain transitions and the assignment of dte types to 
ode.We illustrate this by adapting the aforementioned login example from [31℄ to λ − RBAC. Inthis example, the dte me
hanism is used to for
e every invo
ation of user 
ode (runningat role User) from daemon 
ode (running at role Daemon) to o

ur via trusted login 
ode(running at role Login). This is a
hieved by providing domain transitions from Login to

User, and Daemon to Login, but no others. Moreover, 
ode permitted to run at Login mustbe assigned dte type LoginEXE, and similarly for User and UserEXE. Thus a full programrunning daemon 
ode M has the following form, where neither M nor N 
ontain dire
t rightsampli�
ation.
let dtLoginToUser= domtrans<Login, UserEXE, User>;
let dtDaemonToLogin= domtrans<Daemon, LoginEXE, Login>;
let shell= assign<UserEXE> (λ.M);
let login= assign<LoginEXE> (λpwd. if pwd=="se
ret" then dtLoginToUser shell unit else . . .);
Daemon(N)Be
ause login provides the sole gateway to the role User, the daemon 
ode N must providethe 
orre
t password in order to exe
ute the shell at User (in order to a

ess resour
es thatare available at role User but not at role Daemon). In addition, removal of the domaintransition dtDaemonToLogin makes it impossible for the daemon 
ode to exe
ute any 
odeat User.
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ationExample 22. Suppose that M 
ontains no dire
t rights ampli�
ation, that is, no subtermsof the form ↑A( · ). Then, in
let priv= [λx.↑A(V x)℄; ↓User(M)we may view V as a Trusted Computing Base (t
b) � a privileged fun
tion whi
h mayes
alate rights � and view M as restri
ted user 
ode. The fun
tion priv is an entry point tothe t
b whi
h is a

essible to user 
ode; that is, user 
ode is exe
uted at the restri
ted role

User, and rights ampli�
ation may only o

ur through invo
ation of priv.Non-trivial programs have larger t
bs with more entry points. As the size of the t
bgrows, it be
omes di�
ult to understand the se
urity guarantees o�ered by a system whenrights ampli�
ation is un
onstrained, even if only in the t
b. To manage this 
omplexity,one may enfor
e a 
oding 
onvention that requires rights in
reases be justi�ed by earlier
he
ks. As an example, 
onsider the following, where amplify is a unary role 
onstru
tor.
let at<A>= [λf.check {amplify(A)}[λx.↑A(f x)℄℄;
let priv= at<A> V;
↓User(M)In a 
ontext with role amplify(A), this redu
es (using r-bind, r-app and r-
hk) to

let priv= [λx.↑A(V x)℄; ↓User(M)In a 
ontext without role amplify(A), evaluation be
omes stu
k when attempting to exe
uter-
hk. The privileged fun
tion returned by at<A> (whi
h performs rights ampli�
ation for
A) is justi�ed by the 
he
k for amplify(A) on any 
aller of at<A>.One may also wish to expli
itly prohibit a term from dire
t ampli�
ation of some right
B; with su
h a 
onvention in pla
e, this 
an be a
hieved using the role modi�er ↓amplify(B).One may formalize the pre
eding example by introdu
ing the unary role 
onstru
toramplify, where amplify(A) stands for the right to provide the role A by storing ↑A in 
ode.We require that amplify distribute over ⊔ and ⊓ and obey the following absorption laws:

A ⊔ amplify(A)
.
= amplify(A) A ⊓ amplify(A)

.
= AThus amplify(A) > A for any role A.To distinguish justi�ed use of role modi�ers from unjusti�ed use, we augment the syntaxwith 
he
ked role modi�ers.

M,N ::= · · · | ρA(M)Whenever a 
he
k is performed on role M we mark role modi�ers in the 
onsequent toindi
ate that these modi�ers have been justi�ed by a 
he
k. De�ne the fun
tion markAhomomorphi
ally over all terms but for role modi�ers:markA(ρ(M)) = ρA(markA(M))markA(ρB(M)) = ρA⊔B(markA(M))Modify the redu
tion rule for check as follows.
A ⊲ check {B}[M℄ → [markB(M)℄ A > B
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he
k in the example above will exe
ute as follows.amplify(A) ⊲ check {amplify(A)}[λx.↑A(f x)℄ → λx.↑Aamplify(A)(f x)In the residual, the abstra
tion 
ontains a 
he
ked role modi�er, indi
ating that the roleampli�
ation has been provided by 
ode that had the right to do so.We now de�ne role modi�
ation errors so that ↑AB(M) produ
es an error if B doesnot dominate amplify(A).
↑B(M)  moderr ↑BC(M)  moderr

C 6> amplify(B)

M  moderr

M N  moderr

M  moderr

let x= M;N  moderr

M  moderr

check M  moderr

M  moderr

ρ(M)  moderrUsing this augmented language, unjusti�ed rights ampli�
ation is noted as an error. Toprevent su
h errors, we modify the typing system to have judgments of the form Γ;C ⊢α M :
T , where C indi
ates the a

umulated guards on a term whi
h must be dis
harged beforethe term may be exe
uted; sin
e M is guarded by C, it may in
lude subterms of the form
↑A( · ) when C > amplify(A). In addition to adding rules for 
he
ked role modi�ers, wealso modify t-grd and t-mod-up. The rule t-mod-up ensures that any ampli�
ation isjusti�ed by C. The rule t-grd allows guards to be used in 
he
king guarded terms; the ruleis sound sin
e guarded terms must be 
he
ked before they are exe
uted.(t-grd′)

Γ;C ⊔ A ⊢α M : T

Γ;C ⊢α {A}[M℄ : {A}[T ]

(t-mod-up′)
Γ;C ⊢α M : 〈B〉[T ]

Γ;C ⊢α ↑A(M) : 〈B ⊓ A⋆〉[T ]
C > amplify(A)(t-mod-dn-
he
ked)

Γ;C ⊢α M : 〈B〉[T ]

Γ;C ⊢α ↓AD(M) : 〈B〉[T ]
if α = 1then A > B

(t-mod-up-
he
ked)
Γ;C ⊢α M : 〈B〉[T ]

Γ;C ⊢α ↑AD(M) : 〈B ⊓ A⋆〉[T ]
C ⊔ D > amplify(A)One may not assume that top level terms have been guarded; therefore, let Γ ⊢α M : T beshorthand for Γ;000 ⊢α M : T .Example 23. The fun
tions domtrans and assign from Example 21 are not typable usingthis more restri
tive system. Re
all the de�nitions:

domtrans<A, E, B> △

= λf.λx.check {A}[unit℄; f {E}[λg.λy.B(g y)℄ x

assign<E> △

= λf.λx.λy. let g= E(check x);g f yThe ampli�
ation of B in domtrans is not justi�ed; neither is the ampli�
ation of E in assign.The required form is:
domtrans<A, E, B> △

= {amplify(B)}[λf.λx.check {A}[unit℄; f {E}[λg.λy.B(g y)℄ x℄
assign<E> △

= {amplify(E)}[λf.λx.λy. let g= E(check x);g f y℄



20 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYThe login example must now be modi�ed in order to dis
harge the guards. Again themodi�
ations are straightforward:
let dtLoginToUser= check domtrans<Login, UserEXE, User>;
let dtDaemonToLogin= check domtrans<Daemon, LoginEXE, Login>;
let assignXUser= check assign<UserEXE>;
let assignXLogin= check assign<LoginEXE>;
let shell= assignXUser (λ.M);
let login= assignXLogin (λpwd. if pwd=="se
ret" then dtLoginToUser shell unit else . . .);
Daemon(N)Thus modi�ed, the program types 
orre
tly, but will only exe
ute in a 
ontext that dominatesthe four roles amplify(User), amplify(UserEXE), amplify(Login), and amplify(LoginEXE).This ensures that domain transitions and assignments are 
reated by authorized 
ode.Proposition 25 establishes that the typing system is su�
ient to prevent role modi�
a-tion errors. The proof of Proposition 25 relies on the following lemma, whi
h establishes therelation between typing and mark .Lemma 24. If Γ;C ⊔ A ⊢α M : T then Γ;C ⊢α markA(M) : T .Proof. By indu
tion on the derivation of the typing judgment, appealing to the de�nitionof mark .Proposition 25. If ⊢α M : T and A ⊲ M ։ N then ¬(N  moderr)Proof Sket
h. That ¬(M  moderr) follows immediately from the de�nition of role modi�-
ation error, 
ombined with t-mod-up′ and t-mod-up-
he
ked. It remains only to showthat typing is preserved by redu
tion. We prove this for the type systems of Se
tion 3 inthe next se
tion. The proof extends easily to the type system 
onsidered here. The onlywrinkle is the evaluation rule for check, whi
h is handled using the previous lemma.6. Proof of Type Safety TheoremsThe proofs for the �rst and se
ond systems are similar, both relying on well-studiedte
hniques [23℄. We present proofs for the se
ond system, whi
h is the more 
hallenging ofthe two.De�nition 26 (Compatibility). Types T and S are 
ompatible (notation T ≈ S) if T = Sor T = 〈A〉[R] and S = 〈B〉[R], for some type R.The following lemmas have straightforward indu
tive proofs.Lemma 27 (Compatibility). If ⊢α T <: T ′ then T ≈ S i� T ′ ≈ S.Lemma 28 (Substitution). If Γ ⊢α M : T and Γ, x : T ⊢α N : S, then Γ ⊢α N{x := M} : S.Lemma 29 (Bound Weakening). If Γ, x:S ⊢α M : T and ⊢α S′ <: S, then Γ, x : S′ ⊢α M : T .
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al Forms).(1) If ⊢2 V : T � S then V has form (λx.M) where x:T ⊢2 M : S.(2) If ⊢2 V : 〈A〉[T ] then V has form [M℄ where ⊢2 M : T and A = 000.(3) If ⊢2 V : {A}[T ] then V has form {B}[M℄ where ⊢2 M : T and B > A.Proof.(1) By indu
tion on derivation of ⊢2 V : T � S. The only appli
able 
ases are t-sub andt-abs.(t-sub) We know ⊢2 V : T ′�S′, where ⊢2 V : T �S and ⊢2 T �S <: T ′�S′, so ⊢2 T ′ <: Tand ⊢2 S <: S′. By the IH, V has form (λx.M) where x:T ⊢2 M : S. By Lemma 29and subsumption, x:T ′ ⊢2 M : S′.(t-abs) Immediate.(2) By indu
tion on derivation of ⊢2 V : 〈A〉[T ]. The only appli
able 
ases are t-sub andt-unit.(t-sub) We know ⊢2 V : 〈A′〉[T ′], where ⊢2 V : 〈A〉[T ] and ⊢2 〈A〉[T ] <: 〈A′〉[T ′], so
⊢2 T <: T ′ and A > A′. By the IH, V has form [M℄ where ⊢2 M : T and A = 000, so
A′ = 000. By subsumption, ⊢2 M : T ′.(t-unit) Immediate.(3) By indu
tion on derivation of ⊢2 V : {A}[T ]. The only appli
able 
ases are t-sub andt-grd.(t-sub) We know ⊢2 V : {A′}[T ′], where ⊢2 V : {A}[T ] and ⊢2 {A}[T ] <: {A′}[T ′], so
⊢2 T <: T ′ and A > A′. By the IH, V has form {B}[M℄ where ⊢2 M : T and B > A,so B > A′. By subsumption, ⊢2 M : T ′.(t-grd) Immediate.Proposition 31 (Preservation). If ⊢2 M : T and A ⊲ M → N then there exists S su
h that

S ≈ T and ⊢2 N : S and if A ≥ S then A ≥ T .Proof. By indu
tion on the derivation of ⊢2 M : T . The indu
tion hypothesis in
ludes thequanti�
ation over A, N . For values, the result is trivial; thus we 
onsider only the rules fornon-values.(t-sub) We know ⊢2 M : T ′, where ⊢2 M : T and ⊢2 T <: T ′, and A ⊲ M → N . Applying theIH to ⊢2 M : T and A ⊲ M → N yields S su
h that ⊢2 N : S and S ≈ T and if A ≥ Sthen A ≥ T . By Lemma 10
, this extends to if A ≥ S then A ≥ T ′. In addition, byLemma 27, we have S ≈ T ′.(t-app) We know ⊢2 M N : T2, where ⊢2 M : T1 � T2 and ⊢2 N : T1, and A ⊲ M N → L.There are two sub
ases depending on the redu
tion rule used in A ⊲ M N → L.(M is a value) By Lemma 30, M = λx.M ′ and x:T1 ⊢2 M ′ : T2. The redu
tion yields
L = M ′{x := N}. By Lemma 28, ⊢2 L : T2. The remaining requirements on T2 areimmediate.(M has a redu
tion) Therefore A ⊲ M → M ′ and L = M ′ N . Applying the IH to
⊢2 M : T1�T2 and A ⊲ M → M ′ yields S su
h that ⊢2 M ′ : S and S ≈ T1�T2, whi
himplies that S = T1 � T2. Hen
e ⊢2 L : T2. The remaining requirements on T2 areimmediate.(t-fix) We know ⊢2 fix M : T , where ⊢2 M : T � T and A ⊲ fix M → L. There are twosub
ases depending on the redu
tion rule used in A ⊲ fix M → L.



