
Electronic Notes in Theoretical Computer Science �� ������
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Similarity and Bisimilarity for Countable
Non�Determinism and Higher�Order Functions

�Extended Abstract�

S�ren B� Lassen �

University of Cambridge Computer Laboratory�
Pembroke Street� Cambridge CB� �QG� United Kingdom

Soeren�Lassen�cl�cam�ac�uk

Corin S� Pitcher �

Oxford University Computing Laboratory�
Wolfson Building� Parks Road� Oxford OX� �QD� United Kingdom

Corin�Pitcher�comlab�ox�ac�uk

Abstract

This paper investigates operationally�based theories of a simply�typed functional
programming language with countable non�determinism� The theories are based
upon lower� upper� and convex variants of applicative similarity and bisimilarity�
and the main result presented here is that these relations are compatible� The
di�erences between the relations are illustrated by simple examples� and their con�
tinuity properties are discussed� It is also shown that� in some cases� the addition of
countable non�determinism to a programming language with �nite non�determinism
alters the theory of the language�

Key words� lambda�calculus� applicative bisimilarity� countable
non�determinism�

� Introduction

Non�deterministic programs are used in the study of concurrent systems� to
abstract from scheduling details� and in methodologies for program construc�
tion� where speci�cations are regarded as non�deterministic programs� In re�
cent years� several non�deterministic higher�order languages have been pro�
posed in the literature in these areas �see� e�g�� ��	�
��� Non�determinism is

� Supported by a grant from the Danish Natural Science Research Council and grant num�
ber GR�L����� from the UK EPSRC	
� Partially supported by a UK EPSRC studentship	

c����� Published by Elsevier Science B� V�



Lassen and Pitcher

also found as an integrated feature of the higher�order� operationally�based
semantic meta�language of action semantics �
��� In this paper we use op�
erational techniques to study the interaction between non�determinism and
higher�order functions in an idealised� minimal programming language�

We investigate three variants� lower� upper� and convex� of applicative sim�
ilarity and bisimilarity for a simply�typed functional programming language
with countable non�determinism� This builds upon work by Abramsky� Howe�
and Ong �
�

�
���
� for deterministic and �nitely non�deterministic higher�
order calculi�

The variants of the relations correspond to the di�erent constructions on
preorders that are used to characterise the lower� upper and convex pow�
erdomains� Their de�nitions refer to an inductively de�ned may convergence
relation between terms� and also a co�inductively de�ned may divergence pred�
icate on terms� for the upper and convex variants� For each variant there is
an applicative similarity preorder and an applicative bisimilarity equivalence
relation� both de�ned by co�induction� In addition� the applicative similarity
preorders determine mutual applicative similarity equivalence relations that
do not coincide with applicative bisimilarity� The proliferation of preorders
and equivalences re�ects the con�icting requirements of di�erent applications
for semantic theories of non�determinism� This complexity is not apparent
in the absence of non�determinism� because the nine relations de�ned here
collapse to just two�

It is of fundamental importance to know whether the relations are com�
patible� i�e�� are they preserved by the constructors of the language� We
prove that this is the case for all of the relations� extending methods due to
Howe and Ong that were previously restricted to �nitely non�deterministic
languages for the upper and convex variants� By the use of induction on the
derivation of a must convergence judgement �the complement of the may di�
vergence predicate� their methods are extended smoothly to a language with
countable non�determinism�

Must convergence is de�ned inductively via a �nite collection of in�nitary
rule schema� and so ordinal heights can be assigned to the derivation trees
of must convergence judgements in the usual way� Such trees have heights
strictly less than � for �nite non�determinism� and heights strictly less than the
least non�recursive ordinal �CK

� for countable non�determinism� This allows
us to prove unwinding theorems for �xed points terms with respect to must
convergence� ��unwinding in the case of �nitely non�deterministic terms� and
a more unusual �CK

� �unwinding for countably non�deterministic terms�

� A Functional Language with Non�Determinism

The vehicle for the examples and results in this paper is a variant of the lan�
guage of Moggi�s computational lambda�calculus �
����� Within the computa�
tional lambda�calculus there is a distinction between values and computations

�



Lassen and Pitcher

that is enforced by the type system through a type�constructor for computa�
tion types� There are mechanisms for creating and composing the programs
of computation types�

The language is extended with an operator �N to choose any natural num�
ber� The new construct is the sole source of non�determinism in the language�
and� because it is assigned an appropriate computation type� non�determinism
is restricted to the computation types� This restriction is convenient because
the mechanism for composing computations can be used to control when non�
determinism is resolved�an alternative is to incorporate both call�by�name
and call�by�value abstractions �see� e�g�� ������ In addition� although the ex�
amples presented here have analogues at function types� they are simpler at
computation types�

The types of the language are�

�� � ��� unit j nat j � � � j P���

The computation types are those of the form P���� and the remaining types
are called deterministic types�

The terms of the language are�

L�M�N ��� x j � j n j uop �M� j bop �M�N� j

if L thenM elseN j �x � ��M j M N j

�M � j let x � � �M inN j �x x � ��M j �N

where x ranges over a countably in�nite set of variables� n ranges over N � and
uop and bop range over a suitable set of symbols representing� respectively�
unary and binary primitive recursive functions� e�g�� not� plus� leq� For the
sake of economy� booleans are represented by natural numbers� � for false�
and 
 for true� The primitive recursive functions are assumed to follow this
representation� and are denoted� e�g�� LnotM � N � N � LplusM� LleqM � N� � N �
Variable binding terms follow the usual conventions for scope� ��conversion�
and type annotations to ensure uniqueness of typing� The notation M �N	x�
denotes the capture�free substitution of N for free occurrences of x in M � The
canonical terms are�

K ��� � j n j �x � ��M j �M �

The type assignment rules in �gure 
 are based on those of the compu�
tational lambda�calculus� We follow the convention that environments are
partial functions� and that �� x � � is only de�ned when x is not in the domain
of ��

The sets of terms and canonical terms that are closed and well�typed are
Exp and Can respectively� A term that is closed and well�typed is called a
program� The set of programs of type � is Exp

�
�

�



Lassen and Pitcher

� � x � � ���x� � �� � � � � unit � � n � nat �n � N�

� � M � nat

� � uop �M� � nat

� � M � nat � � N � nat

� � bop �M�N� � nat

� � L � nat � � M � � � � N � �

� � if L thenM elseN � �

�� x � � � M � �

� � �x � ��M � � � �

� � M � � � � � � N � �

� � M N � �

� � M � �

� � �M � � P���

� � M � P��� �� x � � � N � P���

� � let x � � �M inN � P���

�� x � P��� � M � P���

� � �xx � P����M � P���
� ��N � P�nat�

Fig� �� Type Assignment

Many of the examples that we give do not depend on the existence of
distinct canonical programs at a base type� and in such cases we use the unit

type in preference to nat�

The operational semantics is presented as an inductively de�ned evaluation
relation �may� called may convergence� between programs and canonical closed
terms� The rules are shown in �gure �� The may convergence relation is not a
partial function because of the rule that allows �N to converge to any natural
number�

In contrast to the situation for deterministic programs� the divergent �non�
terminating� behaviour of a non�deterministic program is not determined by
its convergent behaviour� Following ���	�
	� we de�ne a may divergence predi�
cate �may on programs by co�induction� The may divergence rules are given in
�gure �� The symbol ��� at the side of each rule is used to indicate that the
may divergence predicate is the greatest �xed point of the monotone function
determined by the rules� Note that there is some redundancy in the may di�
vergence rules� because it can be shown that programs of deterministic types
cannot diverge�

Examples ��
 and ��� highlight properties of the programming language
that are relevant in the sequel�

Example ��� The construct for sequencing computations in the computa�
tional lambda�calculus provides an additional degree of control over the resolu�
tion of non�determinism� For example� a call�by�value abstraction is de�nable
at computation types �where y is fresh for M��

�vx � ��M
def
� �y � P���� let x � � � y inM

The call�by�value abstraction exhibits �weak� call�time choice� i�e�� a non�






Lassen and Pitcher

K �may K �K � Can�

M �may n

uop �M� �may LuopM�n�

M �may n� N �may n�
bop �M�N� �may LbopM�n�� n��

L �may n � 
 M �may K

if L thenM elseN �may K
�n � N�

L �may � N �may K

if L thenM elseN �may K

M �may �x�M� M��N	x� �may K

M N �may K

M �may �M�� N �M�	x� �may K

let x�M inN �may K

M ��x x�M	x� �may K

�xx�M �may K
�N �may �n� �n � N�

Fig� �� May Convergence

deterministic program of type P��� is resolved to program of type � at the
time that it is passed as an argument�

Example ��� Recursion is only available at computation types� but given a
term �� f � � � P��� � M � � � P��� the following acts as a �xed point
�where g and x are fresh for M��

� � �x� let f � �x g� ��x� let f � g inM x� inM x � � � P���

Non�determinism is often introduced via a binary operator� binary erratic
choice� It can be de�ned in the programming language in terms of �N �

Example ��� The binary erratic choice of programs M and N of the same
computation type is de�ned to be �where y is fresh for M and N��

�M orN�
def
� let y ��N in if y thenM elseN

Non�determinism is informally classi�ed by the cardinalities of the sets of
convergent behaviours of programs that cannot diverge �see section � also��
For example� the binary erratic choice of deterministic terms is said to be
�nitely non�deterministic� whereas �N is said to be countably non�deterministic�
K�onig�s lemma ensures that recursion does not provide a route from �nite to
countable non�determinism�

Example ��� The program below can converge to any natural number� but
may also diverge�

� �xx� ���� or let y � x in �plus �y� 
��� � P�nat�

It cannot be distinguished from �N by equivalences that ignore divergent be�
haviour�

�



Lassen and Pitcher

M �may

uop �M� �may
�

M �may

bop �M�N� �may
�

N �may

bop �M�N� �may
�

L �may

if L thenM elseN �may
�

M �may

if L thenM elseN �may
� �L �may n � 
 and n � N�

N �may

if L thenM elseN �may
� �L �may ��

M �may

M N �may
�

M��N	x� �may

M N �may
� �M �may �x�M��

M �may

let x�M inN �may
�

N �M�	x� �may

let x�M inN �may
� �M �may �M���

M ��x x�M	x� �may

�xx�M �may
�

Fig� 	� May Divergence

� Similarity and Bisimilarity

Abramsky �
� develops a notion of applicative similarity for the untyped lazy
lambda�calculus� building upon earlier work of Park and Milner �
�� in the
context of process calculi� The preorders and equivalences described in this
section are based upon Abramsky�s work and subsequent extensions to non�
deterministic functional languages by Howe and Ong �
���
��

There are two fundamental di�erences between the deterministic and non�
deterministic settings� applicative bisimilarity is not the same as mutual ap�
plicative similarity� and there are di�erent ways of ordering non�deterministic
programs that correspond to the constructions on preorders used to charac�
terise the lower� upper� and convex powerdomains �see� e�g�� �
������� This
leads to nine distinct variations of applicative similarity and bisimilarity for
non�deterministic programs� which collapse to just two relations on determin�
istic programs�

For the sake of brevity� �applicative� is implicit when similarity or bisimi�
larity are used in the sequel� The reader is also cautioned that terminology for
�what we call� similarity or bisimilarity di�ers amongst authors� We use the
following conventions� simulations and bisimulations are post��xed points of
a function similarity and bisimilarity are the greatest simulations and bisim�
ulations respectively the pre�x �bi� refers to a function on relations with a
symmetric image mutual similarity is the greatest symmetric relation con�
tained in similarity�

�



Lassen and Pitcher

The variants of similarity and bisimilarity are de�ned in terms of two func�
tions of binary relations on programs� For a binary relation R on programs�
we de�ne binary relations on programs� hRiLS and hRiUS� The subscripts
abbreviate lower similarity and upper similarity�

De�nition ��� LetR be a binary relation on programs� The binary relations
hRiLS and hRiUS are de�ned by�

�i� M�N � Exp
�

are related by hRiLS if�
�a� � � unit or
�b� � � nat and 	n � N� M �may n 
 N �may n or
�c� � � �� � �� and �L � Exp

��
� �M L�R �N L� or

�d� � � P��� and �M��M �may �M�� �� �	N��N �may �N�� 
M�RN���

�ii� M�N � Exp
�

are related by hRiUS if�
�a� � � unit or
�b� � � nat and 	n � N� M �may n 
 N �may n or
�c� � � �� � �� and �L � Exp

��
� �M L�R �N L� or

�d� � � P��� and 
�M �may� ��
�
�N �may�
 �N��N �may �N�� �� �	M��M �may �M��
M�RN����

The functions h�iLS and h�iUS di�er only in their action at computation
types� If the assumption that divergent behaviour is less than any convergent
behaviour is made explicit� then an immediate connection can be made with
one of the methods used to construct the lower and upper powerdomains
��
�����

We are now in a position to de�ne the nine variants of similarity and
bisimilarity� Six of the relations are de�ned as the greatest �xed points of
combinations of the functions de�ned above� However� it is easy to verify by
induction that the simple type system of the computational lambda�calculus
ensures that the greatest �xed points of the functions are also least �xed
points� The remaining relations� the mutual similarities� are the greatest sym�
metric relations contained in the three similarities�

De�nition ��� The similarity and bisimilarity relations are de�ned by �where

R���R� denotes the greatest �xed point of ���

�LS
def
� 
R�hRiLS

�US
def
� 
R�hRiUS

�CS
def
� 
R�hRiLS � hRiUS

�LB
def
� 
R�hRiLS � hR

opiopLS

�UB
def
� 
R�hRiUS � hR

opiopUS

�CB
def
� 
R�hRiLS � hRiUS � hR

opiopLS � hR
opiopUS

In addition� the mutual similarities �LS� �US� and �CS are de�ned to be the

�



Lassen and Pitcher

greatest symmetric relations contained in �LS� �US� and �CS respectively�
The names of the relations are summarised in the table below�

Lower Upper Convex

Similarity �LS �US �CS

Mutual Similarity �LS �US �CS

Bisimilarity �LB �UB �CB

We refer to the tutorial papers ������ for the standard results concerning
similarities and bisimilarities� each similarity is a preorder each bisimilarity
and mutual similarity is an equivalence and the program that cannot con�

verge� !
def
� �x x� x� is a least element for each of the similarities� In addition�

it is immediate from the de�nitions that programs related by any of the sim�
ilarities or bisimilarities have the same type�

Although the method of de�nition of the similarities and bisimilarities is
convenient for the proof of compatibility in section 
� it is helpful to have the
unwound de�nition to mind� In the case of convex bisimilarity we have that�
if M and N are programs of the same computation type� then M �CBN if
and only if�

�i� �M��M �may �M�� �� �	N��N �may �N�� 
M��CBN�� and

�ii� �N��N �may �N�� �� �	M��M �may �M�� 
M��CBN�� and

�iii� M �may�� N �may�

Lower bisimilarity follows the same pattern as convex bisimilarity with the
exception that condition �iii� is dropped� We omit the unwinding of upper
bisimilarity� but note that it identi�es programs that can diverge� and that
it does not identify a program that can diverge with one that does not� For
example� the program in example ��
 is identi�ed with �N by lower similarity
and bisimilarity� but not by the upper and convex variants of similarity and
bisimilarity�

Lemmas ��� and ��
 state elementary properties of� and relationships be�
tween� the di�erent variants�

Lemma ��� Erratic choice is the join operation for �LS� and the meet opera�
tion for �US at the computation types� i�e�� for all programs of a computation
type L�M�N �

�i� �L orM��LSN if and only if L�LSN and M �LSN �

�ii� L�US �M orN� if and only if L�USM and L�USN �

Lemma ��� The following inclusions hold�

�i� �CS � �LS ��US� �CS � �LS ��US� and �CB � �LB ��UB�

�ii� �LB � �LS� �UB � �US� and �CB � �CS�

	



Lassen and Pitcher

�LB

�LS

�LS

�CB

�CS

�CS

�UB

�US

�US

Fig� 
� Inclusions between Similarities and Bisimilarities

Example ��� The following examples demonstrate the strictness of the in�
clusions of lemma 	�
�

�i� For any program M � �! or ��M ��� and �! or ��! or �M ���� are related by�
��LB ��UB�� ��LS ��US�� and ��LS ��US�� but not by� �CS� �CS� and
�CB� From this we derive�

�! or ��M ��� ���LS ��US� n�CS� �! or ��! or �M ����

�! or ��M ��� ���LS ��US� n �CS� �! or ��! or �M ����

�! or ��M ��� ���LB ��UB� n �CB� �! or ��! or �M ����

�ii� If M ��LS n�
op
LS� N � then ��M � or �N �� ��LS n �LB� �N �� Similarly� if

we have M ��US n�
op
US� N � then �M � ��US n �UB� ��M � or �N ��� The as�

signment M � ! and N � ��� satis�es both of the hypotheses� Finally� if
L ��CS n�

op
CS� M ��CS n�

op
CS� N � then�

��L� or ��M � or �N ��� ��CS n �CB� ��L� or �N ��

A suitable assignment is� L � !� M � �! or ����� and N � ����

Figure 
 depicts the relationships between the similarities and bisimilarities
described in lemma ��
 and example ���� Every edge denotes a strict inclusion�

As previously stated� the similarities and bisimilarities collapse to a sim�
ilarity preorder and a bisimilarity equivalence respectively if we remove �N
from the programming language� It is easy to construct programs� see exam�
ple ���� that demonstrate that the introduction of �nite non�determinism is
not conservative for any of the similarities and bisimilarities� Perhaps more
surprising is that the upper and convex variants of similarity and bisimilarity
are not conservatively extended when �nite non�determinism is extended to
countable non�determinism� This is discussed in example ����

Example ��	 The following programs cannot be distinguished by application

�



Lassen and Pitcher

to deterministic programs�

� �x � P�nat�� let y � x in �plus �y� y�� � P�nat� � P�nat�

� �x � P�nat�� let y � x in let z � x in �plus �y� z�� � P�nat� � P�nat�

They can be distinguished by applying them to a non�deterministic program
such as �� or 
�� in which case the second program may converge to �plus ��� 
���

Example ��
 The following programs cannot be distinguished by application
to �nitely non�deterministic programs�

� �vx� ��� � P�nat� � P�unit�

� f � � P�nat� � P�unit�

where f x y
def
� let z � y in if �leq �z� x�� then ��� else f z y

�the de�nition of f is intended to be formalised as in example ����� The
programs can be distinguished by the upper and convex similarities and bisimi�
larities by applying them to �N � The �rst program is a strict constant function�
The second program has only one convergent behaviour� will fail to terminate
if its argument does� but� in addition� may diverge if it is possible to read an
in�nite� strictly increasing sequence of numbers from its argument�

The similarity and bisimilarity relations extend in a standard way to rela�
tions on arbitrary typed terms by open extension� In general� the open exten�
sion of a relation on programs R� denoted R�� relates typed terms � � M � �
and � � N � � if � � x� � ��� � � � � xn � �n and

M �L�	x�� � � � �Ln	xn� R N �L�	x�� � � � �Ln	xn�

for all L� � Exp
��
� � � � � Ln � Exp

�n
�

� Compatibility

In this section we sketch a proof that the open extensions of the similarities
and bisimilarities of section � are compatible for the programming language�
A relationR is compatible for a language if it is preserved by every constructor
� of the language� that is� R is closed under the rule�

M�RN� � � � MnRNn

��M�� � � � �Mn� R ��N�� � � � � Nn�

where the arity of � is n� Compatibility is of fundamental importance because
it is a prerequisite for compositional reasoning�

Howe �

� describes a method using a congruence candidate for proving
the compatibility of lower similarity� In later work� Howe �
�� and Ong ��
�
extend the method to convex bisimilarity and convex similarity respectively�


�



Lassen and Pitcher

Unfortunately� other methods �see� e�g�� �
������� that have been used to prove
compatibility of similarity for deterministic programming languages do not
seem to be applicable here� there are di"culties with interpreting �N in the
upper and convex powerdomains� and the methods based on syntactic logical
relations use syntactic continuity �see section �� to establish the fundamental
property� Moreover� the compatibility of mutual similarity does not entail the
compatibility of bisimilarity for a non�deterministic programming language�

We now sketch Howe and Ong�s extension of Howe�s congruence candidate
method�

�i� The congruence candidate R� of a binary relation R on programs �which
will range over the variants of similarity and bisimilarity� is an inductively
de�ned binary relation on �potentially� open� well�typed terms� It is
the least relation closed under the following rule� where � ranges over
constructors of the language� including variables� and the arity of � is n�

L�R
�M� � � � LnR

�Mn ��M�� � � � �Mn�R�N

��L�� � � � � Ln�R�N

�ii� If R is a preorder� then the congruence candidate R� satis�es�
�a� R� � R��
�b� R� R� � R��
�c� R� is compatible�
�d� M�R

�N� 
M�R
�N� ��M��M�	x�R�N��N�	x��

�iii� If R is a preorder� the restriction to programs R�

� of the congruence
candidate R� is a post��xed point of h�iLS or h�iUS if R is�
�a� R � hRiLS ��R�

� � hR�

�iLS�
�b� R � hRiUS ��R�

� � hR�

�iUS�
This is established by induction on the derivation of a may convergence
judgement for �a�� and on a natural number that is derived from a pro�
gram that cannot diverge for �b��although a problem is discussed below�

�iv� When R is lower� upper� or convex similarity� we deduce by co�induction
that R�

� � R� and thus R� � R�� Consequently� the open extensions of
lower� upper� and convex similarity are compatible� because the respec�
tive congruence candidates are� Compatibility of the mutual similarities
follows immediately�

�v� The �nal step is to deduce that each of the bisimilarities are compatible�
If R is an equivalence� it can be shown using induction that R� � R��op�
where R�� denotes the transitive closure of the congruence candidate of
R� which is compatible by an easy induction� Hence� R�� � R��op� so
R�� is symmetric� In addition� we can derive from �iii� that�
�a� R � hRiLS ��R��

� � hR�

�i
�
LS � hR��

� iLS�
�b� R � hRiUS ��R��

� � hR�

�i
�
US � hR��

� iUS�
As in �iv�� co�induction can be used to show that R�� coincides with R�







Lassen and Pitcher

K �must �K � Can�

M �must

uop �M� �must
M �must N �must

bop �M�N� �must

L �must M �must

if L thenM elseN �must
�L �may n � 
 and n � N�

L �must N �must

if L thenM elseN �must
�L �may ��

M �must M��N	x� �must

M N �must
�M �may �x�M��

M �must fN �M�	x� �must j M �may �M��g

let x�M inN �must

M ��x x�M	x� �must

�xx�M �must
�N �must

Fig� �� Must Convergence

when R is lower� upper� or convex bisimilarity� Therefore� the bisimilar�
ities are compatible�

It is worth noting that the method also works for recursive types and in
the absence of types� and that the use of the computational lambda�calculus
means that we do not need to use disjoint sets of call�by�name and call�by�
value variables as in �
���
��

However� we have glossed over a problem with �iii��b�� Howe and Ong
assigned natural numbers to programs that cannot diverge and that have
only �nitely many convergent behaviours� For this reason� their proofs only
hold for programming languages with �nite non�determinism�

The method can be extended to a language with countable non�determinism
by using induction on the derivation of a must convergence judgement� The
rules for must convergence �must appear in �gure �� Using induction on these
rules� the proof works smoothly for both �nite and countable non�determinism�
The only problem is� how do we know that� for any program M � M �may if
and only if M �must� This turns out to be trivial� because the complement of
the greatest �xed point of a monotone function on a complete boolean lattice
is the least �xed point of another monotone function that can be derived from
the original function �see ����� and the must convergence rules in �gure � are
derived in this way from the may divergence rules in �gure ��

Theorem ��� The lower� upper� and convex variants of similarity� mutual
similarity� and bisimilarity are compatible�


�



Lassen and Pitcher

� Convergence and Continuity

This section describes unwinding properties of recursive programs with re�
spect to may and must convergence� and examines related syntactic continuity
properties of the lower and upper similarities� The �rst part covers may con�
vergence and lower similarity� and the second part covers must convergence
and upper similarity� The latter includes an analysis of the heights� measured
by ordinals� of derivation trees associated to must convergence judgements�

Well�typed terms of the form �xx�M � henceforth called �xed point expres�
sions� satisfy a �nite unwinding property with respect to may convergence� for
any �xed point expression �xx�M � let �x �n�x�M denote the n�th unwinding�
de�ned inductively by�

�x ���x�M
def
� !

�x �n���x�M
def
� M ��x �n�x�M	x�

Then� whenever x � P��� � M � P��� and x � P��� � N � � �

N ��xx�M	x� �may if and only if 	n 
 �� N ��x �n�x�M	x� �may �
�

where L �may if and only if 	K�L �may K� The proof is the same as for
deterministic languages �see� e�g�� �
�������

A related result is a so�called syntactic continuity property of lower simi�
larity on deterministic programs� for terms N and M � as above� and L � Exp

�
�

N ��xx�M	x��LS L if and only if �n 
 �� N ��x �n�x�M	x��LS L ���

See �

����� But syntactic continuity is not valid� in general� for non�deterministic
programs�

Example ��� Recall the program M
def
� �xx� ���� or let y � x in �plus �y� 
����

from example ��
� Let N
def
� let x��N in �let y ��N in �if leq �x� y� thenx else y���

Then� for every �nite unwinding M �n� of M �
�
M �n�

�
is lower similar to N �

But �M � and N are not lower similar� �The calculations are straightforward��

We now turn our attention to must convergence� First� consider �nitely
non�deterministic programs where non�determinism only occurs in the form of
binary erratic choice� In this case� the derivation trees of the must convergence
judgements introduced in section 
 are only �nitely branching� As a result�
the �nite unwinding property of �xed point expressions �
� also holds with
respect to must convergence� Moreover� upper similarity satis�es the syntactic
continuity property ��� �see �
����

In general� must convergence derivation trees of programs involving count�
able choice are countably branching� The complexity of the trees can be
measured by assigning ordinals to them in the usual way �a node is assigned
the supremum of the successors of the ordinals associated with its children�


�



Lassen and Pitcher

see� e�g�� ������ and this allows us to give an ordinal bound to the induction
used in the proof of theorem 
�
� The bound is simply the supremum of the
ordinals associated to the derivations of must convergence judgements� Fol�
lowing work of Apt and Plotkin ���� the bound turns out to be �CK

� � the least
non�recursive ordinal� We recall the de�nition of recursive ordinals below� but
refer the reader to ������� for detailed accounts of the recursive ordinals�

De�nition ��� An ordinal � is recursive if there exists a decidable order on
the natural numbers that is order�isomorphic to ��

We �rst demonstrate that for each recursive ordinal � there is a program
that cannot diverge� and that has a must convergence derivation tree with
height at least �� Since � is a recursive ordinal� and it can be veri�ed that
every partial recursive function can be de�ned in the programming language�
there is a program M� � nat � nat � P�nat� that does not diverge on any
input� and the relation that it represents is order�isomorphic to �� Now we
also need to construct a program slow that accepts as arguments a program
representing an order on natural numbers� and a natural number� It then
�counts down� from the given number until it reaches a minimal element� at
which point it converges to ���� The type of the program is�

� slow � �nat � nat � P�nat�� � nat � P�unit�

It is intended that the numeric argument� say n� is the code� with respect to
the coding used by M�� of an ordinal � 
 �� and that the height of the deriva�
tion tree of �slowM� n� �must is at least �� Intuitively� the must convergence
derivation tree for this program should contain as sub�trees the derivation
trees for �slowM�m� �must� where m codes an ordinal strictly less than ��
The expressive power of �N can be used to do this� by choosing any natural
number we are choosing the code of any ordinal strictly less than �� The
decidability of the order on codes of ordinals strictly less than � allows us
to then discard codes of ordinals that are greater than or equal to �� The
following de�nition accomplishes this�

slow f x
def
� let y ��N in let z � f y x in if z then �slow f y� else ���

Then� for each recursive ordinal � represented by M�� we can de�ne a program
with a must convergence derivation tree of height ��

let x��N in slowM� x ���

In the other direction we have to show that the ordinal height of a must
convergence derivation tree is always recursive� Suppose that M is a program
that must converge� and that has a derivation tree with height �� The ordinals
strictly less than � are represented by paths in the tree that start at the root
of the tree� i�e�� at M � together with annotations for the may convergence







Lassen and Pitcher

side�conditions� With the side conditions given� it is decidable whether an
arbitrary path is a valid path from M by checking each component of the
path against the rule schema of �gure �� With a suitable encoding of paths
in the tree as sequences of natural numbers� the derivation tree of M �must

is a recursive tree� and then the Kleene�Brouwer order on paths of the tree
is both decidable and order�isomorphic to an ordinal greater than or equal
to �� We refer the reader to ���� for the de�nition of recursive trees and the
Kleene�Brouwer order�

In general� �xed point expressions in countably non�deterministic programs
do not satisfy a �nite unwinding property with respect to must convergence�
because of the possibly trans�nite heights of derivation trees and the syntac�
tic continuity property of upper similarity is invalid� For instance� if � � ��
the program ��� is a counterexample to both the �nite unwinding and syntac�
tic continuity properties� It is� however� possible to formulate an unwinding
property for must convergence that holds for countable non�determinism by
progressing to trans�nite unwindings�

N ��xx�M	x� �must if and only if 	� 
 �CK
� � N ��x ���x�M	x� �must �
�

In order to make sense of this assertion� we need to de�ne the trans�nite un�
windings and their must convergence behaviour� We extend the syntax with
new terms �x ���x�M � for all recursive limit ordinals �� with the same typing
rule as for ordinary �xed point expressions� Arbitrary recursive unwindings

�x ���x�M � for � 
 �CK
� � are de�ned if we let �x ���x�M

def
� !� as above� and�

inductively� �x �����x�M
def
� M ��x ���x�M	x�� for all � 
 �CK

� � Next� the de��
nition of must convergence has to be extended to the new terms� Intuitively�
we want the following rule which expresses that the must convergence at re�
cursive limit ordinals is the best of all the must convergence behaviours at
smaller ordinals�

�x ���x�M �must

�x ���x�M �must
�� 
 � 
 �CK

� �

But� since the de�nition of must convergence in �gure � depends on may
convergence� it would be necessary to extend the may convergence relation on
terms of computation type to the new terms as well� and it it is not clear how
to do this� We get around this obstacle by giving a self�contained de�nition of
must convergence at computation types without reference to may convergence�
This can be achieved by means of either a �structurally inductive� de�nition
of the must convergence predicate� M �must� in the style of Pitts ��
� or an
inductively de�ned must convergence relation� M �must U � between terms M
and sets of canonical terms U � We sketch the second solution here� If M is
a term in the original language� the meaning of M �must U is that M must
converge and that U is the set of canonical terms that M may converge to�


�



Lassen and Pitcher

For example�

K �must fKg �K � Can� �N �must f�n� jn � Ng

A rule for let can be given without reference to may convergence�

M �must U fN �M�	x� �must VM�
j �M�� � Ug

let x�M inN �must
S
fVM�

j �M�� � Ug

The remaining rules are straightforward and make no reference to may con�
vergence at computation types� The must convergence relation is extended
to the new terms for trans�nite unwindings of �xed point expressions by the
rule�

�x ���x�M �must U

�x ���x�M �must U
�� 
 � 
 �CK

� �

The analysis of the de�nition of the must convergence predicate in �gure �
shows that the closure ordinal of the rules for the must convergence relation
is also �CK

� � The must convergence predicate� M �must� is obtained from the

must convergence relation as M �must
def
� 	U �M �must U � This concludes the

de�nition of the must convergence behaviour of the trans�nite unwindings of
�xed point expressions� The proof of �
� is by induction on the derivation of
the must convergence judgment�

The de�nition of the upper similarity from section � can be extended to
programs with occurrences of trans�nite unwindings of �xed point expressions�
by extending hRiUS to relate programs M�N � Exp

�
at computation types

� � P��� if

�U �M �must U �� �	V�N �must V 
 �N� � V�	M� � U �M�RN��

The extension of upper similarity is obtained as the greatest �xed point of
the extended de�nition of the function h�iUS� It is compatible with respect
to the extended language� The compatibility proof for upper similarity from
section 
 carries over if the induction is now conducted on the derivation of
M �must U �

We ask two questions about the extension of upper similarity to the ex�
tended language� First� is it a conservative extension� i�e�� does it include the
upper similarity relation de�ned in section � for the original language� Second�
does it enjoy a trans�nite syntactic continuity property� If both are answered
a"rmatively� we get a useful induction principle for reasoning about �xed
point expressions with respect to upper similarity in the original language�
The two questions are left as open problems�


�



Lassen and Pitcher

� Beyond Countable Choice

We have described two forms of non�determinism� the construct that we have
taken as primitive �N � and binary erratic choice� In this section� we outline
two other possibilities that have been proposed in the literature�

The �rst is based on the observation that binary erratic choice has precisely
the same expressiveness as a new choice construct � f�� 
g that may converge to
either ��� or �
�� but cannot diverge� It is natural to ask whether other forms of
non�determinism can be obtained in a similar way� e�g�� if X is a non�empty set
of natural numbers� then what is the expressiveness of a choice construct �X
that may converge to �n�� for any n � X� but cannot diverge� It turns out that
choice constructs for countably in�nite sets of natural numbers are not always
equally expressive� because Apt and Plotkin ��� show that exactly the choice
constructs for non�empty� recursively enumerable sets of natural numbers can
be de�ned from �N � This suggests that classifying non�deterministic programs
by the cardinality of their convergent behaviour is misleading�

However� classi�cation is not the only issue a�ected by the result of Apt
and Plotkin� In the light of example ���� it is of interest to know whether
the presence of additional forms of non�determinism further alters the upper
and convex variants of similarity and bisimilarity� If this is the case� then a
denotational model of non�determinism that can interpret sets of natural num�
bers that are not recursively enumerable will discriminate more than mutual
similarity �or bisimilarity� for a programming language with only �N �

In order to study these problems� the programming language given here
can be extended with additional choice constructs of the form described above�
The proofs of compatibility sketched in section 
 readily extend to more gen�
eral forms of �erratic� non�determinism ����� Roscoe ���� studies similar non�
deterministic choice constructs in an extension of CSP�

McCarthy�s ambiguous choice operator exhibits a very di�erent form of
non�determinism� The ambiguous choice of two programs has a natural� fair
�also known as dove�tailing� implementation� run both programs in parallel�
and return the value of the �rst to converge� The ambiguous choice of two
programs can converge to any value that the programs can converge to� but
only diverges when both programs can diverge�

Moran �
	� studies a functional programming language extended with am�
biguous choice and proves that lower similarity is compatible for the language�
An example is given there that shows that convex similarity cannot be com�
patible in the presence of ambiguous choice� Similar examples can be used to
show that upper similarity and bisimilarity also fail to be compatible� How�
ever� the compatibility of convex bisimilarity in the presence of ambiguous
choice is an open problem� The method described in section 
 is not immedi�
ately applicable because it would imply the compatibility of convex similarity�


�



Lassen and Pitcher

� Conclusion

We have de�ned a simply�typed functional programming language with an
operator that can converge to any natural number� and have introduced nine
compatible relations on programs� The relations are lower� upper� and con�
vex variants of applicative similarity and bisimilarity� Although some of the
relations have been studied individually in the literature� we have emphasised
that they can be constructed using only two functions� and that this a�ords a
natural structure to the proofs of compatibility� In addition� we have mapped
the inclusions between the relations� and have given characteristic examples
of the di�erences between them�

Although the programming language is based on the computational lambda�
calculus and non�determinism is restricted to computation types� the examples
can be modi�ed for programming languages with non�determinism at function
or product types �with the assumption that convergence is observable at those
types�� We also note that the mechanism for creating and composing com�
putations in the computational lambda�calculus provides an alternative� with
the same expressive power� to using both call�by�name and call�by�value ab�
stractions to control the resolution of non�determinism�

A di�erent� interesting example demonstrates that the upper and convex
variants of similarity and bisimilarity are sensitive to whether �nite or count�
able non�determinism is present in the programming language� i�e�� countable
non�determinism can be used to distinguish programs of function type that
cannot be distinguished by �nitely non�deterministic programs�

Previous proofs of compatibility have been restricted to languages with
�nite non�determinism� We have extended them to a programming language
with countable non�determinism by using a relationship between least and
greatest �xed points in complete boolean lattices to transform a co�inductively
de�ned may divergence predicate into an inductively de�ned must convergence
predicate� The supremum of the ordinal heights of the must convergence
derivation trees is the least non�recursive ordinal �CK

� �

In this paper we have concentrated on operational models based on co�
inductively de�ned similarity and bisimilarity relations� It may be argued
that the resulting models are �ner�grained than is warranted by reasonable
notions of observation� An alternative is to operate with Morris�style contex�
tual approximation preorders and equivalence relations which are naturally
de�ned on the basis of the may and must convergence predicates �
��
��� The
compatibility of the similarity and bisimilarity relations considered here im�
plies that they are all contained in corresponding contextual relations� The
inclusions are strict� for di�erent reasons �
��� For instance� the failure of
syntactic continuity in example ��
 distinguishes lower similarity from may
contextual approximation which does satisfy the syntactic continuity prop�
erty ��� for arbitrary non�deterministic programs� Lower and upper similarity
are used as auxiliary relations in �
�� to reason about contextual equivalences


	



Lassen and Pitcher

for the operationally�de�ned speci�cation language of action semantics� action
notation� which features countable non�determinism�

Acknowledgement

We would like to thank Ralph Loader� Peter Mosses� Luke Ong� Stan Wainer�
and especially Andrew Moran for helpful conversations�

References

��
 S� Abramsky� The lazy lambda calculus� In D� A� Turner� editor� Research
Topics in Functional Programming� The UT Year of Programming Series� pages
������� Addison�Wesley� �����

��
 P� Aczel� An introduction to inductive de�nitions� In J� Barwise� editor�
Handbook of Mathematical Logic� number �� in Studies in Logic� North�Holland
Publishing Company� �����

�	
 K� R� Apt and G� D� Plotkin� Countable nondeterminism and random
assignment� Journal of the ACM� 		�
����
����� October �����

�

 R� J� Bird and O� de Moor� The Algebra of Programming� Prentice Hall� �����

��
 L� Birkedal and R� Harper� Operational interpretations of recursive types in an
operational setting �summary�� In M� Abadi and T� Ito� editors� Symposium
on Theoretical Aspects of Computer Science� Sendai� Japan� volume ���� of
Lecture Notes in Computer Science� Springer�Verlag� �����

��
 P� Cousot and R� Cousot� Inductive de�nitions� semantics and abstract
interpretations� In Conference Record of the ��th ACM Symposium on
Principles of Programming Languages� pages �	��
� �����

��
 A� D� Gordon� Functional Programming and Input�Output� Distinguished
Dissertations in Computer Science� Cambridge University Press� ���
�

��
 A� D� Gordon� Bisimilarity as a theory of functional programming� BRICS
Notes Series NS����	� Department of Computer Science� University of Aarhus�
�����

��
 A� D� Gordon� A tutorial on co�induction and functional programming�
In Proceedings of the ���	 Glasgow Workshop on Functional Programming�
Workshops in Computing� �����

���
 C� A� Gunter� Semantics of Programming Languages� Structures and
Techniques� Foundations of Computing� MIT Press� �����

���
 D� J� Howe� Equality in lazy computation systems� In Proceedings� 	th Annual
Symposium on Logic in Computer Science� pages ������	� Computer Society
Press� Washington� �����


�



Lassen and Pitcher

���
 D� J� Howe� Proving congruence of bisimulation in functional programming
languages� Information and Computation� ��
������	����� �����

��	
 S� B� Lassen� Action semantics reasoning about functional programs� Math

Struct
 in Comp
 Science� pages �������� �����

��

 S� B� Lassen� Relational reasoning about contexts� In A� D� Gordon and A� M�
Pitts� editors� Higher Order Operational Techniques in Semantics� Publications
of the Newton Institute� pages ����	�� Cambridge University Press� �����

���
 S� B� Lassen� Relational Reasoning about Functions and Nondeterminism� PhD
thesis� Department of Computer Science� University of Aarhus� February �����
URL http���www�cl�cam�ac�uk�users�sbl���docs�phd�html�

���
 R� Milner� Communication and Concurrency� International Series in Computer
Science� Prentice�Hall� New York� �����

���
 E� Moggi� Notions of computations and monads� Information and
Computation� �	���������� �����

���
 A� Moran� Natural semantics for non�determinism� Licentiate thesis� Chalmers
University of Technology and University of G�oteborg� May ���
�

���
 P� D� Mosses� Action Semantics� Number �� in Cambridge Tracts in Theoretical
Computer Science� Cambridge University Press� �����

���
 P� Odifreddi� Classical Recursion Theory� volume ��� of Studies in Logic�
Elsevier Science Publishers B�V�� �����

���
 C��H� L� Ong� Concurrent lambda calculus� and a general pre�congruence
theorem for applicative bisimulation� Preliminary version� August �����

���
 C��H� L� Ong� Non�determinism in a functional setting� In Proceedings� �th
Annual Symposium on Logic in Computer Science� pages �������� Computer
Society Press� Washington� ���	�

��	
 C� S� Pitcher� Functional Programming and Erratic Non�Determinism� PhD
thesis� Oxford University Computing Laboratory� In preparation �expected
September ������

��

 A� M� Pitts� Parametric polymorphism and operational equivalence�
Preliminary version� In this volume�

���
 A� M� Pitts� A note on logical relations between semantics and syntax� Logic
Journal of the Interest Group in Pure and Applied Logics� ��
���������� July
�����

���
 A� M� Pitts� Operationally�based theories of program equivalence� In P� Dybjer
and A� M� Pitts� editors� Semantics and Logics of Computation� Cambridge
University Press� ����� Lectures given at the CLICS�II Summer School on
Semantics and Logics of Computation� Isaac Newton Institute for Mathematical
Sciences� Cambridge� UK� September �����

��



Lassen and Pitcher

���
 G� D� Plotkin� Domains� URL http���hypatia�dcs�qmw�ac�uk�sites�

other�domain�notes�other�� ���	�

���
 S� Prasad� A� Giacalone� and P� Mishra� Operational and algebraic semantics
for Facile� A symmetric integration of concurrent and functional programming�
In M� S� Paterson� editor� Automata� Languages and Programming� volume 

	
of Lecture Notes in Computer Science� pages �������� Springer�Verlag� �����

���
 H� Rogers� Jr� Theory of Recursive Functions and E
ective Computability�
McGraw�Hill Series in Higher Mathematics� McGraw�Hill� �����

�	�
 A� W� Roscoe� Two papers on CSP� Technical Report PRG���� Programming
Resarch Group� Oxford University Computing Laboratory� July ����� �An
alternative order for the failures model � Unbounded nondeterminism in CSP��

�



