Electronic Notes in Theoretical Computer Science 10 (1998)
URL: http://www.elsevier.nl/locate/entcs/volumelO.html 21 pages

Similarity and Bisimilarity for Countable
Non-Determinism and Higher-Order Functions

(Extended Abstract)

Sgren B. Lassen !

University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, United Kingdom
Soeren.Lassen@cl.cam.ac.uk

Corin S. Pitcher 2

Ozford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
Corin.Pitcher@comlab.ox.ac.uk

Abstract

This paper investigates operationally-based theories of a simply-typed functional
programming language with countable non-determinism. The theories are based
upon lower, upper, and convex variants of applicative similarity and bisimilarity,
and the main result presented here is that these relations are compatible. The
differences between the relations are illustrated by simple examples, and their con-
tinuity properties are discussed. It is also shown that, in some cases, the addition of
countable non-determinism to a programming language with finite non-determinism
alters the theory of the language.

Key words: lambda-calculus, applicative bisimilarity, countable
non-determinism.

1 Introduction

Non-deterministic programs are used in the study of concurrent systems, to
abstract from scheduling details, and in methodologies for program construc-
tion, where specifications are regarded as non-deterministic programs. In re-
cent years, several non-deterministic higher-order languages have been pro-
posed in the literature in these areas (see, e.g., [28,4]). Non-determinism is

L Supported by a grant from the Danish Natural Science Research Council and grant num-
ber GR/L38356 from the UK EPSRC.
2 Partially supported by a UK EPSRC studentship.

(© 1998 Published by Elsevier Science B. V.

LASSEN AND PITCHER

also found as an integrated feature of the higher-order, operationally-based
semantic meta-language of action semantics [19]. In this paper we use op-
erational techniques to study the interaction between non-determinism and
higher-order functions in an idealised, minimal programming language.

We investigate three variants, lower, upper, and convex, of applicative sim-
ilarity and bisimilarity for a simply-typed functional programming language
with countable non-determinism. This builds upon work by Abramsky, Howe,
and Ong [1,11,12,21] for deterministic and finitely non-deterministic higher-
order calculi.

The variants of the relations correspond to the different constructions on
preorders that are used to characterise the lower, upper and convex pow-
erdomains. Their definitions refer to an inductively defined may convergence
relation between terms, and also a co-inductively defined may divergence pred-
icate on terms, for the upper and convex variants. For each variant there is
an applicative similarity preorder and an applicative bisimilarity equivalence
relation, both defined by co-induction. In addition, the applicative similarity
preorders determine mutual applicative similarity equivalence relations that
do not coincide with applicative bisimilarity. The proliferation of preorders
and equivalences reflects the conflicting requirements of different applications
for semantic theories of non-determinism. This complexity is not apparent
in the absence of non-determinism, because the nine relations defined here
collapse to just two.

It is of fundamental importance to know whether the relations are com-
patible, i.e., are they preserved by the constructors of the language? We
prove that this is the case for all of the relations, extending methods due to
Howe and Ong that were previously restricted to finitely non-deterministic
languages for the upper and convex variants. By the use of induction on the
derivation of a must convergence judgement (the complement of the may di-
vergence predicate) their methods are extended smoothly to a language with
countable non-determinism.

Must convergence is defined inductively via a finite collection of infinitary
rule schema, and so ordinal heights can be assigned to the derivation trees
of must convergence judgements in the usual way. Such trees have heights
strictly less than w for finite non-determinism, and heights strictly less than the
least non-recursive ordinal w®® for countable non-determinism. This allows
us to prove unwinding theorems for fixed points terms with respect to must
convergence: w-unwinding in the case of finitely non-deterministic terms, and
a more unusual w{-unwinding for countably non-deterministic terms.

2 A Functional Language with Non-Determinism

The vehicle for the examples and results in this paper is a variant of the lan-
guage of Moggi’s computational lambda-calculus [17,7]. Within the computa-
tional lambda-calculus there is a distinction between values and computations

2

LASSEN AND PITCHER

that is enforced by the type system through a type-constructor for computa-
tion types. There are mechanisms for creating and composing the programs
of computation types.

The language is extended with an operator ?N to choose any natural num-
ber. The new construct is the sole source of non-determinism in the language,
and, because it is assigned an appropriate computation type, non-determinism
is restricted to the computation types. This restriction is convenient because
the mechanism for composing computations can be used to control when non-
determinism is resolved—an alternative is to incorporate both call-by-name
and call-by-value abstractions (see, e.g., [22]). In addition, although the ex-
amples presented here have analogues at function types, they are simpler at
computation types.

The types of the language are:

o,7 ==unit | nat | 0 — 7 | P(0)

The computation types are those of the form P(c), and the remaining types
are called deterministic types.
The terms of the language are:

L,M,N:=uxz| % | n|uop(M) |bop(M,N) |
if Lthen Melse N | Az :0.M | M N |
[M] |letx:0<«< MinN |fixx:o0.M | 7N

where x ranges over a countably infinite set of variables, n ranges over N, and
uop and bop range over a suitable set of symbols representing, respectively,
unary and binary primitive recursive functions, e.g., not, plus, leq. For the
sake of economy, booleans are represented by natural numbers: 0 for false,
and 1 for true. The primitive recursive functions are assumed to follow this
representation, and are denoted, e.g., (not) : N — N, (plus), (leq) : N> — N.
Variable binding terms follow the usual conventions for scope, a-conversion,
and type annotations to ensure uniqueness of typing. The notation M[N/z]
denotes the capture-free substitution of NV for free occurrences of x in M. The
canonical terms are:

Ko=x|n|Xx:0. M| [M]

The type assignment rules in figure 1 are based on those of the compu-
tational lambda-calculus. We follow the convention that environments are
partial functions, and that I', z : o is only defined when z is not in the domain
of I.

The sets of terms and canonical terms that are closed and well-typed are
FEzp and Can respectively. A term that is closed and well-typed is called a
program. The set of programs of type o is Ezp,,.

3

LASSEN AND PITCHER

'Fxz:0 (I'(z)=o0) [« : unit 'Fn:nat (neN)
I'= M : nat 't~ M : nat I'= N :nat
['F uop (M) : nat ['F bop (M, N) : nat

'~ L :nat 'EM:o I'EN:o
I'kif LthenMelse N : o

e:okHM:71 'EM:o0—r71 'EN:o
'FXx:oM:0—T 'EMN:T

'EM:o I'EM:P(o) [yoz:ob N:P(1)
I'F [M]:P(o) I'Fletx:0 < MinN :P(7)

[z:P(o)F M:P(o)
['Ffixxz: P(o). M : P(o)

[' -7?N : P(nat)

Fig. 1. Type Assignment

Many of the examples that we give do not depend on the existence of
distinct canonical programs at a base type, and in such cases we use the unit
type in preference to nat.

The operational semantics is presented as an inductively defined evaluation
relation ||™*, called may convergence, between programs and canonical closed
terms. The rules are shown in figure 2. The may convergence relation is not a
partial function because of the rule that allows ?N to converge to any natural
number.

In contrast to the situation for deterministic programs, the divergent (non-
terminating) behaviour of a non-deterministic program is not determined by
its convergent, behaviour. Following [6,8,18] we define a may divergence predi-
cate 1™* on programs by co-induction. The may divergence rules are given in
figure 3. The symbol (—) at the side of each rule is used to indicate that the
may divergence predicate is the greatest fixed point of the monotone function
determined by the rules. Note that there is some redundancy in the may di-
vergence rules, because it can be shown that programs of deterministic types
cannot diverge.

Examples 2.1 and 2.2 highlight properties of the programming language
that are relevant in the sequel.

Example 2.1 The construct for sequencing computations in the computa-
tional lambda-calculus provides an additional degree of control over the resolu-
tion of non-determinism. For example, a call-by-value abstraction is definable
at computation types (where y is fresh for M):

Nz o MY Ay :P(o).letx:0 < yinM

The call-by-value abstraction exhibits (weak) call-time choice, i.e., a non-

4

LASSEN AND PITCHER

K |™ K (K € Can)
M ™ n M)™ n, N ™ ngy
uop (M) ™2y (uop)(n) bop (M, N) ™ (bop)(nq,ns)
L™ n4+1 M ™ K L™ 0 N ™ K
if Lthen M else N |Jmay K (neN) if Lthen M else N ||may K
M ™ \x. My M, [N/z] |™ K
M N |may K
M ™ [M;] N[M; [z] | K
letx <= Min N M K
M{fixx. M /x| }™ K
fixx. M ™y K

IN U™ [n] (neN)

Fig. 2. May Convergence

deterministic program of type P(o) is resolved to program of type o at the
time that it is passed as an argument.

Example 2.2 Recursion is only available at computation types, but given a
term T, f:0 = P(r) & M : 0 — P(1) the following acts as a fized point
(where g and = are fresh for M):

[Az let f < fixg. [Av.let f < ginMzx]inMz:0— P(7)

Non-determinism is often introduced via a binary operator, binary erratic
choice. It can be defined in the programming language in terms of ?N.

Example 2.3 The binary erratic choice of programs M and N of the same
computation type is defined to be (where y is fresh for M and N):

(MorN) ety <=?N inif y then M else N

Non-determinism is informally classified by the cardinalities of the sets of
convergent behaviours of programs that cannot diverge (see section 6 also).
For example, the binary erratic choice of deterministic terms is said to be
finitely non-deterministic, whereas ?N is said to be countably non-deterministic.
Konig’s lemma ensures that recursion does not provide a route from finite to
countable non-determinism.

Example 2.4 The program below can converge to any natural number, but
may also diverge:

= fixz. ([0] orlety <= xin [plus (y, 1)]) : P(nat)

It cannot be distinguished from TN by equivalences that ignore divergent be-
haviour.

LASSEN AND PITCHER

M Mg N g
uop (M) fymay bop (M, N) fymay bop (M, N) {jmay
L ﬂmay B
if Lthen M else N fjmay
M ﬂmay
— (L™ 1 and
if Lthen M else N fpmay (L™ n+1landneN)
N ﬂmay
_ I ||may
FLthen M else N (L™ 0)
M ﬂmay Ml[N/]I] ﬂmay
—_—— R (MO N\, M
M N Aymay M N {may (M x. M)
M ﬂmay N[Ml/l'] ﬂmay
— _ M m™ay [Af
letz < Min N fma ote = Min N qma (M M)
Mfixx. M/z] ™
fixx. M {may

Fig. 3. May Divergence

3 Similarity and Bisimilarity

Abramsky [1] develops a notion of applicative similarity for the untyped lazy
lambda-calculus, building upon earlier work of Park and Milner [16] in the
context of process calculi. The preorders and equivalences described in this
section are based upon Abramsky’s work and subsequent extensions to non-
deterministic functional languages by Howe and Ong [12,21].