22 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELY(M is a value) By Lemma 30, M = λx.M ′ and x:T ⊢2 M ′ : T . The redu
tion yields
L = M ′{x := M}. By Lemma 28, ⊢2 L : T . The remaining requirements on T areimmediate.(M has a redu
tion) Therefore A ⊲ M → M ′ and L = fix M ′. Applying the IH to
⊢2 M : T � T and A ⊲ M → M ′ yields S su
h that ⊢2 M ′ : S and S ≈ T � T , whi
himplies that S = T � T . Hen
e ⊢2 L : T . The remaining requirements on T areimmediate.(t-
hk) We know ⊢2 check M : 〈A1〉[T ], where ⊢2 M : {A1}[T ], and A ⊲ check M → L.There are two sub
ases depending on the redu
tion rule used in A ⊲ check M → L.(M is a value) By Lemma 30, M = {A2}[M ′℄ and ⊢2 M ′ : T and A2 > A1. Theredu
tion yields L = [M ′℄ and from the redu
tion we dedu
e A > A2, so A > A1always holds. We assign type ⊢2 L : 〈000〉[T ], where 〈000〉[T ] ≈ 〈A1〉[T ], and we havealready shown that A > 000 implies A > A1.(M has a redu
tion) Therefore A ⊲ M → M ′ and L = check M ′. Applying the IH to
⊢2 M : {A1}[T ] and A ⊲ M → M ′ yields S su
h that ⊢2 M ′ : S and S ≈ {A1}[T ],so S = {A1}[T ]. Hen
e ⊢2 L : 〈A1〉[T ]. The remaining requirements on 〈A1〉[T ] areimmediate.(t-bind) We know ⊢2 let x= M;N : 〈A1 ⊔ A2〉[T2], where ⊢2 M : 〈A1〉[T1] and x:T1 ⊢2 N :

〈A2〉[T2], and A ⊲ let x=M;N → L. There are two sub
ases depending on the redu
tionrule used in A ⊲ let x= M;N → L.(M is a value) By Lemma 30, M = [M ′℄ and ⊢2 M ′ : T1 and A1 = 000, so A1 ⊔ A2 = A2.The redu
tion yields L = N{x := M ′}. By Lemma 28, ⊢2 L : 〈A2〉[T2]. The remainingrequirements on T2 are immediate.(M has a redu
tion) Therefore A ⊲ M → M ′ and L = let x= M ′;N . Applying the IHto ⊢2 M : 〈A1〉[T1] and A ⊲ M → M ′ yields S su
h that ⊢2 M ′ : S and S ≈ 〈A1〉[T1]and if A ≥ S then A ≥ 〈A1〉[T1]. Hen
e S = 〈A3〉[T1], for some A3, and A > A3implies A > A1. We dedu
e ⊢2 L : 〈A3⊔A2〉[T2], where 〈A3⊔A2〉[T2] ≈ 〈A1⊔A2〉[T2].Finally, suppose A ≥ 〈A3 ⊔ A2〉[T2], i.e., A > A3 ⊔ A2, so A > A3 and A > A2. Bythe above, this entails A > A1, so A > A1 ⊔ A2. Therefore A ≥ 〈A1 ⊔ A2〉[T2], asrequired.(t-mod-up) We know ⊢2 ↑A1(M) : 〈A2⊓A⋆1〉[T ], where ⊢2 M : 〈A2〉[T ], and A ⊲ ↑A1(M) →
L. There are two sub
ases depending on the redu
tion rule used in A ⊲ ↑A1(M) → L.(M is a value) Therefore L = M and ⊢2 L : 〈A2〉[T ], where 〈A2〉[T ] ≈ 〈A2 ⊓ A⋆1〉[T ]. ByLemma 30, M = [M ′℄ and ⊢2 M ′ : T and A2 = 000, and the remaining requirement on

