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Abstract. Existing web services and mashups exemplify the need foibfex
construction of distributed applications. How to do so selyuremains a topic of
current research. We presemPIDO, a programming model to address Trust and
Authorization concerns via Provenance and Integrity irtesys of Distributed
Objects. Creation of APIDO objects requires (static) authorization checks and
their communication provides fine-grain control of theirt@mdded authorization
effects. TAaPIDO programs constrain such delegation of rights by using prove
nance information. A type-and-effect system with effedypwrphism provides
static support for the programmer to reason about secuitgies. We illustrate
the programming model and static analysis with examplerarag and policies.

1 Introduction

Web services, portlets, and mashups are collaborativehditéd systems built by as-
sembling components from multiple independent web apiptina. Building such sys-
tems requires programming abstractions that directlyesidservice composition and
content aggregation. From a security standpoint, such ositipn and aggregation in-
volves subtle combinations of authentication, authoidratdelegation, and trust.

The issues are illustrated by account aggregation serthegprovide centralized
control of an individual’s accounts held with one or moretitlngions. An individual
first grants permission for an aggregator to access owneatliatlocated at various
institutions. In a typical use case, the aggregator is agkptbvide a summary balance
of all registered accounts: the aggregator asks eachutistitfor the relevant account
balance; the institution then determines whether or notrémtgaccess; with the ac-
cumulated balances, the aggregator returns a summary isfeegl accounts to the
individual. This simple service already raises severalsgcand privacy issues related
to trust and authorization. To name just two:

— The account owner’s intent to access their account shoutdtablished by the insti-
tution. Message integrity is required to verify such intent

— Principals should establish that the flow of messages tlirdlg system complies
with authorization, audit, and privacy policies for accbancess. Message prove-
nance is required to verify that the message history doeplyonith such policies.
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Fig. 1. Principals Involved in Account Aggregation

It has been said that “An application can be mashup-friendlig can be secure,
but it cannot be both.[[1]. We disagree. In this paper, wecdbe the use of message
provenance and integrity to achieve both security and fiiyilaims in this general
programming context.

In the remainder of this section, we present an informalieer of our approach
using the account aggregation example. The principaldiadaare the account owner,
the aggregation service, and two principals for the institu holding the account.
The institution uses two principals to distinguish prigiéel monitor code from public-
facing, unprivileged code. The owner requests the balamee the public-facing ac-
count object, which in turn contacts a trusted monitor tcedaine whether access
should be granted or denied. The flow of messages is sumrdaniEégure 7.

Object model. TAPIDO’S object model is based upon Java’s notion of remote objects
We locate objects at atomic principals. Examples of atomiiecipals are nodes on
a distributed system, a user or a process. For an opjettie location is available to
the programmer vig.loc. As with Java’s remote objects, objects are immobile and
rooted at the location where they are created. A method ati@mton an object leads to
code execution at the location of the callee object. Thugnthe caller and callee ob-
jects are located at different locations, method invoceads to a change of location
context. References to objects are mobile — they can beyfoegdied and they move
around through the system as arguments to methods or retiuesy We do not address
mobility of objects themselves; thus, we do not discussbeation and code mobility.
TAPIDO assumes a communication model that guarantees the praeaad in-
tegrity of messages. Thusap®IDO focuses on semantic attacks on trust and authoriza-
tion, rather than on attacks against the cryptographicnigcies required to achieve
this communication model. Thus, our approach assume arrlyimdenetwork model
in which the sender of the message can be reliably determthesdmodel is well-
studied [4,3,4,5] and realizablel[6.7,8]. Using a reldsivdgh-level model permits us
to concentrate on attacks that seek unauthorized acctssy, tiaan studying the under-
lying cryptographic protocols that facilitate the integrssumption.

Statics. Effects are communicated through object references. Thgukge of effects
is a decidable monotonic fragment of first-order logic (elmtalog) extended to work
over authorization logics. The modalities of authorizatiogics [9,10,11L,12] permit
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different participants of a distributed system to mainfaatentially inconsistent world-
views, e.g. ifb receives an object with effegtcreated bya, it receives the effec says

@, rather than the more absolute truph Our language of effects also includes logic
variables to achieve ML-style polymorphism with respeatffects.

Our “object-centric” notion of effects differs from the neousual “method-centric”
notions explored in the literature on effects in Objectedted (OO) languages. The
effects on objects can only refer to the immutable data obtject — if the object is
an authorization token, this effect can record the righdsciated with these object. For
honest agents, object effects are validated at the poirreation, effectively ensuring
that the global policy permits the creation of the object.aWBuch an object is received
—e.g., as an argument to a method call — the effects are gardfas a benefit to the
recipient. In any execution of a well-typed program, theradorrespondingl3] object
creation validating such accrual of rights.

The attackers that we consider are untrustworthy atomiecgals runningany
well-typed Java program. Following [14] and our own earlieark [15], they may
“utter” anything whatsoever in terms of effects. For exagmpponents may create
authorization objects without actually having the riglt<teate them, aiming to sub-
vert the global authorization policy. A programdafe[16] if every object creation at
runtime is justified by the accumulated effects. Our typéespensures that well-typed
programs remain safe under evaluation in the face of arpitpponent processes.

In the account aggregation example, consider when an thaivrequests their bal-
ance from the institution holding their account through élggregator. The guarantee
sought is that the institution may only respond with the actdoalance when the re-
quest is approved by the account owner. With a pre-arrangedqwl, approval can be
conveyed by a message passed from the account owner to thetios via the ag-
gregator. The institution’s code must be able to verify thatiginates with the owner
and not been modified en route. The code must also ensuréhthattegrity-verified
message and the pre-arranged protocol entail the owngiteegd in the past; even in
the presence of attackers who (perhaps falsely) claim psseof rights.

We describe a program incorporating such a design in our lnadd verify the
required properties with our static analysis.

Programming Provenance.Provenance — the history of ownership of an object —
has received much interest in databases, e.g., sée [17]dorvay. Security-passing
style implementations [18] of stack inspection are alreaaiginiscent of such ideas in
a security context, since the provenance of the extra sgdoken parameter can be
viewed as encoding the current relevant security context.

Provenance plays a crucial role in both the privacy architecand the security
(access control and accountability) of the account aggimgaxample. Consider the
request from the account owner to the institution via theegator. The institution may
impose an access control policy on the provenance of theestgeig., to restrict the ag-
gregators that can be used with the institution’s servigash a policy is distinct from,
but can be used in conjunction with, an access control pblsed upon the originator
of the request. Similarly, the institution’s audit policyagrequire a record of the prove-
nance of requests (including the identities of the ownertardaggregator) to support
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an accountability obligation, e.g., to explain why and tawhaccount information was
provided should the institution be accused of dishonestvieh

Finally, the account owner can demand security of the patfetsed by the result
of such a request to ensure data privacy. This is demondti@the account owner by
returning the relevant snapshot of the history of their dédag with their data.

In contrast to stack inspection and history-based accegsotde.g., see [19]) that
mandate the flow of the security token, and record in itfthiehistory of information
used to make a judgement, our “user-defined” approach refiesust relationships
between the principals that are recorded as part of therhisianake judgements.

In the account aggregation example, the response fromgkituiion to the account
owner has full history that can be described with the regetaressiomccT - trusted -
AGGR - trusted - OWNER, wheretrustedrepresents a collection of trusted principals.
Our explicit programming of this path in the sequel maindadmly a subsequence of
the history that matchesccT - trusted - AGGR- OWNER. Such abbreviations of the full
history are codified in the security policy by assumptiongtmse principals — e.g.,
that the aggregator received the result from a trustwortincipal that can be relied
upon to enforce the policygnd that the aggregator can be relied upon to report this
information accurately.

We describe a program incorporating such a design in our lnadd verify the
required properties with our static analysis.

Related work. The study of effect systems was initiated in the context otfional
languages (e.g., see Gifford and Lucasser [20,21], andnTahd Jouvelot[[22,23]
amongst others). The ideas have since been applied braa@@tlanguages; to name
but a few, specifying the read/write behavior of methad§22} confinement[26,27],
type reclassification [28], object protocdls [29] and ses$ypes([30].

The most closely related papers are types for authorizdiypRournet, Gordon and
Maffeis [31], a successor paper by the same authofs [14] anolven earlier papelr [15].
All of these papers (including this one) focus on authormaissues and so the work
on information flow, e.g., see [32] for a survey, is not dilgctlevant. However, as in
information flow based methodsa®IDo global policy drives program design.

Fournet, Gordon and Maffeis [31] introduce an assume-guieesreasoning frame-
work with Datalog assertions for dealing with types for authation. Both papers [31,14]
are based in a pi-calculus formalism and view authorizatierfa complex crypto-
graphic protocol”[31] in the context of the traditional ‘tmeork is the opponent” model.
The successor paper uses dependency analysis on autiooriagic to formalize a sub-
tle notion of security despite compromise. Our object-Gemtffects adapt their static
annotations to an OO setting. Our requirements on objeettiore (resp. transfer of
effects to the callee) are analogous to tlegjpectatior(resp.statementannotations.

Our prior paper[[15] was inspired by [31]. It was also placecimobile process
calculus, but diverged from [81.,14] in assuming a model \gitplicit identities and a
network that guaranteed integrity.

In this paper, we study imperative distributed objects hiding on these intuitions.
Our primary aim in this paper is to provide foundations of aggamming methodol-
ogy to ensure that distributed systems validate authdsizaind security policies; e.g.,
one of the aims of our examples is to illustrate the use ofdstechOO mechanisms
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to incrementally construct security guarantees. Whilepihealculus (with notions of

keys) is expressive enough to code distributed object$ (@4plicit identities), such a
translation is arguably inconsistent with our overall aimgust consider the complex
encoding of state in the control of a pi-program. Such a tedios based semantics
approach obfuscates the simple (from an object standpouaiants that underlie our
analysis. At any rate, the type systems in these three pdperst include the invariants
of processes required to capture the type annotations®ibb.

2 Language

We present the evaluation semantics faribo, a distributed class-based language
with mutable objects. Our treatment of classes followdeadirect semantics for class-
based languagels [83134]24,35]. We do not address issueseifigity [36,34] or inner
classes([37]. Our treatment of concurrency follows Gordod Hankin’s concurrent
object calculus[38]. As in Cardelli's Oblig [39], our objaeferences have distributed
scope, rather than local scope [[40]. Our treatment of lonatborrows heavily from
process algebras with localities (seel[41] for a survey).

We first describe our naming conventions. Names for clagsad),(methods (),
fields {, g), variables X, y, 2), objects f, ) and principalsd, b) are drawn from sep-
arate namespaces, as usual. Predicate variad|g8)(and predicate constructorg)(
occur in static annotations used during type-checking.

The reserved words of the language include: the variableegéthis” and “caller”;
the binary predicate constructors™ representing conjunction, and “says”, represent-
ing quoting; the ternary predicate construd®oov is used to indicate that the first argu-
ment (an object) was received from the second argumentdsquincipal) by the third
argument (target principal). We write the binary constoueinfix.

The language is explicitly typed. Object types@>) include the actual predicate
parameter:ﬁ;, which we treat formally asxtended value¥/alue types include objects
(©), principals Prin) andUnit. Extended value types include predicate tyg®swhich
are resolved during typechecking. The process t{ped) has no values.

IC,D t= CKQ> Object Types

T,Su= C [ Prin | Unit Value Types

P,Q == Pred(.9) Predicate Types

7, =T | P | Proc Types

p == final | mutable Mutability Annotations

9 = classc<@ :P>aD{li Tf; .Z}[0] Classesg boundinD, 6, T,.Z)

M = <B:O>SI(T H{M} Methods @ bound inS, T, M; Xin M)

One may write classes and methods that are generic in thécated/ariables,
achieving ML-style polymorphism with respect to effect$ass declarations thus in-
clude the formal predicate parametérswhich may occur in the effed (see next
table) associated with instances of the class. In addibogffects, class declarations
include field and method declarations, but omit implicit stsactor declarations. Fields
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include mutability annotations, which are used in the staff he syntax of values and
terms is as followd

I

VWU AB, @y = Open Extended Values
X| p|aj unit Variable, Runtime Value
alyl ey |- Predicates

M,N,L,6 == Terms
V | new c<@> (V) Value, Object Creation
let x=V./<@>(W); M | V.f | V.loc | V.f:=W Object Operations
if V=W thenMelseN | letx=N; M | N|FM Control Flow
p:c{f=V} | (vp:OOM | alM] Runtime Terms

We use the metavariables ¢ and 6 to represent values and terms of predicate
type, and the other metavariables to represent runtimeegadnd terms, witl and
B reserved for values of principal type. Predicates arecstatnotations used in type-
checking, which do not play any role in the dynamics.

An expectation“expect 8” may be written as fiew Proof<8>()", where class
Proof is defined ¢lass Proof<a : Pred>{} [a]".

The syntax of terms includes standard OO primitives for ctbgeeation, method
call, and field get/set. Thet binder in method calls is necessary to describe the prove-
nance of return values. Constructors and methods takegatedparameters that are
used statically. The special “field3c returns the location of an object. The conditional
allows equality testing of values.

Concurrent composition|{) is asymmetric. InN | M, the returned value comes
from M; the termN is available only for side effects. In the sequential conitams
“let x=N; M”, xis bound with scop®. We elide thdet, writing simply “N; M” when
x does not occur iM. We also use standard syntactic sugar in place of expligitesec-
ing. For example, we may writey'f.g" to abbreviate let x=y.f; x.g".

Heap elementsp:c{---}), name restriction(vp)) and framesg[M]) are meant
only to occur at runtime. The first two of these model the hedqgreas the last models
the (potentially distributed) “call stack”. We expect thlagse constructs do not occur
in user code. An object name binder)(is separate from the associated denotation
(p:c{f =V3}), allowing arbitrary graphs of heap objects. (The precgdirample in-
dicates thatp is located afta, with actual clasx and fieldsf=\7.) The framea[M]
indicates thaM is running under the authority af

Structural Congruence.Evaluation is defined using a structural congruence on terms
Let = be the least congruence on terms that satisfies the follom#i@ms. The rules

1 When writing definitions using classes and methods, we aftiele irrelevant bits of syntax,
e.g., we leave out the parameters to classes when emptyasushiting Object rather than
Object< - >. We identify syntax up to renaming of bound names, and viipe:= V| for sub-
stitution of V for x in M (and similarly for other categories). We sometimes weiteends
for « for clarity. We often elide type information. We writes? (T X);” as shorthand for
“Se(TR) LY
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in the left column are fron [38]. They capture properties ohcurrent composition,
including semi-associativity and the interaction wigh The rules in the right column,
inspired by [41], capture properties of distribution. Thestfiof these states that the
interpretation of a value is independent of the location laictv it occurs. The second
states that computation of a frame does not depend upondh@do from which the
frame was invoked.

Structural Congruence (M =M’) (wherep ¢ fn(M))

(MIFN) IFL=M I (N IFL) alvl =V
(MIFN) IFL = (N IFM) IrL alb[M1] = b[M]

((vpIN) ITM = (vp) (N I M) alN IFM1 = a[N] Ira[M]
M IF (Cvp) N) = (vp) (M I N) al (vp) NI = (vp) alN]

letx=(LITN); M=L1Il (letx=N; M)  alletx=N; M] = let x=a[N]; a[M]
let x=((vp) N); M = (vp) (let x=N; M)

One may view interesting terms aenfigurations which we now define. Astore
2 is a collection of distributed heap terntg,[p:ci{--- 3 I --- T bmIpm:Cm{---}],
where eaclp; is unique. Athreadis either a value or a term[M] that does not con-
tain occurrences of a name restriction or heap term. (A vapeesents a terminated
thread.) Annitial thread is a termra[M] such thaM additionally contains no blocks. A
configurationis a term of the form(vp) (X [TMy I --- I My), where eachV; is a thread.
A configuration ignitial if each of its threads is initial. Evaluation preserves thepe
of a configuration up to structural equivalencevllis a configuration anil — M’ then
M’ is structurally equivalent to a configuration.

Evaluation. The evaluation relation is defined with respect to an antyitfiaed class
table. The class table is referenced indirectly in the séicgathrough the lookup func-
tionsfieldsandbody, we elide the standard definitions. Evaluation is definedgitie
following axioms; we elide the standard inductive ruleg fifastructural equivalence
to evaluationid — M’ if M = N — N’ = M’) and that describe computation in context
(for examplep[M]1 — b[M’] if M — M’). We discuss the novelties below.

Term Evaluation (M — M)

new c(V) — (vp) (p:c{f=V}Irp)
if fieldgc)=f and [f|= V|

blp:c{---}1 Fallety=p.0(W); L] — blp:c{---}] [Nallety=bIM']; L]
if body(c.£) = (X{M} and |X| = |W|
where M’ = Prov(W, a,b) I M[caller := a][this := p][X := W]
and L’ = Prov(y,b,a) 'L

blp:c{---}] IFp.loc — blp:c{---}3]1 Ilb

blp:c{f=V---}1 I p.f:=W — b[p:c{f=W---}] Il unit

blp:c{f=V---}] IFp.f = blp:c{f=V---}] IV

if V=V thenMelseN - M

ifV=WthenMelseN - N if VAW

let x=V; M — M[x:=V]
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The rule fomew creates an object and returns a reference to it; in the Gérdaokin
formalism, the heap stays on the left, whereas the retutre\gdes on the righp.loc
returns the location gp.

Method invocation happens at the callee site, and thus a mraeaefis introduced in
the consequeft[M’]. The provenance of the actual parameters is recordléda'w(VT/,
a,b), which is shorthand foProv(W,a,b), ..., Prov(W,,a,b). In M/, the special vari-
ablecaller is bound to calling principal; there are also standard stwibisins for this
and the formal parameters. I, the provenance of the return value is recorded in
Prov(y,b,a).

Effects. Effects play a crucial role in the statics, but are ignore@tsiuation. In sum-
mary, trustworthy processes are required to justify oljeetion by validating the ex-
pectations associated with classes in terms of accumudéftsrts. Opponent processes,
on the other hand, may ignore expectations but are othemadidyped. We say that
a term issafeif the expectations associated with object creation bytédiprincipals
during evaluation are always justified by the accumulatéstes. We establish the stan-
dard properties of Preservation and Progress. As a coypli@rdeduce that well-typed
trustworthy processes remain safe when composedasiititrary opponents.

Our proof of type-safety identifies the key properties regghdf the logic of effects.
Thus, the logic of effects has to support structural rulethereft, support transitivity
via cut, and ensure closure of the equality predicate undestgution and reduction. In
addition, typechecking of examples (such as the ones thaivijoalso requires closure
of inference under the inference rules of affirmation in ththarization logic of[[10],
e.g., functoriality ofsays distribution ofsaysover conjunction, an¢a = A says3) =
(Asaysa = A says3). The full type and effect system and results with proofs aan b
found in the appendix.

3 Examples

In these examples, effects are described in a variant ofi@pé&xtended to work over
authorization logic. As with regular Datalog, a program isltbfrom a set of Horn
clauses without function symbols. In contrast to regulatal2ey, the literals can also
be in the form of quotes of principals. The well-formed userdicates are typed, with
fixed arity. They are always instantiated with pure terms typee-respecting fashion;
pure terms are guaranteed to converge to a value withoutimytae heap.

3.1 Workflow.

In this stateful workflow pattern, a user submits data of fyd®y creating an object of
classSubmittedCell. (For simplicity, we do not address generic types here.)mha-
ager must subsequently approve the data by creating ant objgassApprovedCell.

I

class Cellla,B:Pred(T)> { }

class SubmittedCell<a,3:Pred (T)> extends Celll<a,3> {
final T data; final Prin user; final Prin manager;

} [this.user saysa(this.data)]
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class ApprovedCell<a,3:Pred (T)> extends Celll<a,3> {

final T data; final Prin user; final Prin manager;
} [this.user saysa(this.data) A this.manager saysp(this.data)]
class FailedCell<a,3:Pred (T)> extends Celll<a,3> { }

L ]
In Celll<a, B>, a is the predicate that the user establishes on the data inlbimeission.
B is the predicate that the manager establishes on the datdirBheffect on approved
cells represents both approvals in the static types.

The submission and approval objects are generateddeyifactory in response to
receipt of arequest object (of claBsllReq<y>). Thesubmit method ofCellFactory<a, 3>
receives the effectq.loc sayso (req.data) on itsreq parameter. The resulting instance
of SubmittedCell<a, 8> carries this assumption, along with the name of a manager tha
must approve the request.

I 1

class CellReq<y:Pred (T)> { final T data; } [y(this.data)]
class CellFactory<a,B:Pred (T)> {
SubmittedCell<a,B> submit(CellReg<a> req, Prin manager) {
new SubmittedCell<a,3>(req.data, req.loc, manager)

Celll<a, > approve(CellReq<f> req, SubmittedCell<a,B> cell) {
if ((req.loc=cell.manager) && (req.data=cell.data) && (this.loc=cell.loc))
then new ApprovedCell<a,B>(cell.data, cell.user, cell. manager)
else new FailedCell<a,B>()

I

The approve method receives the effeaiq.loc saysf(req.data). After checking that
req.loc is the same a=ll.manager, it may conclude thatell.manager says3(req.data).

To establish the final effect on tieprovedCell, the factory must establish that the data
in the approval request is the same as the data in the iretialast. Further, it must be
the case thatubmit andapprove are called upon factories located at the same princi-
pal, since theA\pprovedCell vouches for botlr andf3, although these are validated at
different times. If any of the equality tests are missing, ¢bde fails to typecheck.

Visitors for typecases.The clas<Celll is an interface for cells. The visitor design pat-
tern [42] provides a type-safe way to write code that is ddpanon the actual dynamic
type/subclass. Thus, we add methods suchisiis\pprovedCell to classCellV<a, 3>

(in general, one such visit method for each subclass). Tmtls to the visitor, th€elll
interface is augmented with aiacept method, implemented in each subclass; e.&, if
is the return type of the visitor, the implementatiorgprovedCell<a, 3>.accept is:

S accept(CellV<a, B> v) { v.visitApprovedCell(this) }

Encoding ProvenanceThe submission and approval requests described abovesfor th
workflow cell do not track provenance. To accommodate prawmea tracking, e.g., for
the account balance requests discussed in Sedtion 1, wiedeweidiom for decorating
such requests as they are passed from principal to prindipal decorations indicate
the provenance of the transmitted data. As usual with a démodesign patterm [42],
the Req<a> class is split into three classes: the interfRegl<a>, the concrete class
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ReqC<a> (which corresponds to the originReq<a>), and the decoratdReqD<a>.
We use a visitor to inspect the resulting object. Again;Tidte the type of the request
data andb be the arbitrary return type of the visitor.
I 1
class ReqV<a> { S visitReqC(ReqC<a> x); S visitReqD(ReqD<a> x); }
class Reql<a> { S accept(ReqV<a> v); }
class ReqC<a> extends Reql<a> { final T data;
S accept(ReqV<a> v) { v.visitReqC(this) }
} [a(this)]
class ReqgD<a> extends Reql<a> { final Reql<a> payload; final Prin src; final Prin tgt;
S accept(ReqV<a> v) { v.visitReqD(this); }
} [Prov(this.payload, this.src, this.tgt)]
L ]
Significantly, it is the concrete clageqC<a> that retains the original effect(this).
The decorator, instead, carries an effect concerning tbeepance of the decorated
data. The effecProv, used here at typBred (Regl<a>,Prin,Prin), is a claim about
the provenance of one hop of a request. It indicatesttfi@payload was received from
this.src by this.tgt. Thus, the object creatiarew ReqD(p, A, B) typechecks only when
the static semantics can deduce thhas been received [B/from A.
To illustrate request decoration, consider the followingtworthy forwardé:
I 1
class TrustworthyForwarder extends Aggrl { mutable Aggrl next;
Respl getAllBalances(Reql<SubmitBa} req) {
let resp:Respl = next.approve(new ReqD<SubmitBak(req, caller, this.loc));
new RespD(resp, next.loc, this.loc); } }
L ]
The method body is typechecked in the context of the assd?tim/(req, caller, this.loc),
thus permitting the construction of tiReqD object. Similarly, theProv(resp, next.loc,
this.loc) assertion established by the method invocationext enables the typecheck-
ing of the construction of the neRespD object. In contrast, an untrustworthy for-
warder might produce an inaccurate provenance decoraiidhé request, e.g., using
newReqD<SubmitBat(req, FAKESRC FAKETGT)). In the following account aggrega-
tion example, the principals trusted to provide accuratevgmance decorations are
specified via thé, component of the global policy.

3.2 Account Aggregation.

Recall, fron{ Figure L, a rough outline of the protocol: (WyNER informs AccT that
AGGR may aggregate its balances (usiigct.addAggr); (2) OWNER requests a sum-
mary of its balances fromGGR (usingAggr.getAllBalances); (3) AGGR requests the
balance fromaccT usingAcct.getBalance. Steps (1) and (3) involve communication
between the public-facingccT and the privatamONITOR. In addition, let the princi-
pal FORWARDERDbe trusted to relay messages using the decorator previdissiyssed.

2For reasons of space we omit definition éfggrl, an interface class with a single
getAllBalances method, and classeRespl, RespC, RespD for responses by analogy with
non-generic versions of request clasRegl, ReqC, ReqD.
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For simplicity, we use a single forwarder and account as agh single class to rep-
resent the code running at each principal. (We follow theveation that fieldowner
references an instance of cla®&ner located at principabwNER.) Due to space limi-
tations, we elide the code implementing step (1) of the paltdVe recall that Step (2)
of the protocol is initiated by thewNER, with a call toAggr.getAllBalances.

The global security policyThe global system policy has the fofmwNERsays(6y)] A
[AGGRSsays(6; A 6> A B5)] A[MONITOR says(6s A B5)] A [ACCT saysBs]. The predicates

6y . .. B are formalized shortly. Informally, will ensure that the@wNERis authorized

to submit balance request’, and 6, will characterize the paths that are considered
secureB; will ensure that the aggregator only creates requestsittiat rom owner on
secure path€), and8s will ensure that th@ONITOR only accepts requests from owner
or from aggregators certified by the owné. will ensure that the account delegates
authorization decisions to the monitor.

The design of the entire program that follows is driven b thiiobal policy, i.e.,
our code is set up to satisfy the expectations of each pahdipur presentation of the
formal policies piecemeal along with the associated ckaissenly for concise exposi-
tion.

Notation. To encode the policy, we use several predicate constryetbish we write
in italics. SubmitAggr with type Pred (Prin), indicates that an aggregator has been
submitted for approval. Likewis&pproveAggindicates that the request was approved.
SubmitBal with type Pred (ReqC<SubmitBat), is a claim that a balance request has
been submittedApproveBalwith type Pred (Reql<SubmitBat), is a claim that a bal-
ance request (perhaps with decorators) has been approgediegtribed previously,
Prov, used here at typred (Reql<SubmitBat, Prin, Prin), is a claim about the prove-
nance of one hop of a requeSheckedProwwith typePred (Reql<SubmitBat), indi-
cates that the provenance of a request has been checked,spetified using reacha-
bility via Prov, incorporating trust in principals that report about each.h

We assume that the fieldonitor.cell is set appropriately. For simplicity, we have
hard-codedhGGR and other principals throughout the example code; one nsigad
use a final field to store principals of interest, deferring¢hoice to instantiation-time.

Owner. We use some abbreviations and elide the code to check thensspe-
ceived back from the aggregator, which is similar to thetersised by the aggregator,
shown later belowAcct.addAggr expects arguments of typéellReq<SubmitAggs,
andAggr.getAllBalances expects arguments of tyfieql<SubmitBat.
I 1
class Owner { mutable Acctl acct; mutable Aggrl aggr; /* could be forwarders */
Unit main() {

acct.addAggr(new CellReq<SubmitAggr(AGGR));

let response:Respl = aggr.getAllBalances(new ReqC<SubmitBak(this.loc));

... I* check response for compliance with privacy policy}/

} [60]

wheref, = (SubmitAggfAGGR)) A (SubmitBa(lX) :-X.data = X.loc = this.loc). This
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effect indicates that the instantiator must be able to sutiraiaggregator request and
that the instantiator must be able to submit any balancesstdloat it creates, so long as
thedata field truthfully records its identity. The second requirernis expressed using
a Datalog variabl&, ranging over values of typgReqC<SubmitBat.

Aggregator. The code uses the following effects.

6; = CheckedProfX) :- Prov(X, S, this.loc), S = owNER OR S = FORWARDER

6, = CheckedProfX.payload) :- FORWARDER says ProyX.payload, S, FORWARDER),
CheckedPro(X)

63 = SubmitByX) :- OWNER says SubmitB&ly), Y.data=X.data=owNER, CheckedProf}Y)

The first two of these deal with provenance. The base éasalidates an object deliv-
ered to aggregator from forwarder or own@rrecurses down one level of the decorated
object, making explicit the trust on trusted forwardergydiner6, and6, ensure that

a request is deemed valid if it has passed through trustethiediariesf; allows the
aggregator to create new balance requests, if it has chelkgutovenance of the re-
quest: both the new requéstand the old on& must have théata field set toOWNER,;
further, theowNER must avow that they created the old request.

class Aggr extends Aggrl { final Acct acct;
Respl getAllBalances(Reql<SubmitBa} req) {
if ((caller=FORWARDER) || (caller=OWNER)) then
let req2:Reql<SubmitBat = req.accept(new AggrReqV(req));
let resp:Respl = acct.getBalance(req2);
new RespD(resp, acct.loc, this.loc) }

} (61 A B2 A B3]

L ]
The validation of the creation akq2 uses6; to satisfy the effect of the the class
AggrReqV. The auxiliary class\ggrReqV is a visitor to typecase on the request be-
ing either a concrete request, or being a forwarded request.

class AggrReqV extends ReqV<SubmitBat {
final Reql<SubmitBat in;
Reql<SubmitBat visitReqC(ReqC<SubmitBat x) {
if ((this.in=x) && (x.loc=x.data=OWNER)) then
new ReqC<SubmitBat(x.data)
else ... [*error*/ }
Reql<SubmitBat visitReqD(ReqD<SubmitBat x) {
if ((this.in=x) && (x.loc=x.tgt=FORWARDER)) then
x.payload.accept(new AggrReqV(x.payload))
else ... /*error* }
} [61 A 62 A B3 A CheckedProfthis.in)]

L 1

As the visitor traverses the decorators, it maintains thariant thatCheckedProvs

true of the object being visited. The visitor updates thedatffeach time it moves
to a new element by creating (and using) a new visitor. Orbaek to visitReqC

or visitRegD, the Regl shouldbe the same as the one with the effect; the type sys-
tem ensures that this is explicitly checked. To tyitReqC requiresfs, which al-
lows us to create the neReqC located atAGGR. To type visitReqD, we first de-
duce CheckedProfk) from this.in = x and the class effect. Sinceis a ReqD, we
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havex.loc says Proyx.payload, x.src, x.tgt). Sincex.loc = x.tgt = FORWARDER and
CheckedProf), then6, yields CheckedProfk.payload), allowing creation of the new
AggrReqV.

The enforcement of the privacy policy of the introductionthg OWNER can be
achieved using similar techniques.

Account. Calls toAcct.getBalance are delegated tMonitor.checkBalance, which re-
sults in a call back to eithekcct.granted or Acct.denied.
I 1
class Acct { mutable int Balance; mutable Monitor monitor; mutable Respl result;
Respl getBalance(Reql<SubmitBat req) {
monitor.checkBalance(req, this);
this.result }
Unit granted(Reql<ApproveBat req) {
if (req.loc=MONITOR) then
expect MONITOR says ApproveBéteq);
this.result := new RespC(req)
else ... /*error* }
Unit denied() { ... /*error* } ...
} [66]
L ]
Here6; = ApproveBalX) :-MONITOR says ApproveBé&K). Thus, if thegranted method
is called back, then it must be the case that the monitor apprthe request.

Monitor. The effects of the monitor code are expressed using theAfmitppredicates.

6, = ApproveBa(X) :- owNER says SubmitBéK), X.data=OWNER
65 = ApproveBalX) :- owNER says SubmitAgdl’), this.loc says ApproveAggr’),
Y says SubmitBéK), X.data=OWNER

I
class Monitor { mutable Celll<SubmitAggr ApproveAggr cell;
Unit checkBalance(Reql<SubmitBat req, Acct acct) {
if (req.loc=req.data=OWNER)
then /* audit the request *f acct.granted(new ReqC<ApproveBat(req.data))
else this.cell.accept(new MonitorCellV(req, acct)) }
} [64 N 65]
class MonitorCellV extends CellV<SubmitAggr ApproveAggr {
final Reql<SubmitBat req; final Acct acct;
Unit visitFailedCell(FailedCell< SubmitAggr ApproveAggr x) { this.acct.denied() }
Unit visitSubmittedCell(SubmittedCell<SubmitAggr ApproveAggr x) { this.acct.denied() }
Unit visitApprovedCell(ApprovedCell< SubmitAggr ApproveAggr x) {
if ((x.loc=this.loc) && (OWNER=Xx.user) && (this.loc=x.manager)
&& (this.req.loc=x.data) && (this.req.data=OWNER))
then /* audit the request *{ this.acct.granted(new ReqC<ApproveBa#(this.req.data))
else this.acct.denied() }

} (6]

L 1
In checkBalance, 6, establishes the safety of creating e C, wherea®s establishes
the safety of creating thiglonitorCellV.
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Conclusion

TAPIDO is designed to counter the claim that “an application can bshap-friendly

or

it can be secure, but it cannot be both.” Our model of dyearadds only two non-

standard features, namely (a) the ability to detect thet@rdéacation, and (b) integrity

of
of

remote method invocation. We have shown that this sufficesde useful tracking
the provenance of an object reference. Our type systern guidymorphic) object

level effects to standard types. From a programming pointi@#, this style allows
trust-based decisions that are validated by the policyeamif the application.
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A Background: Authorization Logics

We refer the reader to [11,10] for the intuitions underlymghorization logics. Our
presentation satisfies more commutativity properties fidhin the proof theory. In
comparison to[[10], we have no second-order quantifierss Background section is
drawn from our earlier paper [15].

The formulas are given by the following grammar: for expmsitpurposes, we only
consider conjunction & and implication.

a,Bi=true | a& B | a—-B | Asaysa

A saysa connects the calculus of principals to the logic: this isgheting combinator
of the logic and is related to the quoting combinator of thiéda by definingA|B saysa
to beA says B saya.
We describe Hilbert-style axioms, inspired by those foipmsitional lax logicl[43],
to describe the tautologies. We first defiBgrotected formulas [100,44]. Informally,
if there is a proof of aB-protected formula, then there is one that does not require
statements of principals that are more trustworthy tBan

Definition 1. The class of B-protected formulas is defined inductivelplsfs: (a)true
is B-protected. (b) A says is B-protected if eitherr is B-protected. (cpx & B (resp.
o — ) is B-protected ifr and 3 (resp.[3) are B-protected.

In concordance with the informal intuitions, the followiagiom system satisfies the
property that if a formula iB-protected ané=- B, then the formula is alsA-protected.

Definition 2. The axioms of authorization logie (@) are as follows.

(a) Propositional validityif o is an instance of a intuitionist propositional tautology,
thent a.

(b) Modus Ponendf + a and- a - 3, thent 3.

(c) Modality-Unit: If - a, then- A saysa

(d) Modality-Mult: If - a & a’ — B and 8 is B-protected, thek (B saysa) & o’ — .

Following [10], examples of provable theorems are (a) Oiturality: if - A saysa
andA=-B, thenB saysx; (b) Reflexivity: A says A saya < A saysx; (c) Commutativ-
ity: A says B saya < B says A sayg; and (d) ExtensivityA saysxy — B says A saysq.

Remark 1.The primary use of principals in the logic is via the quotiognfiulas con-
structed withsays So, it is conceptually consistent to assume that propd(bie-(d) are
reflected back into the security lattice, i.gis reflexive, commutative, and extensive.

Extended Datalog.We describe a variant of Datalog extended to work over the au-
thorization logic. In this discussion, for concreteness,facus on extending positive
Datalog — the same development works for more expressigefeats such as positive
disjunctive Datalog [45].

As with regular Datalog, a program will be built from a set adiid clauses without
function symbols. In contrast to regular Datalog, the éitercan also be in the form of
quotes of principals.



TAPIDO 17

The well-formed user predicates are typed and of fixed aritgy are always in-
stantiated with pure terms in a type-respecting fashionwilleuse binary predicates
for quoting and equality, written respectively Asaysp andV =W. (We make liberal
use of syntax sugar, more generally writibig= N.) The pieces of logic that occur in a
program are extended Datalog programs that use such pteslica

We assume that the Datalog programs always contain the ax&guired for to be
an equivalence, e.qg. the clause for reflexivity#sx : -; and congruence for each predi-
cate in the program, e.g. for every 1-ary predigatihere is a clausg(x) :- y(y),x=y
as part of the Datalog program. We account for the logic wéemby closing up the
source program under all type-valid substitutions of pratdis for logic variables.

Despite this extra generality, the extended formalism leagd@ble clause inference
following [15] by a translation of extended Datalog into Blag that is sound and
complete for the inference of ground literals.

B Elided Definitions

We present several definitions elided from the main text.

Term Evaluation (Context Rules)
I

M — M’ N — N M=N-—-N=M
b[M] —Db[M'] letx=N;M —letx=N; M M—M
M — M N — N M — M

MIIN—=MIN MIN—=MIN (vp)M— (vp) M’

Fix a global class tabl@. The fields and method lookup functions are standard.
Field Lookup (field§C) =L Tf)

9 > classc<d><D{ITT; -}
fieldgD[a := ¢]) = [ip To fp
fieldgObject) =-  fieldgc<@>) = [ip Tp fp (rﬁ?)[a = ¢

Method Lookup (body(C.¢) = <B:Q>S(T 0 {M3})
I@ S class c<d : ﬁ)qD{---<ﬁ:Q>S/@(T’ D {M3}---}
bod)(c<q7)>.é) = (<ﬁ :Q>S(T X {M})[a := (Z;]

9 > class c<d : P><D{---.#4} {notdefinedinZ
body(D[d := ¢]. 0= <B:Q>S(T 0 {M3}
body(c<@>.£) = <B: Q>S(T ) {M}

The typing system additionally uses a related function fedgate Iogkup, as well
as a standard notion of well formed overriding. Recall thi A 6[d := ¢]” is sugar
for “let x=6p; let y=0[d := @|; X\ Y.
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Predicate Lookup (effectC) = 0)

9 > class c<d :P><D{---}[60]
effectD[d = ¢]) = 6p
effec{Object) =true  effectc<@>) = 6p A O[d := @]

Well Formed Overriding (- <B:G>S(T) can override DY)

body(D.¢) = <f:Q>S(T)
body(D.¢) not defined FS<:S
- <B:Q>S(T) canoverride D¢ F <B:0>S (T) can override D¢

We now define a canonical form for terms up to structural eajaivce. Let simple
terms be defined as follows.

L == new c<@>(V) | V.l<@>(W) | V.f | V.loc | V.f:==W
|ifV=WthenMelseN | letx=alLl; M | letx=V; M
N =new c<@>(V) | V.l<@>(W) | V.f | V.loc | V.f:=W
|ifV=WthenMelse N | letx=N; M | letx=V; M
| p:c{f=V}

Proposition 1. For any term M there exists Mt (v:C) (Wq IF--- IT'W IFNg IF--- IF
Nm by [Lq] 1T -+ INbp [Ln] IFM’) such that Mhas the form V of. or a[N]; moreover,
M’ is unique.

v/ if M= (vp:C) (W IFN Irb[L] I'V')
right(M) £ { N/ if M= (vp:C)(W I'N IrbIL] I'N)
all’] if M= (vp:C)(W I'NIrb[L] Irall'])

C Types

We now describe typing. To shorten some definitions, we definategory ofdenti-
fiers which include bound names and atomic principals.

Syntax

In =x|plala Identifiers I
A= 1AnN:T7 | Ae| AV=M Environments

P =] D9p| V=M Logic Environments

Environments have two types of data: type bindings for na@&asual) and logical
phrases, including equalities and predicates.
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In our initial presentation, we will not be specific about fieem of the logics.
Specific requirements are given before the theorems, balwiwve sketch an example
logic afterwords.

In addition to the usual notion of values (i.e., no furthetuetions possible), the
type system also formalizes “purity” annotations: Pureieare are guaranteed to con-
verge to a value without mutating the heap. An example of & perm that is not a
value isV .loc.

Pure terms are used to formalize well-formed types.

Well Formed Type (AF .7)

1
P >classc<d:P> AF@:P A+T
AFUnit AFPrin AF Object<-> Al c<g> A+ Pred(.7)
1

Note thatProc is not well formed, and thus cannot appear in an environnidrg.
key new case in the above table is that for classes. The manitgtition in this definition
ensures that all the free namesgthat are not bound iA are (hereditarily) immutable.

Subtyping (- 7' < .9)
I
FIT < T T T
FI< T FIT<T
9 > class c<d><D P >classc<a> QP |d| =gl =0
-C <:Object<-> |c<g><:D[d:=¢] F c<@> <:c<P>

Subtyping is reflexive and transitive. As usual, the dedanberitances give rise to
subtyping, as does the implication of the effects for theeshase class. Subtyping is
preserved by substitutions for the logic variables. Defios(A) = {n | n: 7 € A}.

Well Formed Environment (A; X F o)

A>x:7 implies Z =Pred or (IT) =T andA+T
A>p:7 implies (3C) 7 =C andA+C
A>a: 7 implies .7 = Prin

A>0:7 implies (3P) 7 =P and A+ P
A>5V=M implies (3T)AFV:T andA; 2k
A > p:7 implies (3H)Z 5 H andH = p:c{f=
2 5 H implies A;> 5 H : Proc Pure

each element idomA) appears exactly once
A2 Eo

2T Pure

M
V3

The functionheaptakes a term and returns its collection of heap elementshe
functionenvlikewise returns the collections of declarations,

Env (enyM)=2A4)
Ien\(let x=N; M) =enyN)




20 Cirillo, Jagadeesan, Pitcher and Riely

enyN [F M) =enyN),en M)

enVb[M]) =enyM)

eny (vp:C)M) = p:C,eny M)

enyM) =- Otherwise

Heap (heagM)=12)

heap(p:c{f=V}) = p:c{f =V}

heaglet x=N; M) = heagN)

heagN I'M) = heafiN),heagM)

heaga[M1) = heagM)

heag (vp:C) M) = heaM)

heagM) = - Otherwise

Definition 3. X I8 @is definedto mea [0 —* X || ¢ /.

The functionclausedunction takes an environmeAtand returns a logic environ-
ment®. The key cases extract effects from a declaration. For eleamp

clauseg; . vy (p:C) = asays(effecfC))[this := X|

As expected, the extracted effects are relativized witlpeesto the location of the
object.

Clauses (clauseg(A) = @)

clauses(-) =

clauses (A, x: ) clauses(4),x.loc says(effecfC))|this := X]

clauses (A, p:C) = clauses(A),V says(effectC))[this:=p]  whereX [ p.loc | V
clauses(A,n: 7 ) =clauses(A) 7 not a class type
clauses(A,V =M) = clauses(4),V=W whereX M | W
clauses (A, ¢) = clauses(4), ¢

Well Formed Values (AFV:.9)
I 1

A>x:T A>3p:T A>3a:Prin
Abunit:Unit AFX:T AkFp:T AFa:Prin

A>a:Pred(7) arity(y)=7 AF@:Pred(F) AFV:T
At a:Pred(Z) AbFy:Pred(7) AF @) :Pred

Well Formed Terms (A; XM : .7 p) (p == Pure | Impure)
I 1

AV . T

A ZRBV:Tp

A\p;Sto Abp:icg> fieldgc)=pnT
S p:c{f=V}:Procp

—nl
>
T
<l
—+
-
-
A
_|
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A;Sko ARV:C fieldC) =0 Tf p=final A;SFo AFV:C
A ZRV.fTip A; > V.loc:Prinp
A X0 ARVIT AFW:S AV=W;ZHEM:J'p AZHEN:Ip +I' < T
A; > RifV=WthenMelseN: 7 p

A;ZFo ARVIT AFW:S AV=W;ZHEFM:Jp A ZEN:I'p +I' < T
A; > KifV=WthenMelseN: .7 p

A;SHEN:Tp AenN); > heagN) N : T Pure
A,en(N),x:T,x=N’;Z heagN)zM : 7 p right(N) =N’
A S Hletx=N;M: T p

AFDb:Prin AZEM:Tp Ap:CGZRM:Tp
A2 BEDbIM] T p A2 (wp:OOM: T p
A,en(M); Z heagM) N : .7 p
A,en(N); 2, heagN) kM : J p

fn(N I M) C dom(A)

A ZENITM: T p

In the rule for discharging conditionals, a predicate iseatlohto the environment.
We will discuss well-formed predicates later. In the ruleléd, the equations are added
to the typing environment only if the teri is pure.

The rule for located terms causes the expected switch ofipahin the type judge-
ment. The rules for new scoped object references and heaptsl as expected.

The rule for concurrent composition reflects the ideas framja@ining specifica-
tions of concurrent systems [46] — each component can asthenaformation ex-
posed by the other component. The accumulation of effeata frarallel components
will aid in discharging the proof obligations that will besdussed in the forthcoming
constructor and expectation rules.

Well Formed Terms (continued)

A;ZHEN:T Impure A,enN),x:T;Z heagdN) kM : 7 p
A; 2 letx=N; M : .7 Impure

ASko AFc<g>

fieldgc<@>) = Tf AFV:T FT' <T
effectc<g>) =0 (Z IFalp:c<@>{V}1) I O[this:=p] |} @
clauses(A) F asaysy p¢fn(B)
A; 2 5 new C<(7)>(\7) :C<¢> Impure

A;Sko AFV:C  bodyC.0) =<B:G>S(T)
AF@:Q AFW:T T <T[B:=¢

A,x: 9B := @],b:Prin,b=V .loc,Prov(x,b,a); S 5M: .7 p bé&(M,7)
A: S zlet x=V.0<@>(W); M : 7 Impure

Ao ARV:C fieldgC)=puTf

A;Z V. Ti Impure
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A;Sko ARV :C fieldC)=0Tf p=mutable AFW:T +FT <T
A; Z Bz V. =W : Unit Impure
L

The constructor rule is a key rule in our system. The hypagHes typing fields is
standard. The lookup of the effect obligation efiectC) yields a conjunction of the
effects for this class and all its superclasse§.0 || @ is definedag N6 —* = If ¢ ~
— this evaluation is guaranteed to terminate, and estadishe required bindings,
including those of the immutable fields of the newly condgdmbiject, into the class
predicate that has been extracted. The actual proof oldigastablished is in the form
of the utterance of the principal at whom the object is lodase the effect carried by
an object is really uttered by itsc. The statements that can be used to discharge this
proof obligation are derived from the environment elauses (A) that accumulates
the benefits derivable from the objects declared in the enaient and the equations
accumulated in the environment via lets and conditionals.

The rule for “generic” methods is standard, apart from tHesttution of concrete
formulas for the logical variables being carried in the noethefinition. Similarly, field
gets and sets are standard.

The rule for statements ensures that the statement being ahémtatiom is equiv-
alent to an utterance & — a formal treatment of this point of authorization logics is
available in the background section on authorization l@giche appendix.

The last rule for expectations is the second place wherd piidigations are estab-
lished in the system. The accumulation of statements inrthie@nment vieclauses (4)
is as in the constructor case — the static expectation atioitself specifies the proof
obligation.

Well Formed Declaration (A+ 2) (A& .4 inc<d :P><D)

IA,&:I5F D,T  A,d:P,this:c<d>;- - 0 : Pred Pure '
fielddD)=[ip To fy  fp disjointf

AV A7 inc<d:P><aD

At class c<d :P><D{fi T f; .#Z}[6]

A,@:P,B:QFST

A,G:P,B:Q,%:T,caller: Prin, this: c<@>,a: Prin,a=this.loc, Prov(x, caller,a);- kM : S p
FS<:S a¢ fn(M)
- <B>S(T) can override D¢

At <B:Q>Se(T 0 {M}inc<d :P><D

Note that the effect on a class must be a pure term of Bypé. The rule for typing
methods uses a standard well-formed overriding definifidre typing of the method
body occurs in the context of an abstract principahat is constrained to coincide
with the location of the ambient object. In typing the methmdly, one can use the
logical variables of the class and the method declaratiomell as the provenance of
the parameters, which is expressed using the predrrate We write Prov(X; caller, a)
as shorthand faProv(xy, caller,a), ..., Prov(xy, caller, a).
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CorrespondinglyProv also appears in the rule for typing method call to allow the
caller to use the provenance of the return value.

Results.We identify the properties required of the logic safety. Jdproperties broadly
fall into the following categories. Firstly, the closureioference under the structural
properties of exchange and weakening (so the underlying logs to be affine and
commutative) and transitivity via cﬁltSecondly, the equality predicate is substitutive
and closed wrt reduction. Finally, conditions on opponents

Let the principal name0” represents the most trustworthy principal, arid fep-
resents the least. We say that a logiefdorceabldf the following properties hold. In
this definition, we use to stand for for substitutions of pure terusfor x.

QF Q.

If ®F gthen®, @', foranyd’.

If @, @' @ = thend, @' E y.

If ®, @' @"EF pthend, ®@” @' E @.

If ®,pF Yand®F pthen® E .

If @ F @ then®o E Yo, for any substitutioro from variables to values, or from
atomic principals to atomic principals.

7. f O V=V, ® = Pthen® @' E .

8. If®,n=V,®' E Ythen®, @ F yn :=V].

9. ®E 1lsaysy, forany®, ¢.

ogkrwpbhpE

An opponentis any process located at the princigalFrom the final requirement, it
follows that opponents may utter any clause and are thus ledehpfree to construct
any new objects.

Fix a class table?. The class table is well formed fif 2, for everyz in 9. The
concrete interpretation of the labelling functions dadis enforceable ifA -V : T
andA F A: Prin impliesthatA -V : T andA tag(A,V):T.

The following results suppose that the class table is wethémd, that the underlying
logic is enforceable, and that the concrete interpretatiothe labelling functions is
enforceable.

Theorem 1 (Preservation).Suppose that the class table is well formed with respect
toA. If A;- =M and M— M’ thenA; - - M.

Theoiem 2 (Progress) Supposé:C; S + M. Then either rightM) is a value, or
(vp:C) Z M — M’ for some M.

Definition 4 (Safety).A term M issafeif whenever M—*= Svrj:é) alnew c(@1 If
M’, either a= 1 or clausegeagw) (P:C,en(M’))  effectc<p>).

Corollary 1 (Safety). Suppose thap:C; > - M. Then(vp:C) 1[N] IF = IFa[M] is
safe for any N such thgd:C; > - 1[N].

3 The type system does not require other logical connectivels as conjunction. If these were
present in the logic, their normal properties would havea@bforced by their usual rules.
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Safety requires that any objects created by trustworthggsses have their effects jus-
tified by the accumulated effects. The effects of objectateby opponent processes
are not required to hold.

Our safety corollary ensures that well-typed trustworthggoams are safe when
combined with arbitrary (typed but untrustworthy) oppotsen

D Proofs

In all proofs we assume that the underlying logic is enfopbeaVVe also assume that
the class table’ is well formed.

Lemma 1 (Weakening).Suppos&\; X iz M : .7 Impure. ThenA A, 5 5" 5 M :
T Impureif A,A"; 5,5 Fo.

Proof. Follows from the standard argument and propéity zheflbgic.

Lemma 2 (Exchange)Supposé\, A’ A”;5 5" 5" M : 7 Impure, and f(A”) C
dom(A). ThenA,A”. A", 5, 5" 5 M 1 7 Impure.

Proof. Follows from the standard argument and propéity eflogic.

Lemma 3 (Bounds Weakening)Supposé),x:S; > M : T pand- S <: S. Then
AX:S;ZHEM: T pwhere-T' < T.

Proof. By induction on the derivation df, x:S;> M : T p.

Lemma 4 (Structural Equivalence Preservation by Substituton). Suppose M= N.
Then Mx:=V] =NI[x:=V].

Proof. By induction on the derivation of M N.

Lemma5 (Type Preservation by Substitution of Locations).Supposeé\,b:
Prin,A"; XM : .7 p andA b’ : Prin, where bb' ¢ fn(M, 7). ThenA, A'[b 1= b']; 2ty
M:Z p.

Proof. By induction on the derivation df b: Prin,A"; S 5 M : 7 p.

Lemma 6 (Well-Formed Type Preservation by Substitution).Supposel,x: T,A’ -
Z andA+V:T.Thend, A'[x:=V]F T[x:=V].

Proof. By induction on the derivation df, x: T,A’ - 7.

Lemma 7 (Well-Formed Environment Preservation by Substitition). Suppose
AX:T,AZFoandA RV T . Thend A'[x:=V];Z o.

Proof. By induction on the derivation df, x: T,A’; X I- o, appealing to Lemn1g 6.

Lemma 8 (Subtype Preservation by Substitution).Supposé- T’ <: T. Then+
T'[x:=V] < T[x:=V]forany xV.

Proof. By induction on the derivation 6f T <: T’, appealing to propertyl6 of the
logic.
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Lemma 9. Suppose bod¢€./¢) = <B: @>S(T ®{M}. Then bod{C[x:=V].¢) =
(<B:Q>S(T 0 {M})[x:=V].

Proof. Follows directly from the definition of body.

Lemma 10. Suppose bod€.¢) = <[§:Q>S('f X){MZ. ThenA,ﬁ:Q,caIIer: Prin, this:
C,X:T;Z M : Slmpure for anyA, > ,a whereA; > + o and ag fn(M).

Lemma 11. Supposél,enyN); Z,heagN) iz M : 7 Impure and N— N’ for some
M,N,a, 7. Thend,en(N'); =, heagN’) i M : J Impure.

Proof. By induction on the derivation of N> N’. All cases are easy, appealing to
weakening.

Lemma 12. Suppos@\,V =V;2 iz M : .7 Impure. ThenA; > 5 M : .7 Impure.

Proof. By induction on the derivation df, x: T,x=right(N); X i M : .7 Impure. The
only case that is affected is the case for new, which follavestly from property 8 of
the logic.

Lemma 13. Supposé\,V=N,A"; X g M : .7 p,andZ [N — = [F N/, for some Nl
ThenA,V=N',A";ZEM: T p.

Proof. By induction on the derivation df,V =N,A’; > s M : 7 p. The only case that
is affected is the case for new, which follows from the basipgrties of convergence.

Lemma 14. Suppos@\,x: T,x=right(N); Z M : 7 p,andA; X N : T Pure, and
N — N’ for some N. ThenA,x: T,x=right(N'); =z M : 7 p.

Proof. By induction on the derivation df, x: T,x=right(N); X 5 M : .7 p. The only
case that is affected is the case for new, which follows floerbasic properties of
convergence.

Theorem 3 (Type Preservation by Structural Equivalence)Supposé\; 2 5 M :
T pandM=M.ThenA; X g M .7 p.

Proof. By induction on the derivation of M M'.

CaseMIIN)IFrL=M I (N IrL)

(—)

Assumed; Xl (MIFTN) IFL: 7 p.

By the type ruleA,enL); >, heagL) s M TN : F p,
and,A,enM),enN); 2 heagM),heagN) 5 L: 7 p.

By the type ruleA,enL),enyN); = heagL),heagN) s M : 7" p,
and,A,enyL),en(M); X, heagL),heagM) 5N : 7 p.

By LemmaRA,enM),enyL); Z,heagM),heagL) s N : 7’ p.

By the type ruleA,enyM); Z heagM) 5N IFL: 7 p.

By the typeruled; s M IF(NIFL) : 7 p.

(—)

Similar argument.
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CaseMIIN) 'L=(NIr'M) IrL
The left and right cases are symmetric.
Assumed; >l (MIFTN) IFL: 7 p.
By the type ruleA,enL); > heagL) s M TN : F p,
and,A,enM),enN); 2 heagM),heagN) 5 L: 7 p.
By LemmaRA,enyN),en(M); 2, heagdN),heagM) 5 L : 7 p.
By the type ruleA,enL),enyN); = heagL),heagN) s M : 7" p,
and,A,enyL),enM); X, heagL),heagM) sE N : 7 p.
By the type ruleA,enVL); Z,headL) N [TM : " p.
By the type ruled; X5 (N ITM) FL: 7 p.
CaseM I ((vp:C)N) = (vp)(M IIN)
(—)
Assumed; > s M [T ((vp)N) : T p.
By the type ruleq, p:C,enN); ~, heagN) s M : ' p,
and,A,enM); Z heagM) I (vp:C)N : 7 p.
By the type ruleA,enM), p:C; 2, heagM) 5N : T p.
By LemmaRA, p:C,en M); 2, heagM) lE N : 7 p.
By the type ruleA, p:C;Z 5 M TN : 7 p.
By the typerulepd; 2 t5 (vp:COMIITN: .7 p.
(—)
Similar argument, in reverse.
Caselet x=(L I'N); M =L I (let x=N; M)
(—)
There are two matching type rules; we consider each seplgrate
(i) Assumed; X t5 let x=(L IFN); M : 7 p by the first rule.
By the typeruled; s LITN: T’ p,
and,A,enyN); 2, heagN) t5 N’ : T/ Pure,
and,FT' < T,
and, rightL I'N) =N/,
and,A,enyL),en{N),x: T,x=N'; Z heagL),heagN) s M : .7 Impure.
By the type rulep,enMN) FL : 77 p,
and,A,en{L) -N:T p.
By the type ruleA,enVL); 2, heafL) s let x=N; M : 7 p.
By the typeruled; Z 5 L I (letx=N; M) : T p.
(i) Assumed; 3 5 let x=(L [TN); M : 7 p by the second rule.
By the type rulep; > 5 LIFN: T p,
and,A,enyL),enyN),x: T; X heafdL),heagN) M : 7 p.
By the type ruleA,enyN); = heagN) gL : 77 p,
and,A,enyL); 2, heagL) s N: T p.
By the type ruleA,enVL); Z,heafL) s let x=N; M : 7 p.
By the typerulehd; Z 5 LI letx=N; M p.7.
(—)
Assumel; X 5L II (let x=N; M) : 7 p.
By the type ruleA,enyN); = heagN) gL : 77 p,
and,A,enyL); 2, heafiL) ls let x=N; M : 7 p.
There are two matching type rules; we consider each seplgrate
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(i) Assumed,enVL); Z, heafL) s let x=N; M : .7 p by the first.

By the type ruleqA,enV(L); X~ headL) s N: T’ p,
and,A,enyL); > heagL) 5 N’ : T/ Pure,
and,-T' < T,
and,A,enyL),enyN),x: T,x=N’; X heafL),heagN) ts M : .7 Pure,
and, right{N) = N'.

By the type ruled; S 5 (LITN) : T/ p.

From def. of right, it is easy to see that right|f N) = N'.

By the type rulef; Z g let x=(L TN); M : F p.

(i) Assumed,enV(L); Z,heafL) s let x=N; M : 7 p by the second.

By the type ruleA,enyL); >, headL) s N : T p,
and-T < T,
andA,envL),en(N),x: T; X, heagL),heagN)F M : 7 p.

By the type ruled; i N : T/ p.

By the type ruled; Z s let T=(L IFN); M : 7 p.

Caselet x=((vp:C)N); M = (vp:C) (let x=N; M)

By hypothesis, g fn(M).
(—)
There are two matching type rules; we consider each seplgrate
(i) Assumed; X I let x=((vp:C) N); M : 7 p by the first rule.
By the type ruled; X Is (vp:CON: T/ p,
andA, p:C,enyN); ~, headN) i N' : T/ Pure,
and-T' < T,
and right (vp:C)N) =N/,
andA, p:C,enN),x: T,x=N’; Z,heaN) M : 7 p.
By def. righfN) = N'.
By the type ruled, p:C; 2 tglet x=N; M : 7 p.
By the type ruled; > t5 (vp:C) (let x=N; M) : 7 p.
(il) Assumed; X g let x=((vp:C) N); M : .7 p by the second rule.
By the type ruleA; > Is (vp:CON: T/ p,
and-T' < T,
and,A,p:C,en{N),x:T; X heagN) s M : 7 p.
By the type ruled, p:C; Z 5N : T/ p.
By the type rulepd, p:C; Z tglet x=N; M : 7 p.
By the type ruled; >~ ts (vp:C) (let x=N; M) : J p.
(—)
Assumel; >t (vp:C) (letx=N; M) : T p.
By the typerulepd, p:C; 2 lgletx=N; M : 7 p.
There are two matching type rules; we consider each seplgrate
(i) Assumed, p:C; > g let x=N; M : 7 p by the first rule.
By the type ruleA, p:C; X 5N : T/ p,
and,A,p:C,enyN); 2, heagdN) s N : T’ Pure,
and,FT' < T,
and,A,p:C,enMN),x: T,x=N'; Z heagN) s M : 7 p,
and, right{N) = N'.

27
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By the type ruled; > Is (vp:CON: T’ p.
From the def. right (vp:C) N) = N'.
By the type ruled; > ts let x=((vp:C) N); M : T p.
(i) Assumed, p:C; 2 kg let x=N; M : .7 p by the second rule.
By the type ruleA, p:C; X 5 N: T/ p,
and,-FT' < T,
and,A,p:C,enN),x:T; X, heafiN) s M : 7 p.
By the type ruled; > Is (vp:CON: T’ p.
By the type ruled; X tg let x=((vp:C) N); M : 7 p.
CasealV]l =V
(—)
Assumé); > g alVl : 7 p.
By the type ruleA +a: Prin,
and,A; > BV : T p.
By the typeruleA+V: .7 .
By the type ruleA -V : .7 Pure.
By the type ruled; 2 5V : 7 p.
(—)
Immediate from type rule.
Caseal[N ITM] =al[N] IrafM]
(—)
Assumez;AtgalN [FTM]: .7 p.
By the type ruleA +a: Prin,
and,A; > ENITM: .7 p.
By the type ruleA,en(M); 2, heagM) kN : 77 p,
and,A,enN); >, heagN) M : 7 p.
By the type ruleA,enM); X heagM) tsa[N] : I p,
and,A,enN); >, headN) palM] : 7 p.
By the type ruled; > s a[N] Ifa[M] : & p.
(—)
Same argument in reverse.
Caseal (vp:C) N] = (vp:C) alN]
(—)
Assuméd; > lgal (vp:C)NI : 7 p.
By the type ruleA +a: Prin,
and,A; > (vp:C)N: .7 p.
By the type rulep, p:C;Z N 7 p.
By the type ruled, p:C; >~ tgalN] : 7 p.
By the type ruled; > t5 (vp:C) alN] : 7 p.
(—)
Same argument in reverse.
Caseallet x=N; M] = let x=a[N]; a[M]
(—)
Assumed; > tg allet x=N; M1 : .7 p.
By the type ruleA +a: Prin, and,A; 2 iz let Xx=N; M : . Pure.
For the latter, there are two type rules that match.
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If the first, themA; S s N : T’ p,
and,A,enyN); >~ headN) i N": T’ Pure,
and,-T' < T,
and, A, x:T,x=N;Z5M:9 p, whereN=right(N).

By the type ruleA; > tga[N] : T/ p,
and,A,x:T,x=N; > alM] : 7 p.

By the type ruleq; 2 ts let x=a[N]; a[M] : 7 p.

If the second, thed; Z N : T’ p,
and,FT' < T,
and,A,enN),x:T; 2, heagfM) kM : F p.

By the type ruled; 2 tgal[N] : T p,
and,A,en(N)x:T; 2, heagM) lpalM] : 7 p.

By the type ruleq; 2 ts let x=a[N]; a[M] : 7 p.

(—)

Essentially the same argument in reverse.

Casea; [ap[M]1] = ay[M]

(—)

Assumed; > a1 [ax [M]1] 1 7 p.

By the type ruleA + a; : Prin,
and,A; 3 i, ax[M] 1 7 p.

By the type ruleA + ay : Prin,
and,A; 2, M T p.

By the type ruleq; 2 s a2 [M1 : 7 p.

(—)

Direct from type rule. O

Lemma 15 (Type Preservation by Substitution into Values)Supposé\,x: T,A’ -
W: 7 ,andA+FV:T ,and-T < T.Thend,A'[x:=V]FW[x:=V]: .7’ where
FI' < Tx=V].

Proof. By induction on the derivation df,x: T,A’ - W : & . All cases are easy, we
show one as an example.

Casep(W):
Assumel, x: T,A’ - (W) : 7 .
By the type ruleq, x: T,A’F @: Pred (F) ,
and, A, x:T,A'FW: 7 .
By IH,A,A'[x:=V]F @[x:=V]: Pred (Z) [x:=V],
and,A,A'[x:=V]FW[x:=V]: Z[x:=V].
By the type ruleqd, A’[x:= V] F @[x:=V](W[x:=V]) : Pred .

Lemma 16 (Pure Type Preservation by Substitution)Supposel,x: T,A"; S 5 M :
J Pure,andA -V : T ,and-T' <. T.Thend, A'[x:=V];Z EM[x:=V]:.F’ Pure
where- 7' < 7 [x:=V].

Proof. By induction on the derivation df x: T,A’; 3 5 M : .7 Pure. All cases are
easy, we show one as an example.
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Casep:c{f =W}:
Assume, x: T,A’; 5 bz p:c{f =W} : Proc Pure, andA -V : T/, and- T/ <: T.
By the type ruleqd,x: T,A’ F p: c<@>,
and, fieldsc) = [ Sf,
and,A,x:T,A'FW:S,
and,- S <:S.
By lemmd&I5A,A'[x:=V]+ p: S’ where- S’ <: c<¢>.
By the type rules and def. of well formed erfv=Sc<g>.
By lemmaIbA,A[x:=V]FW[x:=V]:S" where- ' <: S.
By the transitivity of subtyping; ' <: S.
By the type ruleq, A’[x := V] - p:c{f =W[x:=V]} : Proc Pure. O

Lemma 17 (Pure Type Preservation by Evaluation)Supposé\; > ts M : .7 Pure
and M— M’. ThenA; 3 Iy M’ : 7' Pure wherel- ' <. 7.

Proof. By induction on the derivation of M M’.

Case(a[p:c{F=\7}] |r> . (a[p:c{?=\7}] |r>:
£ v
Assume); S s alp:c{f =V} I p.f; : 7 Pure.
By the type rule7 is of the form T,
and,A; S tgalp:c{f=V}1 : 7' Pure,
and,A; 2, alp:c{f=V}] Iy p.f; : 7 Pure,
and, fralp:c{f=V}1 Ir p.f;) C dom(4).
By the type ruleA - p:c{f=V}: .7’ Pure.
By the type ruleA - p: c<@>,
and, fieldéc) =i T f,
and,AFV;: T/,
and,- T <:T.
By the type ruleA -V, : T} Pure.
By the typeruleA+ p: C,
and, fieldéC) = " 7" T,
and, 1 = final.
Itis easy to see that € c<@>,
thereforey; = final and.7 =T/.

Case(a[p:c{f =V} |r> . (a[p:c{f =V} |r>:
p.loc a

Assume); = kg alp:c{f=V31 I p.loc: 7 Pure.
By def. of env, erfa[p:c{f=V1}]) =,
and, enyp.loc) = -.
By the type rule7 is of the form T,
and,A; S tgalp:c{f=V}1 : 7' Pure,
and,A; =, alp:c{f=V3}] 5 p.loc: 7 Pure,
and, fralp:c{f =V} IFaz[p.loc]) C domA).
By the type rule, 7 = Prin.
By the type ruleA +a: Prin .
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By the type ruled; 2 i, a: J Pure.
By the type ruleA; S fgalp:c{f=V}] Fa: .7 Pure.
Caseif V=V then M else N — M:
Assume); > K if V=V then M else N : 7 Pure.
By the type ruleA,V =V; > 5 M : 7 Pure.
By lemmaIRA; S 5 M : .Z Pure.
Caseif V=W then M else N — N:
By hypothesis, VA W.
Assume); 2 5 if V=W then M else N : .7 Pure.
By the type ruled; X 5 N .7 Pure.
Caselet x=V; M — M[x:=V]:
There are two matching type rules.
Assumed; > 5 let x=V; M : .7 Pure by the first rule.
By the type ruled; X 5V : T/ Pure,
and,-FT' < T,
and,A,x:T,x=V; X 5 M : .7 Pure.
By LemmaT6A,V =V; 2 5 M[x:=V]: .7’ Pure, where- ' <: 7.
By LemmaI2A; > bk M[x:=V]: .7’ Pure.
Caseb[M] — b[M']
By hypothesis, M~ M’.
AssumeA; > 5 b[M] : .7 Pure.
By the type ruled; 2 ts M : .7 Pure.
By the IH,A; X s M’ : 7' Pure, wherel- 7/ <. 7.
By the type ruled; 5 5 b[M'] 1 7/ Pure.
Caselet x=N; M — let x=N'; M
By hypothesis, N» N,
Assumel; > g let x=N; M : .7 Pure.
By the type ruleA = N : T’ Pure,
and,FT' < T,
and,A,x: T,x=right(N); Z i M : .7 Pure.
By the IH,A =N’ : T’ Pure.
By LemmaTUA, x: T,x=right(N’); Z t M : 7 Pure.
By type ruleA; X Ig let x=N'; M : .7 Pure.
CaseM — M’ (whereM =N — N' = M’)
Follows easily from induction hypothesis and Theadém 3.
CaseM [N — M’ IIN
By hypothesis, M-~ M’.
Assume thafl; > 5 M [TN : .7 Pure.
By the type ruleA,enyN); = heagN) iF M : .7’ Pure,
and,A,en(M); 3, heagM) iz N : .7 Pure.
By IH, A,enN); Z,heagN) kM’ : 7" Pure, where- 7" < 7.
By LemmaT14,enM’); =, heagM’) 5 N : Z Pure.
By the type ruleAd; >~ 5 M’ TN : .7 Pure.
CaseM TN — M IFN
By hypothesis, N- N'.

31
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Assume thaf\;> M [N : .7 Pure.
By the type ruleA,enyN); =, heagN) 5 M : 7" Pure,
and,A,en(M); 3, heagM) iz N : .7 Pure.

By IH,A,en(M) - N': .7’ Pure, where- ' <: 7.

By LemmaTlA,enN') - M : .7 Pure.

By the type rule/; X 5 M’ TN : 7 Pure.
Case(vp)M — (vp) M’

Follows easily from induction hypothesis.

Lemma 18. Supposél,x:T;Z kg M : Pred Pure and M— M’. Then Mx:=V] —
M’[x:=V] for any xV.

Proof. By induction on the derivation of M M’.

Case(PIP:ctf =V 1] |r> . (b[p:c{f =V} |r):
p.f V
Immediate.

Caselety=V; M — M[y:=V]:
Immediate.

Caselet y=N; M — lety=N'; M
By hypothesis, N» N/,
Assumed x:T;> g lety=N; M : .7 Pure, andA; > 5V : T Pure.

By the type ruleA,x:T; X s N : S Pure,
and,-S <:S,
and,A,x:T,y:Sy=right(N); Z g M : F Pure.
By Lemma&Tl6A; > ts N[x:=V] : S[x:=V] Pure.
By Lemmé&®Bi- S[x:=V] <: §x:=V].
By IH, N[x:=V] — N'[x:=V].
By the evaluation ruldet y=N[x:=V]; M[x:=V] — let y=N'[x :=V]; M[x:=V].

CaseM — M’:

By hypothesis, M= N — N' = M'.

Assumed, x:T;2Z 5 M : .7 Pure,andA; > 5V : T Pure.
By Theorerildd; > ks N[x:=V] : 7 Pure.

By IH, N[x:=V] — N'[x:=V].

By LemméH}, Nx:=V]=M'[x:=V].

By the evaluation rule, M :=V] — M’[x:=V].

CaseM TN — M’ TN

By hypothesis, M~ M’.

Assume thall, x: T;Z M IITN: .7 Pure.

By the type ruleA,x: T,enN); Z,heagN) kM : F Pure,
and,A,x: T,en(M); >, heagM) iz N : .7 Pure.

By IH, M[x:=V] — M'[x:=V].

By the evaluation rule, N :=V] IFN[x:=V] — M'[x:=V] FN[x:=V].

CaseM N — M IFN
By hypothesis, N- N’

Assume thafl,x: T;Z M ITN: .7 Pure.
By the type ruleA,x: T,enN); Z,heagN) kM : F Pure,
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and,A,en(M); 3, heagM) iz N : .7 Pure.
By IH, N[x:=V] — N/[x:=V].
By the evaluation rule, N :=V] IFN[x:=V] — M[x:=V] [ N'[x:=V].
Case(vp)M — (vp) M’
Follows directly from induction hypothesis.

Lemma 19. Suppose effe@@) =6 and> I 6 || . ThenZ [ 8x:=V] | Y[x:=V] for
anyCx,V.

Proof. A corollary of the previous lemma.

Theorem 4 (Type Preservation by Substitution).Supposéd, x:T,A"; 5 5 M :
Z ImpureandA =V : T . ThenA,A'[x:=V]; Z g M[x:=V] : ' Impure, where
I < Tx=V].

Proof. By induction on the derivation df, x: T,A’; X 5 M : .7 Impure. Cases in-

volving values and pure terms are by appeal to theokerhs 18 8nGases involving
impure terms that have matching rules for pure terms follogvg¢ame logic, but with
the trivial addition of a store. The remaining cases for imgterms are shown here.

CaseA,x:T,A’; 2 b new c<@> (W) : c<@> Impure:

AssumeA -V i T .
By the type ruleA, x: T,A”; 3 | o,

and, A, x: T,A’ - c<@>,

and, fieldgc<g@>) =i T f,

and,A,x:T,A”; S W : T/ Impure,

and,-T < T,

and, effectc<g>) = 6,

and,(Z Iralp:c<@>{V}1) Ir O[this := p| | @,

and, clause@,x: T,A’) E a says)y.
By def. wfe. A, A’[x:=V]; 2 Fo.
By IH, A, A'[x:=V] F c<@>[x:=V].
By def. of fields, fields<g>[x:=V]) =
By IH,A,A'[x:=V];Z kW[x:=V]: T'[
By Lemm&B T'[x:=V] <: T[x:=V].
From def. of effect,

it is easy to see that effdck@>[x :=V]) = O[x:=V].
By Lemm&19,

(Z Iralp:c<@>{V}1) I B]this := p|[x:=V] |} w[x:=V].
By def. of clauses,

clause$A), x.loc saysB|this := x|, A’ E a says)y.
By property 6 of the logic,

clause$A),V .loc saysf|[this :=V],A’[x = V]

Fasaysyx:=V].

By def. of clauses,

clause$A,A’'[x:=V]) F a saysy[x:=V].
By the type rule,

A, A [x:=V]; Z b new c<@> (W) [x:= V] : Proc Impure.