There are two fundamental differences between the deterministic and non-
deterministic settings: applicative bisimilarity is not the same as mutual ap-
plicative similarity, and there are different ways of ordering non-deterministic
programs that correspond to the constructions on preorders used to charac-
terise the lower, upper, and convex powerdomains (see, e.g., [10,27]). This
leads to nine distinct variations of applicative similarity and bisimilarity for
non-deterministic programs, which collapse to just two relations on determin-
istic programs.

For the sake of brevity, “applicative” is implicit when similarity or bisimi-
larity are used in the sequel. The reader is also cautioned that terminology for
(what we call) similarity or bisimilarity differs amongst authors. We use the
following conventions: simulations and bisimulations are post-fixed points of
a function; similarity and bisimilarity are the greatest simulations and bisim-
ulations respectively; the prefix “bi” refers to a function on relations with a
symmetric image; mutual similarity is the greatest symmetric relation con-
tained in similarity.

LASSEN AND PITCHER

The variants of similarity and bisimilarity are defined in terms of two func-
tions of binary relations on programs. For a binary relation R on programs,
we define binary relations on programs: (R);q and (R)yg. The subscripts
abbreviate lower similarity and upper similarity.

Definition 3.1 Let R be a binary relation on programs. The binary relations
(R) s and (R)yg are defined by:

(i) M, N € Exp, are related by (R),q if:
(a) o = unit; or
(b) o =natand In € N. M ™ n A N ™ n; or
(c) o= =1 and VL € Ezp,. (M L)R (N L); or
(d) o= P(T) and VM. M Ufma'y [Ml] - (E‘NlN Ufma'y [Nl] VAN MlRNl)

(i) M,N € Exp, are related by (R)yq if:
(a) o = unit; or
(b) o =natand In € N. M ™ n A N {™¥ n; or
(c) o= =1 and VL € Ezp,. (M L)R (N L); or
(d) o= P(7) and ~(M (%) =
((ﬂma.y) A VN{.N Ufma'y [Nl] - (ElMlM Ufma'y [Ml] /\MlRNl))

The functions (-);¢ and (-)yg differ only in their action at computation
types. If the assumption that divergent behaviour is less than any convergent
behaviour is made explicit, then an immediate connection can be made with
one of the methods used to construct the lower and upper powerdomains
[21,23].

We are now in a position to define the nine variants of similarity and
bisimilarity. Six of the relations are defined as the greatest fixed points of
combinations of the functions defined above. However, it is easy to verify by
induction that the simple type system of the computational lambda-calculus
ensures that the greatest fixed points of the functions are also least fixed
points. The remaining relations, the mutual similarities, are the greatest sym-
metric relations contained in the three similarities.

Definition 3.2 The similarity and bisimilarity relations are defined by (where
VR.¢(R) denotes the greatest fixed point of ¢):

def
Sts = VRA(R)s

~J

Sus = VR.(R)y

~J

wn

(R)us N (RP)s N (R™)Tg

In addition, the mutual similarities o~ g, >4, and ~g are defined to be the

7

LASSEN AND PITCHER

greatest symmetric relations contained in <;q, Syg, and Sog respectively.

~J

The names of the relations are summarised in the table below.

Lower | Upper | Convex
Similarity | <;q <us Scs
Mutual Similarity | o~ ¢ ~ug ~cs
Bisimilarity | ~; 5 ~uB =cB

We refer to the tutorial papers [9,26] for the standard results concerning
similarities and bisimilarities: each similarity is a preorder; each bisimilarity
and mutual similarity is an equivalence; and the program that cannot con-
verge, () L fix 7. x, is a least element for each of the similarities. In addition,
it is immediate from the definitions that programs related by any of the sim-
ilarities or bisimilarities have the same type.

Although the method of definition of the similarities and bisimilarities is
convenient for the proof of compatibility in section 4, it is helpful to have the
unwound definition to mind. In the case of convex bisimilarity we have that,
if M and N are programs of the same computation type, then M ~.5 N if
and only if:

(i) VM. M ™ [M;] = (IN;.N ™ [Ny] A My ~q5 Ny); and

(ii) VNN ™ [N)] = (IM.M ™ [M] A My ~q5 Ny); and
(iii) M M@= N {may,
Lower bisimilarity follows the same pattern as convex bisimilarity with the
exception that condition (iii) is dropped. We omit the unwinding of upper
bisimilarity, but note that it identifies programs that can diverge, and that
it does not identify a program that can diverge with one that does not. For
example, the program in example 2.4 is identified with ?N by lower similarity
and bisimilarity, but not by the upper and convex variants of similarity and
bisimilarity.

Lemmas 3.3 and 3.4 state elementary properties of, and relationships be-
tween, the different variants.

Lemma 3.3 FErratic choice is the join operation for <, g, and the meet opera-
tion for Syg at the computation types, i.e., for all programs of a computation
type L, M, N:

(i) (LorM)<;sN if and only if LS, o N and M S N.

(i) L<ys(MorN) if and only if L Sys M and L Syg N.

~J

Lemma 3.4 The following inclusions hold:
(1) Scs € Sus N Suss Zes € s Ny, and 2o © 25 N .
(ii) ~pp € 215, ~yp © s, and ~cp C g

8

LASSEN AND PITCHER

SLS \ / SUS
SJCS

ZLS \ / ZUS
=cs

ZLB \ / ZUB
~cB

Fig. 4. Inclusions between Similarities and Bisimilarities

Example 3.5 The following examples demonstrate the strictness of the in-
clusions of lemma 3.4:

(i) For any program M, (Qor [[M]]) and (Qor [(Qor [M])]) are related by:
(s N ~yp), (s N~>ys), and (Sps N Sus); but not by: Ses, ~og, and
~cp. From this we derive:

(Qor [[M]]) ((SrsNSwus) \
(or [[M]]) (=215 N =yg) \
(Qor [[M]]) (=15 N=yp) \

(i) If M (Sps \ Spo) N, then ([M] or [N]) (s \ ~=1p) [N]. Similarly, if
we have M (Sus \ SUg) N, then [M] (~ys \ ~=yg) ([M] or [N]). The as-
signment M = Q and N = [%] satisfies both of the hypotheses. Finally, if
L (Ses \ Scs) M (Ses \ Ses) N, then:

([L] or ([M] or [N])) (=cs \ ~cp) ([L] or [N])

A suitable assignment is: L = Q, M = (Qor [x]), and N = [%].

Figure 4 depicts the relationships between the similarities and bisimilarities
described in lemma 3.4 and example 3.5. Every edge denotes a strict inclusion.

As previously stated, the similarities and bisimilarities collapse to a sim-
ilarity preorder and a bisimilarity equivalence respectively if we remove 7N
from the programming language. It is easy to construct programs, see exam-
ple 3.6, that demonstrate that the introduction of finite non-determinism is
not conservative for any of the similarities and bisimilarities. Perhaps more
surprising is that the upper and convex variants of similarity and bisimilarity
are not conservatively extended when finite non-determinism is extended to
countable non-determinism. This is discussed in example 3.7.

Example 3.6 The following programs cannot be distinguished by application
9

LASSEN AND PITCHER

to deterministic programs:

= Az : P(nat). lety < xin [plus (y,y)] : P(nat) — P(nat)
= Az : P(nat).lety < zinletz <= xin [plus (y,)] : P(nat) — P(nat)

They can be distinguished by applying them to a non-deterministic program
such as (0or1), in which case the second program may converge to [plus (0, 1)].

Example 3.7 The following programs cannot be distinguished by application
to finitely non-deterministic programs:

= Az. [%] : P(nat) — P(unit)
= £0:P(nat) — P(unit)

where fxy Lot 2 < yinif (leq (z,x)) then [x] else f zy

(the definition of f is intended to be formalised as in example 2.2). The
programs can be distinguished by the upper and convexr similarities and bisimi-
larities by applying them to ?N. The first program is a strict constant function.
The second program has only one convergent behaviour, will fail to terminate
if its argument does, but, in addition, may diverge if it is possible to read an
infinite, strictly increasing sequence of numbers from its arqgument.

The similarity and bisimilarity relations extend in a standard way to rela-
tions on arbitrary typed terms by open extension. In general, the open exten-
sion of a relation on programs R, denoted R°, relates typed terms I' = M : o
and ' N:ocif '=21:7,...,2,: 7, and

MLy /%] .. .[La/a] R NILi/21]. .. [Ln/]

for all L, € Ezp,,..., L, € Ezxp_ .

4 Compatibility

In this section we sketch a proof that the open extensions of the similarities
and bisimilarities of section 3 are compatible for the programming language.
A relation R is compatible for a language if it is preserved by every constructor
6 of the language, that is, R is closed under the rule:

MiRN; ... MyR N,
O(M,...,M,) R O(Ny,... . N,)

where the arity of # is n. Compatibility is of fundamental importance because
it is a prerequisite for compositional reasoning.

Howe [11] describes a method using a congruence candidate for proving
the compatibility of lower similarity. In later work, Howe [12] and Ong [21]
extend the method to convex bisimilarity and convex similarity respectively.

10

LASSEN AND PITCHER

Unfortunately, other methods (see, e.g., [1,25,5]) that have been used to prove
compatibility of similarity for deterministic programming languages do not
seem to be applicable here: there are difficulties with interpreting ?N in the
upper and convex powerdomains, and the methods based on syntactic logical
relations use syntactic continuity (see section 5) to establish the fundamental
property. Moreover, the compatibility of mutual similarity does not entail the
compatibility of bisimilarity for a non-deterministic programming language.

We now sketch Howe and Ong’s extension of Howe’s congruence candidate
method.

(1)

(i)

The congruence candidate R*® of a binary relation R on programs (which
will range over the variants of similarity and bisimilarity) is an inductively
defined binary relation on (potentially) open, well-typed terms. It is
the least relation closed under the following rule, where 6 ranges over
constructors of the language, including variables, and the arity of # is n:

LiR*M, ... Ly,R*M, O(M,,... , M,)R°N
O(Ly,..., L) R*N

If R is a preorder, then the congruence candidate R° satisfies:

(a) R° C R°.

(b) R*;R° C R".

(c) R* is compatible.

(d) M{R* Ny AN MyR®* Ny — Ml[MQ/IL'] R® Nl[NQ/]I]

If R is a preorder, the restriction to programs R of the congruence
candidate R*® is a post-fixed point of (-) ¢ or (-)yq if R is:

(a) R € (R)s = R S (Ri)us

(b) R € (R)ys == R S (Rf)us-

This is established by induction on the derivation of a may convergence
judgement for (a), and on a natural number that is derived from a pro-
gram that cannot diverge for (b)—although a problem is discussed below.

When R is lower, upper, or convex similarity, we deduce by co-induction
that Ry C R, and thus R* = R°. Consequently, the open extensions of
lower, upper, and convex similarity are compatible, because the respec-
tive congruence candidates are. Compatibility of the mutual similarities
follows immediately.

The final step is to deduce that each of the bisimilarities are compatible.
If R is an equivalence, it can be shown using induction that R®* C R**+°P,
where R*" denotes the transitive closure of the congruence candidate of
R, which is compatible by an easy induction. Hence, R*" C R**°P, so
R*T is symmetric. In addition, we can derive from (iii) that:

(a) R € (R)rs = R5" C (Rf)fs € (Re s

(b) R € (R)us = Ry" C (Ri)is € (R us-

As in (iv), co-induction can be used to show that R*" coincides with R,

11

LASSEN AND PITCHER

K ™t (K € Can)
M Umust M Umust N Umust
uop (M) ymst bop (M, N) st
L Umust M Umust
if Lthen M else N |jmust
L ‘U’mUSt N ‘U’mUSt
if Lthen M else N {jmust
M |must M;[N/x] |must
M N |Jmust
Moyt AN[My fa] § | MO (M]}
letx <= M in N |jmust
M{fix x. M /z] ™t
fixx. M |Jmust

(LY™ n+1and n € N)

(L 47 0)

(M ™2 Mz, M)

?N Umust

Fig. 5. Must Convergence

when R is lower, upper, or convex bisimilarity. Therefore, the bisimilar-
ities are compatible.

It is worth noting that the method also works for recursive types and in
the absence of types, and that the use of the computational lambda-calculus
means that we do not need to use disjoint sets of call-by-name and call-by-
value variables as in [12,21].

However, we have glossed over a problem with (iii)(b). Howe and Ong
assigned natural numbers to programs that cannot diverge and that have
only finitely many convergent behaviours. For this reason, their proofs only
hold for programming languages with finite non-determinism.

The method can be extended to a language with countable non-determinism
by using induction on the derivation of a must convergence judgement. The
rules for must convergence |J™*" appear in figure 5. Using induction on these
rules, the proof works smoothly for both finite and countable non-determinism.
The only problem is, how do we know that, for any program M, M (™% if
and only if M [}™? This turns out to be trivial, because the complement of
the greatest fixed point of a monotone function on a complete boolean lattice
is the least fixed point of another monotone function that can be derived from
the original function (see [2]), and the must convergence rules in figure 5 are
derived in this way from the may divergence rules in figure 3.

Theorem 4.1 The lower, upper, and convex variants of similarity, mutual
similarity, and bisimilarity are compatible.

12

LASSEN AND PITCHER

5 Convergence and Continuity

This section describes unwinding properties of recursive programs with re-
spect to may and must convergence, and examines related syntactic continuity
properties of the lower and upper similarities. The first part covers may con-
vergence and lower similarity, and the second part covers must convergence
and upper similarity. The latter includes an analysis of the heights, measured
by ordinals, of derivation trees associated to must convergence judgements.

Well-typed terms of the form fix x. M, henceforth called fixed point expres-
sions, satisfy a finite unwinding property With respect to may convergence: for
any fixed point expression fixz. M, let fix™x. M denote the n’th unwinding,
defined inductively by:

fix O M 0

fix Vg A M{fix Wz, M/z]
Then, whenever z : P(o) - M : P(o) and x : P(o) - N : T,
Nlfixz. M/x] ™% if and only if In < w. N[fix Wz, M/z] ||m (1)

where L ™ if and only if dK. L ||™® K. The proof is the same as for
deterministic languages (see, e.g., [15,26]).

A related result is a so-called syntactic continuity property of lower simi-
larity on deterministic programs: for terms N and M, as above, and L € Ezp_,

Nlfixz. M/z] <, L if and only if Vn < w. N[fixWz. M/z] < gL (2)

See [14,26]. But syntactic continuity is not valid, in general, for non-deterministic
programs:

Example 5.1 Recall the progmm M Y fixa. ([0] orlety < xin [plus (y, 1)]),

from example 2.4. Let N ety <N |n llet y <=?N in [if leq (z, y) then x else y]].
Then, for every finite unwinding M™ of M, [(")] 15 lower similar to N.
But [M] and N are not lower similar. (The calculations are straightforward.)

We now turn our attention to must convergence. First, consider finitely
non-deterministic programs where non-determinism only occurs in the form of
binary erratic choice. In this case, the derivation trees of the must convergence
judgements introduced in section 4 are only finitely branching. As a result,
the finite unwinding property of fixed point expressions (1) also holds with
respect to must convergence. Moreover, upper similarity satisfies the syntactic
continuity property (2) (see [15]).

In general, must convergence derivation trees of programs involving count-
able choice are countably branching. The complexity of the trees can be
measured by assigning ordinals to them in the usual way (a node is assigned
the supremum of the successors of the ordinals associated with its children,

13

LASSEN AND PITCHER

see, e.g., [20]), and this allows us to give an ordinal bound to the induction
used in the proof of theorem 4.1. The bound is simply the supremum of the
ordinals associated to the derivations of must convergence judgements. Fol-
lowing work of Apt and Plotkin [3], the bound turns out to be wi¥, the least
non-recursive ordinal. We recall the definition of recursive ordinals below, but
refer the reader to [29,20] for detailed accounts of the recursive ordinals.

Definition 5.2 An ordinal « is recursive if there exists a decidable order on
the natural numbers that is order-isomorphic to a.

We first demonstrate that for each recursive ordinal « there is a program
that cannot diverge, and that has a must convergence derivation tree with
height at least o. Since « is a recursive ordinal, and it can be verified that
every partial recursive function can be defined in the programming language,
there is a program M, : nat — nat — P(nat) that does not diverge on any
input, and the relation that it represents is order-isomorphic to a. Now we
also need to construct a program slow that accepts as arguments a program
representing an order on natural numbers, and a natural number. It then
“counts down” from the given number until it reaches a minimal element, at
which point it converges to [x]. The type of the program is:

- slow : (nat — nat — P(nat)) — nat — P(unit)

It is intended that the numeric argument, say n, is the code, with respect to
the coding used by M,, of an ordinal # < «, and that the height of the deriva-
tion tree of (slow M, n) ™" is at least 3. Intuitively, the must convergence
derivation tree for this program should contain as sub-trees the derivation
trees for (slow M, m) ™" where m codes an ordinal strictly less than f3.
The expressive power of 7N can be used to do this: by choosing any natural
number we are choosing the code of any ordinal strictly less than «. The
decidability of the order on codes of ordinals strictly less than a allows us
to then discard codes of ordinals that are greater than or equal to 3. The
following definition accomplishes this:

slow fz & lety <?Ninletz < fyzinif z then (slow f 1) else [x]

Then, for each recursive ordinal « represented by M,,, we can define a program
with a must convergence derivation tree of height a:

let z <=?N inslow M, (3)

In the other direction we have to show that the ordinal height of a must
convergence derivation tree is always recursive. Suppose that M is a program
that must converge, and that has a derivation tree with height ae. The ordinals
strictly less than o are represented by paths in the tree that start at the root
of the tree, i.e., at M, together with annotations for the may convergence

14

LASSEN AND PITCHER

side-conditions. With the side conditions given, it is decidable whether an
arbitrary path is a valid path from M by checking each component of the
path against the rule schema of figure 5. With a suitable encoding of paths
in the tree as sequences of natural numbers, the derivation tree of M [must
is a recursive tree, and then the Kleene-Brouwer order on paths of the tree
is both decidable and order-isomorphic to an ordinal greater than or equal
to a. We refer the reader to [20] for the definition of recursive trees and the
Kleene-Brouwer order.

In general, fixed point expressions in countably non-deterministic programs
do not satisfy a finite unwinding property with respect to must convergence,
because of the possibly transfinite heights of derivation trees; and the syntac-
tic continuity property of upper similarity is invalid. For instance, if o > w,
the program (3) is a counterexample to both the finite unwinding and syntac-
tic continuity properties. It is, however, possible to formulate an unwinding
property for must convergence that holds for countable non-determinism by
progressing to transfinite unwindings:

Nfixaz. M/x] ™ if and only if Ja < w. Nfix @z, M/z] ™ (4)

In order to make sense of this assertion, we need to define the transfinite un-
windings and their must convergence behaviour. We extend the syntax with
new terms fix Mz. M, for all recursive limit ordinals \, with the same typing
rule as for ordinary fixed point expressions. Arbitrary recursive unwindings

fix @z, M, for a < wS, are defined if we let fix ©z. M L1 Q. as above, and,

inductively, fix @Dz, M < Mfix @ z. M/z], for all & < wCK. Next, the defi-

nition of must convergence has to be extended to the new terms. Intuitively,
we want the following rule which expresses that the must convergence at re-
cursive limit ordinals is the best of all the must convergence behaviours at
smaller ordinals:

fix (@) g, M |must
fix Mg, M |Jmust

(@ < A < wPK)

But, since the definition of must convergence in figure 5 depends on may
convergence, it would be necessary to extend the may convergence relation on
terms of computation type to the new terms as well, and it it is not clear how
to do this. We get around this obstacle by giving a self-contained definition of
must convergence at computation types without reference to may convergence.
This can be achieved by means of either a “structurally inductive” definition
of the must convergence predicate, M ™ in the style of Pitts [24] or an
inductively defined must convergence relation, M |[™"% I/, between terms M
and sets of canonical terms Y. We sketch the second solution here. If M is
a term in the original language, the meaning of M [|™"' I/ is that M must
converge and that U is the set of canonical terms that M may converge to.

15

LASSEN AND PITCHER

For example,
K ™t {K} (K € Can) N Y™t {n] n € N}
A rule for let can be given without reference to may convergence:

M |mst Y {N[M; /2] §™" V| [My] € U}
etz < Min N Jmust | {Var.| [My] € U}

The remaining rules are straightforward and make no reference to may con-
vergence at computation types. The must convergence relation is extended
to the new terms for transfinite unwindings of fixed point expressions by the
rule:

fix (. M |must g
fix Mg, M [Jmust 74

(a < X < wiK)

The analysis of the definition of the must convergence predicate in figure 5
shows that the closure ordinal of the rules for the must convergence relation

is also w®. The must convergence predicate, M ™ is obtained from the

must convergence relation as M {J™ust 3y m JJmust 74 This concludes the

definition of the must convergence behaviour of the transfinite unwindings of
fixed point expressions. The proof of (4) is by induction on the derivation of
the must convergence judgment.

The definition of the upper similarity from section 3 can be extended to
programs with occurrences of transfinite unwindings of fixed point expressions,
by extending (R)q to relate programs M, N € Ezp, at computation types
o=P(r)if

VUM ™ Y = (FV.N ™" VAVYN, € VIM, € U.M; R Ny)

The extension of upper similarity is obtained as the greatest fixed point of
the extended definition of the function (-); 4. It is compatible with respect
to the extended language. The compatibility proof for upper similarity from
section 4 carries over if the induction is now conducted on the derivation of
M Umust u

We ask two questions about the extension of upper similarity to the ex-
tended language. First, is it a conservative extension, i.e., does it include the
upper similarity relation defined in section 3 for the original language? Second,
does it enjoy a transfinite syntactic continuity property? If both are answered
affirmatively, we get a useful induction principle for reasoning about fixed
point expressions with respect to upper similarity in the original language.
The two questions are left as open problems.

16

LASSEN AND PITCHER

6 Beyond Countable Choice

We have described two forms of non-determinism: the construct that we have
taken as primitive 7N, and binary erratic choice. In this section, we outline
two other possibilities that have been proposed in the literature.

The first is based on the observation that binary erratic choice has precisely
the same expressiveness as a new choice construct 7 {0, 1} that may converge to
either [0] or [1], but cannot diverge. It is natural to ask whether other forms of
non-determinism can be obtained in a similar way, e.g., if X is a non-empty set
of natural numbers, then what is the expressiveness of a choice construct 7.X
that may converge to [n], for any n € X, but cannot diverge? It turns out that
choice constructs for countably infinite sets of natural numbers are not always
equally expressive, because Apt and Plotkin [3] show that exactly the choice
constructs for non-empty, recursively enumerable sets of natural numbers can
be defined from ?N. This suggests that classifying non-deterministic programs
by the cardinality of their convergent behaviour is misleading.

However, classification is not the only issue affected by the result of Apt
and Plotkin. In the light of example 3.7, it is of interest to know whether
the presence of additional forms of non-determinism further alters the upper
and convex variants of similarity and bisimilarity. If this is the case, then a
denotational model of non-determinism that can interpret sets of natural num-
bers that are not recursively enumerable will discriminate more than mutual
similarity (or bisimilarity) for a programming language with only 7N.

In order to study these problems, the programming language given here
can be extended with additional choice constructs of the form described above.
The proofs of compatibility sketched in section 4 readily extend to more gen-
eral forms of “erratic” non-determinism [23]. Roscoe [30] studies similar non-
deterministic choice constructs in an extension of CSP.

McCarthy’s ambiguous choice operator exhibits a very different form of
non-determinism. The ambiguous choice of two programs has a natural, fair
(also known as dove-tailing) implementation: run both programs in parallel,
and return the value of the first to converge. The ambiguous choice of two
programs can converge to any value that the programs can converge to, but
only diverges when both programs can diverge.

Moran [18] studies a functional programming language extended with am-
biguous choice and proves that lower similarity is compatible for the language.
An example is given there that shows that convex similarity cannot be com-
patible in the presence of ambiguous choice. Similar examples can be used to
show that upper similarity and bisimilarity also fail to be compatible. How-
ever, the compatibility of convex bisimilarity in the presence of ambiguous
choice is an open problem. The method described in section 4 is not immedi-
ately applicable because it would imply the compatibility of convex similarity.

17

LASSEN AND PITCHER

7 Conclusion

We have defined a simply-typed functional programming language with an
operator that can converge to any natural number, and have introduced nine
compatible relations on programs. The relations are lower, upper, and con-
vex variants of applicative similarity and bisimilarity. Although some of the
relations have been studied individually in the literature, we have emphasised
that they can be constructed using only two functions, and that this affords a
natural structure to the proofs of compatibility. In addition, we have mapped
the inclusions between the relations, and have given characteristic examples
of the differences between them.

Although the programming language is based on the computational lambda-
calculus and non-determinism is restricted to computation types, the examples
can be modified for programming languages with non-determinism at function
or product types (with the assumption that convergence is observable at those
types). We also note that the mechanism for creating and composing com-
putations in the computational lambda-calculus provides an alternative, with
the same expressive power, to using both call-by-name and call-by-value ab-
stractions to control the resolution of non-determinism.

A different, interesting example demonstrates that the upper and convex
variants of similarity and bisimilarity are sensitive to whether finite or count-
able non-determinism is present in the programming language, i.e., countable
non-determinism can be used to distinguish programs of function type that
cannot be distinguished by finitely non-deterministic programs.

Previous proofs of compatibility have been restricted to languages with
finite non-determinism. We have extended them to a programming language
with countable non-determinism by using a relationship between least and
greatest fixed points in complete boolean lattices to transform a co-inductively
defined may divergence predicate into an inductively defined must convergence
predicate. The supremum of the ordinal heights of the must convergence
derivation trees is the least non-recursive ordinal wK.