〈A2〉[T ], that A ≥ 〈A2〉[T ] implies A ≥ 〈A2 ⊓ A⋆1〉[T ], is immediate.(M has a redu
tion) Therefore ↑A1LA M ⊲ M → M ′ and L = ↑A1(M ′). Applying theIH to ⊢2 M : 〈A2〉[T ] and ↑A1LA M ⊲ M → M ′ yields S su
h that ⊢2 M ′ : S and S ≈
〈A2〉[T ], so S = 〈A3〉[T ] for some A3, and if ↑A1LA M ≥ S then ↑A1LA M ≥ 〈A2〉[T ],i.e., A ⊔ A1 > A3 implies A ⊔ A1 > A2. We have ⊢2 ↑A1(M ′) : 〈A3 ⊓ A⋆1〉[T ] and
〈A3 ⊓ A⋆1〉[T ] ≈ 〈A2 ⊓ A⋆1〉[T ]. Finally, if A ≥ 〈A3 ⊓ A⋆1〉[T ], then A > A3 ⊓ A⋆1, so
A ⊔ A1 > (A3 ⊓ A⋆1) ⊔ A1 = (A3 ⊔ A1) ⊓ 111 = A3 ⊔ A1. Hen
e A ⊔ A1 > A3, so
A ⊔ A1 > A2, and A ⊓ A⋆1 = (A ⊓ A⋆1) ⊔ 000 = (A ⊔ A1) ⊓ A⋆1 > A2 ⊓ A⋆1. Therefore
A > A2 ⊓ A⋆1 and A ≥ 〈A2 ⊓ A⋆1〉[T ], as required.(t-mod-dn) We know ⊢2 ↓A1(M) : 〈A2〉[T ], where ⊢2 M : 〈A2〉[T ], and A ⊲ ↓A1(M) → L.There are two sub
ases depending on the redu
tion rule used in A ⊲ ↓A1(M) → L.(M is a value) Therefore L = M and ⊢2 L : 〈A2〉[T ], and we are done.
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tion) Therefore ↓A1LA M ⊲ M → M ′ and L = ↓A1(M ′). By A > ↓A1LA Mand Lemma 4, we have A ⊲ M → M ′. Applying the IH to ⊢2 M : 〈A2〉[T ] and
A ⊲ M → M ′ yields S su
h that ⊢2 M ′ : S and S ≈ 〈A2〉[T ], so S = 〈A3〉[T ] for some
A3, and if A ≥ S then A ≥ 〈A2〉[T ]. Hen
e ⊢2 ↓A1(M ′) : 〈A3〉[T ], whi
h 
ompletesthe sub
ase.Corollary 32. If ⊢2 M : T and A ⊲ M ։ V , then A ≥ T .Proof. By indu
tion on the length of the redu
tion sequen
e A ⊲ M ։ V . For the base
ase, M = V and Lemma 30 implies that A ≥ T , be
ause every non-
omputation typeis dominated by any role, and in a 
omputation type T = 〈B〉[S] Lemma 30 tells us that

B = 000. For the indu
tive step, there exists N su
h that A ⊲ M → N and A ⊲ N ։ V . ByProposition 31, there exists S su
h that ⊢2 N : S and if A ≥ S then A ≥ T . Applying theIH to ⊢2 N : S and A ⊲ N ։ V yields A ≥ S, hen
e A ≥ T as required.Proposition 33 (Progress). For all A, if ⊢2 M : T then either M is a value, A ⊲ M  err,or there exists N su
h that A ⊲ M → N .Proof. By indu
tion on the derivation of ⊢2 M : T . We need only 
onsider the 
ases when
M is not a value.(t-sub) We know ⊢2 M : T ′, where ⊢2 M : T and ⊢2 T <: T ′. Immediate by the IH.(t-app) We know ⊢2 M N : T2, where ⊢2 M : T1 � T2 and ⊢2 N : T1. Apply the IH to