LT fx:=V],
x:=V] Impure.
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Caselet y=W./<@>(W'); M:
Assumed, x: T,A"; 5tz let y=W.¢<@>(W'); M : 7 Impure,
and, AFV:T.
By the type ruleA, x: T,A"; 3 o,
and, A, x:T,A'FW:C,
and, bodyC./) = < :Q>S(T),
and,A,x:T,A'+¢:Q,
and, A, x:T,A' W' : T/,
and,- T/ < T[B = ¢,
and,A,x:T,A’,x: S| := @],b: Prin,b=W.loc,Prov(x,b,a); = kM : 7 p.
By IH,A,A'[x:=V]FW[x:=V]:C[x:=V],
and,A,A'[x:=V]F @[x:=V]: Q[x:=V],
and, A, A'[x:=V] FW/[x:=V]: T/[x:=V] .
By Lemmab, bod€[x:=V].¢) = (<B: Q>S(T))[x:=V].
By the type rule,
AN [x:=V]; 5 lzlet y=W[x :=V].l<@[x = V]> (W'[x:=V]); M[x:=V]: Z[x:= V] Impure.
CaseW.f;:
Assumed, x: T, A"; S 5W.f; 1 T ImpureandA -V : T .
By the type ruleA, x: T,A’ W : C,
and, field$C) =i T f,
where.7 =Ti,.
By the Lemmbaa12),A'[x:=V] FW[x =
From the def., field€[x:=V]) = i T[x:=
By the type rulep, A’[x = V] FW[ =V].
CaseW.f, :=W"
Assumaﬂ,x:T,A’;Z BW.f;:=W: .7 Impure,andA -V : T .
By the type rule,Z7 = Unit, and,A,x:T,A’-W:C,
and, field$C) =1 T f,
and, i = mutable
and, A, x:T,A'FW': T/,
and, FT < T.
By LemmﬂSA,A’[x =V]FW[x:=V]:C[x:=V].
From the def., field€[x:=V]) = [i T[x:=V].
By LemmaIbA, A'[x:=V] W [x:=V]: T/[x:=V].
By LemmaB; T/[x:=V] <: Ti[x:=V].
By the type ruled, A'[x:=V]; Z EW[x:=V].f; :=W/[x:=V] : Unit Impure. O

V]:Cx:=V].
V]f
f; : Ti[x:=V] Impure.

Theorem 5 (Type Preservation by Evaluation)Suppos&\; > ts M : .7 Impure and
M — M. ThenA; S g M’ : 7 Impure.

Proof. By induction on the derivation of M- M’. The pure term cases follow directly
from lemmd_1]7 and the cases for impure terms that have mattyyie rules use the
same proofs as in lemrhall7 but with the trivial addition of@est The cases for the
remaining impure terms are shown here.

Casealnew c(V)1 — (vp)(alp:c{f =V}1 IFalpl):
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By hypothesis, fields) = f and [f| = [V|.
Assume); S ky alnew c(V)1:.7 Impure.
By the type rule, 7 has the form cqo> for someqo,
and,A; S tz new c(V) : .7 Impure.
By the type rulej; > + o,
and,A - c<¢>,
and, fieldgc<@>) =i T f,
and,A; SV T Impure,
and,-T' < T,
and, effecc<g>) = 6,
and, [Falthis:c{f=V}1 16 | ¥,
and, clause@) asaysyp.
By the type ruleg, p: c<<p> Zhalp: c{f=V31 : Proc Impure.
By the type ruleA, p: C<(p> Fp: C<(p>
By the type ruleA, p: C<(p> Shp:c<e> Impure.
By the type ruleA, p: c<<p> Zrba[p] c<@> Impure.
By def. of env, erfa[p:c{f=V1}]) =
and, envalpl) =
By def. of heap, hegplp:c{f=V}1) = alp:c{f =V},
and, heagalpl) =
By weakening,
A, p:c<@>; S,alp:c{f=V}] lgalpl : c<@> Impure.
By type ruleA, p:c<@>; = g alp:c{f=V31 Iralpl : 7 Impure.
By tp. rl.,A; S k5 (vp:.7) (alp:c{f=V1}] Iralpl) : .7 Impure.

Case(altp:c{F=V}1|r ) )_} (al[p:c{F=\7}] r ):
aplety=p.l<@>(W); L] agllety=a; [M']; L]
By hypothesis, body.¢) = <f: G>S(X: T){M} where|X| |V|
and, M = Prov(W, az,a;) I Mcaller := ay][this := p][B := ¢][X := W],
and, ' = Prov(y,ag,ap) Il L.
By Lemm&0caller : Prin, this: c<@>, B:Q,X: T; 5 - M : Simpure,
whereﬁ may be free in S anﬁ,i’, caller andthis may be free in M.
Assumel; 5 s ag [p:c{f =V} IFap[let y=p.¢<@>(W); L] : 7 Impure.
By the type ruled; = tsar [p:c{f =V}1 : 7' Impure,
and,A; a1 [p:c{f =V} g ax [let y=p.¢<@>(W); L1 : 7 Impure.
By the type ruleA + ay : Prin
and,A; 3, a; [p:c{f=V}] ks, lety= p.l<@>(W); L: 7 Impure,
and,.7 =SB :=q).
By the type ruled; > + o,
and, A p:c<>,
and, bodyc. () = <B:@>Sx:T){M},
and,A + (p Q
and,A -W:: T/#
and,- T/ <:T[B := ¢],
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and,A,y: _,b:Prin,b=p.loc,Prowv(y, b,az);Z,al[p:c{f=\7}] g, L7 Impure,
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where bg fn(L, .7).
By the type ruleA - Prov(W, az,a;) : _ .
By the type ruled,y: _,a; = p.loct Prov(y,a;,ap) : _.
By substitution,

A,y:_,a1=p.loc,Prov(y,a;,az); Z,a [p:c{f =V} kg, L : 7 Impure.
By the type ruled,y: _,a; = p.loc; Z,a; [p: c{f=V3}] 5, L' : .7 Impure.
By LemmaRA,ai1=p.loc,y:_; 5, a [p:c{f=V3}] ta, L' 1 7 Impure.
By LemmaI3A,a;=ay,y:_; 5, a1 [p:c{f=V}] ta, L' .7 Impure.

By Lemm&IR2A,y: _; 3, a1 [p:c{f=V}] ks, L' : 7 Impure.
By substitution,

A;% 8 [p:c{f=V}] ta, M[caller := ay|[this := p] [ﬁ = @|[X:=W] : _ Impure.
By the type ruleq; =, a; [p:c{f=V3}] ta, M": _ Impure.
By the type rule,

A;3 a1 [p:c{f=V}H k, lety=a, [M']; L' : 7 Impure.
By the type rule,

A5 a[p:c{f=V} lgazllety=a; [M'1; L'] : .7 Impure.
By the type rule,

A;Stgailp:c{f=V31 IFapllety=a; [M'1; L'] : 7 Impure.

a1 [p: c{f =V3] n) . (altp:c{F=\7[vi =W} |r>.
a[p.f;:=wW] ap [unit] ’
Assume); 3 5 ay [p:c{f =V}] IFax[p.f; :=W1 : .7 Impure.
By def. of env, erfey [p: c{f=V}]) =,
and, envax [p.f; :==W1) =enyp.f; :=W) = -.
By def. of heap, .
heapfay [p:c{f =V3}1) = ay [p:c{f =V},
and, heapay [p.f; :=W1) = heagp.f; :==W) = -.
By the type rule,7 is of the form T,
and,A; S lgai [p:c{f=V3}1 : .7/ Impure,
and,A; 5, a1 [p:c{f=V}] iy ax [p.f; :=W1 : .7 Impure,
and, fr(ag [p:c{f=V1}] IFaz [p.f;:=W]) C dom(4).
By the type ruleA + p: c<o>,
and, fieldéc) =i T f,
and,A-V:T.
By the type ruleA > p:c<@>.
By the type ruled; >, a; [p: c{f =V} kg, p.f ;=W : .7 Impure.
By the type rule,7 = Unit,
and,A-p:C,
and, field¢C) = ' T'T,
and, 1/ = mutable ,
and,AFW:T",
and,F T < T/.
Itis easy to see that € c<@>,
therefore,uj = mutable,
and,FT” < T.

Case (
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By the type ruled; S kg ay [p:c{f =V Vi :==W]}] : 7" Impure.

By the type ruleA - unit: 7. .

By the type ruled; >, a; [p:c{f =V[V; :=W]}] I, unit : .7 Impure.

By the type ruled; =, a; [p:c{f =V[V; :=W]}] I5 az [unit] : .7 Impure.

By the type ruled; = ts a; [p:c{f =V[V; :=W]}1 I a3 [unit] : .7 Impure. O

Theorem 6 (Progress)Suppose M : T Impure. Then either M— N orM = (vp:C) (My If
... I'Mp ITV) where for all i, M is either a value or an inert process.

Proof. By Propositiofill all terms are equivalent to a term @rmal for, so we assume
w.l.0.g that M is in normal form. Suppose(vp:C) (N IF M) : T Impure where N=
(W I+ IT'Wy IFNg IF -+ IFNm IFby [Lg] IF--- IFba [Ln]) and M is of the form V oiN
or a[L]. We use Nto denote the ith component of N. By the type rte; - N I M’ :

T Impure. By the type ruIeﬁ:é;heap{N) FM’: T Impure. We first show that either M
can evaluate, or Mis a value by induction on the structure of:M

CaseV:
A value.
CaseN:
Subcasenew c<@> (V):
Term can evaluate.
Subcasedet y=V./<@>(W); M | V.f | V.loc | V.f:=W:
By the type rules for each of these termisC; heagN) - o,
and,p:C+V:C,
By the type rulep:C >V :C.
By the rule for w.f.e.(3H)heagN) > H and H=V : c{f =W?}.
From the def of heap, this can only b&#i )N, =V : c{f=W3.
But then M would be able to evaluate.
Subcasdf V =W then M else N:
Term can evaluate.
Subcasédet x=N; L:
By the structural rule and Theordm 3,
p:Chletx=(NIFN); L: T Impure.
By the structural rule,
et x=(vp:C) (N IFN); L : T Impure.
By the type rule,
F (vp:C)(NITN) : T Impure.
By IH, eitherN is a value, in which case the term can evaluate directly,
or (N I N) can evaluate, in which case it can evaluate by the contegt rul
Subcasdet x=V; M:
Term can evaluate.
Subcasep:c{f =V}
Not applicable; cannottype as T.
CasealL]:
All subcases are the same as fmodulo an application of a structural rule or a
context rule.
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Now consider eachiNThe structural rules can be used to rewrite M (aaﬁ:(f) (MHIF
N IFM’) where M= (Ny IF ... IFNi_1 [T N IT ... IF No_1). By the type rulep:C +
M’ IF'N; IF M : T Impure. By the type rule, noting that the structure of Mhplies that
enM’) = heagM’) = 0, p:C;heagM') - N; : .7 Impure. We now show that either
each N is a value or an inert process, or M can evaluate by inductioritee structure
of N. All cases are essentially identical to the previous intgcproof, except that
p: c{f=V} is allowed because it is an inert processes. |

Definition 5 (Safety).Define let-contextg as
E =] | letx=E;M
A term M issafeif whenever

M —*= (vp:C) alE[new c<@>(V)]] IF M/
or
M —*= (vp:C) M’ I alE[new c<@>(V)]1,

and effectc<¢>) = 6 and heagM’) = Zand(Z IFalp:c<@>{V}1) I B[this == p| |} ¢
(where p¢ fn(6)) then either claus€®:C,en(M’)) E Y ora= 1.

Corollary 2 (Safety). Suppose thas:C; = ks M : T Impure. Then(vg:C) 1[N] I
2 Ira[M] is safe for any N.7 such thatg:C; Z it N : .7 Impure.

Proof. A corollary of Theorei]5.