In this paper we have concentrated on operational models based on co-
inductively defined similarity and bisimilarity relations. It may be argued
that the resulting models are finer-grained than is warranted by reasonable
notions of observation. An alternative is to operate with Morris-style contex-
tual approximation preorders and equivalence relations which are naturally
defined on the basis of the may and must convergence predicates [13,15]. The
compatibility of the similarity and bisimilarity relations considered here im-
plies that they are all contained in corresponding contextual relations. The
inclusions are strict, for different reasons [15]. For instance, the failure of
syntactic continuity in example 5.1 distinguishes lower similarity from may
contextual approximation which does satisfy the syntactic continuity prop-
erty (2) for arbitrary non-deterministic programs. Lower and upper similarity
are used as auxiliary relations in [13] to reason about contextual equivalences

18

LASSEN AND PITCHER

for the operationally-defined specification language of action semantics, action
notation, which features countable non-determinism.

Acknowledgement

We would like to thank Ralph Loader, Peter Mosses, Luke Ong, Stan Wainer,
and especially Andrew Moran for helpful conversations.

References

[1] S. Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research
Topics in Functional Programming, The UT Year of Programming Series, pages
65-117. Addison-Wesley, 1990.

[2] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, number 90 in Studies in Logic. North-Holland
Publishing Company, 1977.

3] K. R. Apt and G. D. Plotkin. Countable nondeterminism and random
assignment. Journal of the ACM, 33(4):724-767, October 1986.

[4] R. J. Bird and O. de Moor. The Algebra of Programming. Prentice Hall, 1997.

[5] L. Birkedal and R. Harper. Operational interpretations of recursive types in an
operational setting (summary). In M. Abadi and T. Tto, editors, Symposium
on Theoretical Aspects of Computer Science, Sendai, Japan, volume 1281 of
Lecture Notes in Computer Science. Springer-Verlag, 1997.

[6] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract
interpretations. In Conference Record of the 19th ACM Symposium on
Principles of Programming Languages, pages 83-94, 1992.

[7] A. D. Gordon. Functional Programming and Input/Output. Distinguished
Dissertations in Computer Science. Cambridge University Press, 1994.

8] A. D. Gordon. Bisimilarity as a theory of functional programming. BRICS
Notes Series NS-95-3, Department of Computer Science, University of Aarhus,
1995.

9] A. D. Gordon. A tutorial on co-induction and functional programming.
In Proceedings of the 1994 Glasgow Workshop on Functional Programming,
Workshops in Computing, 1995.

[10] C. A. Gunter. Semantics of Programming Languages: Structures and
Techniques. Foundations of Computing. MIT Press, 1992.

[11] D. J. Howe. Equality in lazy computation systems. In Proceedings, 4th Annual
Symposium on Logic in Computer Science, pages 198-203. Computer Society
Press, Washington, 1989.

19

LASSEN AND PITCHER

[12] D. J. Howe. Proving congruence of bisimulation in functional programming
languages. Information and Computation, 124(2):103-112, 1996.

[13] S. B. Lassen. Action semantics reasoning about functional programs. Math.
Struct. in Comp. Science, pages 557-589, 1997.

[14] S. B. Lassen. Relational reasoning about contexts. In A. D. Gordon and A. M.
Pitts, editors, Higher Order Operational Techniques in Semantics, Publications
of the Newton Institute, pages 91-135. Cambridge University Press, 1998.

[15] S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD
thesis, Department of Computer Science, University of Aarhus, February 1998.
URL http://www.cl.cam.ac.uk/users/sbl21/docs/phd.html.

[16] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice-Hall, New York, 1989.

[17) E. Moggi. Notions of computations and monads. Information and
Computation, 93(1):55-92, 1991.

[18] A. Moran. Natural semantics for non-determinism. Licentiate thesis, Chalmers
University of Technology and University of Géteborg, May 1994.

[19] P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

[20] P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic.
Elsevier Science Publishers B.V., 1989.

[21] C.-H. L. Ong. Concurrent lambda calculus, and a general pre-congruence
theorem for applicative bisimulation. Preliminary version, August 1992.

[22] C.-H. L. Ong. Non-determinism in a functional setting. In Proceedings, 8th
Annual Symposium on Logic in Computer Science, pages 275-286. Computer
Society Press, Washington, 1993.

[23] C. S. Pitcher. Functional Programming and Erratic Non-Determinism. PhD
thesis, Oxford University Computing Laboratory. In preparation (expected
September 1998).

[24] A. M. Pitts. Parametric polymorphism and operational equivalence.
Preliminary version. In this volume.

[25] A. M. Pitts. A note on logical relations between semantics and syntax. Logic
Journal of the Interest Group in Pure and Applied Logics, 5(4):589-601, July
1997.

[26] A. M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer
and A. M. Pitts, editors, Semantics and Logics of Computation. Cambridge
University Press, 1997. Lectures given at the CLICS-II Summer School on
Semantics and Logics of Computation, Isaac Newton Institute for Mathematical
Sciences, Cambridge, UK, September 1995.

20

LASSEN AND PITCHER

[27] G. D. Plotkin. Domains. URL http://hypatia.dcs.qmw.ac.uk/sites/
other/domain.notes.other/, 1983.

[28] S. Prasad, A. Giacalone, and P. Mishra. Operational and algebraic semantics
for Facile: A symmetric integration of concurrent and functional programming.
In M. S. Paterson, editor, Automata, Languages and Programming, volume 443
of Lecture Notes in Computer Science, pages 765-780. Springer-Verlag, 1990.

[29] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill Series in Higher Mathematics. McGraw-Hill, 1967.

[30] A. W. Roscoe. Two papers on CSP. Technical Report PRG-67, Programming
Resarch Group, Oxford University Computing Laboratory, July 1988. (An
alternative order for the failures model & Unbounded nondeterminism in CSP).

21