⊢2 M : T1 � T2 and role A. If M is a value, then, by Lemma 30, M has form (λx.L), so
A ⊲ M N → L{x := N}. If A ⊲ M  err, then A ⊲ M N  err. Finally, if A ⊲ M → L,then A ⊲ M N → L N .(t-fix) We know ⊢2 fix M : T , where ⊢2 M : T�T . Apply the IH to ⊢2 M : T�T and role A.If M is a value, then, by Lemma 30, M has form (λx.L), so A ⊲ fix M → L{x := (λx.L)}.If A ⊲ M  err, then A ⊲ fix M  err. Finally, if A ⊲ M → L, then A ⊲ fix M → fix L.(t-
hk) We know ⊢2 check M : 〈A1〉[T ], where ⊢2 M : {A1}[T ]. Apply the IH to ⊢2 M :
{A1}[T ] and role A. If M is a value, then, by Lemma 30, there exists B, L su
h that
M = {B}[L℄, so either A ⊲ check M → [L℄ or A ⊲ check M  err depending on whether
A > B holds or not. If A ⊲ M  err, then A ⊲ check M  err. Finally, if A ⊲ M → L,then A ⊲ check M → check L.(t-bind) We know ⊢2 let x= M;N : 〈A1 ⊔ A2〉[T2], where ⊢2 M : 〈A1〉[T1] and x:T1 ⊢2
N : 〈A2〉[T2]. Apply the IH to ⊢2 M : 〈A1〉[T1] and role A. If M is a value, then, byLemma 30, M has form [L℄, so A ⊲ let x= M;N → N{x := L}. If A ⊲ M  err, then
A ⊲ let x= M;N  err. Finally, if A ⊲ M → L, then A ⊲ let x= M;N → let x= L;N .(t-mod-up) We know ⊢2 ↑A1(M) : 〈A2 ⊓ A⋆1〉[T ], where ⊢2 M : 〈A2〉[T ]. Apply the IHto ⊢2 M : 〈A2〉[T ] and role ↑A1LA M. If M is a value, then A ⊲ ↑A1(M) → M . If
↑A1LA M ⊲ M  err, then A ⊲ ↑A1(M)  err. Finally, if ↑A1LA M ⊲ M → L, then
A ⊲ ↑A1(M) → ↑A1(L).(t-mod-dn) We know ⊢2 ↓A1(M) : 〈A2〉[T ], where ⊢2 M : 〈A2〉[T ]. Apply the IH to
⊢2 M : 〈A2〉[T ] and role ↓A1LA M. If M is a value, then A ⊲ ↓A1(M) → M . If
↓A1LA M ⊲ M  err, then A ⊲ ↓A1(M)  err. Finally, if ↓A1LA M ⊲ M → L, then
A ⊲ ↓A1(M) → ↓A1(L).Theorem (12). If ⊢2 M : T and A 6≥ T , then either A ⊲ M →ω or there exists N su
h that

A ⊲ M ։ N and A ⊲ N  err.Proof. We use a 
oindu
tive argument to 
onstru
t a redu
tion sequen
e that is either in�niteor terminates with a role 
he
k failure. When ⊢2 M : T and A 6≥ T , we know that M is



24 R. JAGADEESAN, A. JEFFREY, C. PITCHER, AND J. RIELYnot a value by Lemma 30. By Proposition 33, either A ⊲ M  err or there exists N su
hthat A ⊲ M → N . In the former 
ase, we are done. In the latter 
ase, using Proposition 31,there exists S su
h that ⊢2 N : S and if A ≥ S then A ≥ T . However, we know that A 6≥ T ,so A 6≥ S, as required. 7. Con
lusionsThe fo
us of this paper is programmati
 approa
hes, su
h as jaas/.net, that use rba
.From a software engineering approa
h to the design of 
omponents, rba
 fa
ilitates a sepa-ration of 
on
erns: the design of the system is 
arried out in terms of a role hierar
hy withan asso
iated assignment of permissions to roles, whereas the a
tual assignment of users toroles takes pla
e at the time of deployment.We have presented two methods to aid the design and use of 
omponents that in
ludesu
h a

ess 
ontrol 
ode. The �rst � admittedly standard � te
hnique enables users of
ode to dedu
e the role at whi
h 
ode must be run. The main use of this analysis is tooptimize 
ode by enabling the removal of some dynami
 
he
ks. The se
ond � somewhatmore novel � analysis 
al
ulates the role that is veri�ed on all exe
ution paths. Thisanalysis is potentially useful in validating ar
hite
tural se
urity requirements by enabling
ode designers to dedu
e the prote
tion guarantees of their 
ode.We have demonstrated the use of these methods by modeling Domain Type Enfor
e-ment, as used in SELinux. As future work, we will explore extensions to role polymorphismand re
ursive roles following the te
hniques of [8, 4℄.A
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